You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
## Solve the system using the **Simplex Method** or an optimization tool.
212
+
## [Solve the system using the **Simplex Method** or an optimization tool]()
213
213
214
214
<br>
215
215
@@ -327,7 +327,7 @@ The **graphical method** for solving simple linear programming (LP) problems inv
327
327
<br>
328
328
329
329
330
-
## Steps to Solve Graphically
330
+
## [Steps to Solve Graphically]()
331
331
332
332
<br>
333
333
@@ -355,7 +355,7 @@ The **graphical method** for solving simple linear programming (LP) problems inv
355
355
356
356
<br><br>
357
357
358
-
## Possible Scenarios
358
+
## [Possible Scenarios]()
359
359
360
360
***Unique Optimal Solution:** The objective function achieves its maximum or minimum value at a single vertex of the feasible region [3, 5, 6].
361
361
@@ -367,15 +367,15 @@ The **graphical method** for solving simple linear programming (LP) problems inv
367
367
368
368
<br>
369
369
370
-
## Theorem on Optimal Solutions
370
+
## [Theorem on Optimal Solutions]()
371
371
372
372
If the feasible region of a linear programming problem is **non-empty and bounded**, then the objective function attains both a **maximum and a minimum value**, and these occur at **extreme points (vertices)** of the feasible region [5].
373
373
374
374
If the feasible region is **unbounded**, and if the objective function attains a maximum or minimum value, it will also occur at an **extreme point (vertex)**[5].
375
375
376
376
<br>
377
377
378
-
## Examples
378
+
## [Examples]()
379
379
380
380
The source provides several examples [6-8] that illustrate the graphical method for both maximization and minimization problems with different sets of constraints. These examples demonstrate how to plot the constraints, identify the feasible region, find the vertices, and evaluate the objective function to determine the optimal solution and its value. For instance, Example 1 [6] finds the maximum of $x_1 + 2x_2$ subject to several constraints.
381
381
@@ -1013,7 +1013,7 @@ $$
1013
1013
1014
1014
<br><br><br><br><br><br>
1015
1015
1016
-
# VII - [Transportation Problem (Linear Programming)]()
1016
+
# IX - [Transportation Problem (Linear Programming)]()
0 commit comments