Skip to content

Commit ed808fb

Browse files
Merge pull request #508 from Quantum-Software-Development/FabianaCampanari-patch-1
Update README.md
2 parents 77ae753 + e5f0375 commit ed808fb

File tree

1 file changed

+57
-28
lines changed

1 file changed

+57
-28
lines changed

README.md

Lines changed: 57 additions & 28 deletions
Original file line numberDiff line numberDiff line change
@@ -381,13 +381,13 @@ The source provides several examples [6-8] that illustrate the graphical method
381381

382382
<br>
383383

384-
## Conclusion about the Graphical Method
384+
## [Conclusion about the Graphical Method]()
385385

386386
The graphical method is a useful tool for solving linear programming problems with two decision variables, providing a clear visual representation of the solution process. It helps in understanding the concepts of feasible solutions, feasible regions, and the role of vertices in finding the optimal solution. However, this method is limited to problems with only two decision variables. For problems with more variables, more advanced techniques like the simplex algorithm are required.
387387

388388
<br><br>
389389

390-
# IV- The Simplex Method
390+
# IV- [The Simplex Method]()
391391

392392
#### [Click here](https://github.com/Quantum-Software-Development/Optimization-Simulation-Modeling-LinearProgramming/blob/5d0f89d3a4d9f67f900463505cb7d4b4e72d186a/class_4-Simplex%20Method/class_4-Simplex%20Method.pdf) to access Theoretical and Pratical Material.
393393

@@ -396,7 +396,7 @@ The graphical method is a useful tool for solving linear programming problems wi
396396

397397
<br>
398398

399-
# V- Two-Stage Simplex
399+
# V- [Two-Stage Simplex]()
400400

401401
#### [Click here](https://github.com/Quantum-Software-Development/Optimization-Simulation-Modeling-LinearProgramming/blob/e09ce2c81b12f47975bdb0ed6b3acd77b2195532/class_6-Two-Stage%20Simplex./two-stage%20simplex..pdf) to access Theoretical and Pratical Material.
402402

@@ -407,7 +407,7 @@ The graphical method is a useful tool for solving linear programming problems wi
407407

408408
<br>
409409

410-
# VI - [Excel Solver for Linear Programming - Simplex]():
410+
# VI - [Excel Solver for Linear Programming - Simplex]()
411411

412412

413413
The Excel Solver is an optimization tool available in Microsoft Excel that allows users to find the optimal solution to decision problems involving constraints and objectives. It can solve linear and nonlinear programming problems by adjusting the values of decision variables to maximize or minimize a target (objective) function, subject to a set of constraints.
@@ -428,55 +428,70 @@ In the context of Linear Programming (LP) and the Simplex Method, Excel Solver c
428428
<br>
429429

430430

431-
## Simplex Method using Excel Solver
431+
## VII - [Simplex Method using Excel Solver]()
432432

433433
This example shows how to solve a Linear Programming (LP) problem using the **Simplex Method** via **Excel Solver**.
434434

435-
---
435+
<br>
436436

437-
### Problem
437+
### [Problem]():
438438

439-
Maximize the objective function:
439+
### [Maximize the objective function]():
440440

441441
Z = 3x + 5y
442442

443-
Subject to the constraints:
443+
### [Subject to the constraints]():
444444

445445
x + 2y ≤ 100
446446
2x + y ≤ 80
447447
x, y ≥ 0
448448

449-
---
450449

451-
### Excel Spreadsheet Setup
450+
<br>
451+
452452

453-
Fill the spreadsheet with the following structure:
453+
### [Excel Spreadsheet Setup]():
454454

455-
#### Variables and Objective
455+
### **Fill the spreadsheet with the following structure:**
456+
457+
<br>
458+
459+
#### [*Variables and Objective*]()
460+
461+
<br>
456462

457463
| Cell | Description | Formula / Value |
458464
|------|------------------------|----------------------|
459465
| B1 | x (Decision Variable) | *(leave blank)* |
460466
| B2 | y (Decision Variable) | *(leave blank)* |
461467
| B3 | Objective Function Z | `=3*B1 + 5*B2` |
462468

463-
#### Constraints Left-Hand Side (LHS)
469+
<br>
470+
471+
#### [*Constraints Left-Hand Side (LHS)*]()
472+
473+
<br>
464474

465475
| Cell | Description | Formula |
466476
|------|----------------------------|---------------------|
467477
| B5 | Constraint 1 LHS | `=1*B1 + 2*B2` |
468478
| B6 | Constraint 2 LHS | `=2*B1 + 1*B2` |
469479

470-
#### Constraints Right-Hand Side (RHS)
480+
<br>
481+
482+
#### [*Constraints Right-Hand Side (RHS)*]()
483+
484+
<br>
471485

472486
| Cell | Description | Value |
473487
|------|----------------------------|---------------------|
474488
| C5 | Constraint 1 RHS | `100` |
475489
| C6 | Constraint 2 RHS | `80` |
476490

477-
---
478491

479-
### Solver Configuration (Simplex LP)
492+
<br><br>
493+
494+
### [Solver Configuration (Simplex LP)]():
480495

481496
1. Go to `Data` > `Solver`.
482497
2. Set Objective Cell: `B3`
@@ -490,7 +505,7 @@ Fill the spreadsheet with the following structure:
490505
6. Choose **Simplex LP** as the solving method.
491506
7. Click **Solve**.
492507

493-
---
508+
<br>
494509

495510
### Solution
496511

@@ -505,13 +520,15 @@ Z = 260
505520

506521
<br>
507522

508-
## Excel Solver Example – Linear Programming with Simplex
523+
## [Excel Solver Example – Linear Programming with Simplex]()
509524

510525
This example demonstrates how to use Excel Solver to solve a Linear Programming problem using the **Simplex Method**.
511526

527+
<br>
528+
512529
### Problem Statement
513530

514-
Maximize:
531+
### [Maximize]():
515532

516533
Z = 40x + 30y
517534

@@ -521,8 +538,12 @@ Subject to:
521538
x + 2y ≤ 50
522539
x, y ≥ 0
523540

541+
<br>
542+
543+
### [*Excel Setup*]()
544+
545+
<br>
524546

525-
### Excel Setup
526547

527548
| Cell | Description | Formula / Value |
528549
|------|--------------------------|---------------------|
@@ -532,12 +553,17 @@ x, y ≥ 0
532553
| B5 | Constraint 1 (LHS) | `=2*B1 + 1*B2` |
533554
| B6 | Constraint 2 (LHS) | `=1*B1 + 2*B2` |
534555

556+
<br>
557+
535558
| Cell | Constraint RHS | Value |
536559
|------|--------------------------|---------------------|
537560
| C5 | Constraint 1 (RHS) | 40 |
538561
| C6 | Constraint 2 (RHS) | 50 |
539562

540-
### Solver Configuration
563+
564+
<br>
565+
566+
### [*Solver Configuration*]()
541567

542568
1. Set Objective: **B3**
543569
2. To: **Maximize**
@@ -548,24 +574,25 @@ x, y ≥ 0
548574
- **B1 >= 0**
549575
- **B2 >= 0**
550576
5. Choose **Simplex LP** as the solving method.
577+
6. Click **Solve** to find the optimal solution.
551578

552-
Click **Solve** to find the optimal solution.
579+
<br>
553580

554-
### Solution Output
581+
### [*Solution Output*]()
555582

556583
After running Solver:
557584

558585
- **x = 10**
559586
- **y = 20**
560587
- **Z = 40×10 + 30×20 = 1000**
561588

562-
<br>
589+
<br><
563590

564-
# Extras Excercise:
591+
## VIII - [Extras Excercise]():
565592

566593
<br>
567594

568-
## 1- 📊 [Linear Programming Mathematical Model — Production Optimization]()
595+
### 1- 📊 [Linear Programming Mathematical Model — Production Optimization]()
569596

570597
<br>
571598

@@ -752,7 +779,9 @@ x_1 \geq 0, \quad x_2 \geq 0
752779

753780
<br>
754781

755-
## 2- 📈 [Graphical Solution to the Linear Programming (LP) Problem]():
782+
#
783+
784+
### 2- 📈 [Graphical Solution to the Linear Programming (LP) Problem]():
756785

757786
<br>
758787

0 commit comments

Comments
 (0)