Skip to content

Commit d366f44

Browse files
Merge pull request #509 from Quantum-Software-Development/FabianaCampanari-patch-1
Update README.md
2 parents ed808fb + c65a1be commit d366f44

File tree

1 file changed

+6
-6
lines changed

1 file changed

+6
-6
lines changed

README.md

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -209,7 +209,7 @@ $$\frac{x_1}{2} + \frac{2x_2}{3} \leq 170$$
209209

210210
<br><br>
211211

212-
## Solve the system using the **Simplex Method** or an optimization tool.
212+
## [Solve the system using the **Simplex Method** or an optimization tool]()
213213

214214
<br>
215215

@@ -327,7 +327,7 @@ The **graphical method** for solving simple linear programming (LP) problems inv
327327
<br>
328328

329329

330-
## Steps to Solve Graphically
330+
## [Steps to Solve Graphically]()
331331

332332
<br>
333333

@@ -355,7 +355,7 @@ The **graphical method** for solving simple linear programming (LP) problems inv
355355

356356
<br><br>
357357

358-
## Possible Scenarios
358+
## [Possible Scenarios]()
359359

360360
* **Unique Optimal Solution:** The objective function achieves its maximum or minimum value at a single vertex of the feasible region [3, 5, 6].
361361

@@ -367,15 +367,15 @@ The **graphical method** for solving simple linear programming (LP) problems inv
367367

368368
<br>
369369

370-
## Theorem on Optimal Solutions
370+
## [Theorem on Optimal Solutions]()
371371

372372
If the feasible region of a linear programming problem is **non-empty and bounded**, then the objective function attains both a **maximum and a minimum value**, and these occur at **extreme points (vertices)** of the feasible region [5].
373373

374374
If the feasible region is **unbounded**, and if the objective function attains a maximum or minimum value, it will also occur at an **extreme point (vertex)** [5].
375375

376376
<br>
377377

378-
## Examples
378+
## [Examples]()
379379

380380
The source provides several examples [6-8] that illustrate the graphical method for both maximization and minimization problems with different sets of constraints. These examples demonstrate how to plot the constraints, identify the feasible region, find the vertices, and evaluate the objective function to determine the optimal solution and its value. For instance, Example 1 [6] finds the maximum of $x_1 + 2x_2$ subject to several constraints.
381381

@@ -1013,7 +1013,7 @@ $$
10131013

10141014
<br><br><br><br><br><br>
10151015

1016-
# VII - [Transportation Problem (Linear Programming)]()
1016+
# IX - [Transportation Problem (Linear Programming)]()
10171017

10181018
<br>
10191019

0 commit comments

Comments
 (0)