Skip to content

worldbench/3EED

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

13 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

3EED: Ground Everything Everywhere in 3D

Visitors

Rong Li*,Β Β  Yuhao Dong*,Β Β  Tianshuai Hu*,Β Β  Ao Liang*,Β Β  Youquan Liu*,Β Β  Dongyue Lu*
Liang Pan,Β Β  Lingdong Kong†,Β Β  Junwei Liang‑,Β Β  Ziwei Liu‑

*Equal contribution Β  †Project lead Β  ‑Corresponding authors


3EED Teaser

🎯 Highlights

  • Cross-Platform: First 3D grounding dataset spanning vehicle, drone, and quadruped platforms
  • Large-Scale: Large-scale annotated samples across diverse real-world scenarios
  • Multi-Modal: Synchronized RGB, LiDAR, and language annotations
  • Challenging: Complex outdoor environments with varying object densities and viewpoints
  • Reproducible: Unified evaluation protocols and baseline implementations

πŸ“š Citation

If you find our work helpful, please consider citing:

@inproceedings{li2025_3eed,
    title     = {{3EED}: Ground Everything Everywhere in {3D}},
    author    = {Rong Li and Yuhao Dong and Tianshuai Hu and Ao Liang and Youquan Liu and Dongyue Lu and Liang Pan and Lingdong Kong and Junwei Liang and Ziwei Liu},
    booktitle = {Advances in Neural Information Processing Systems (NeurIPS)},
    volume    = {38},
    year      = {2025}
}

Statistics

3EED Dataset Statistics

πŸ“„ For detailed dataset statistics and analysis, please refer to our paper.

πŸ“° News

  • [2025.10] Dataset and code are now publicly available on HuggingFace and GitHub! πŸ“¦
  • [2025.09] 3EED has been accepted to NeurIPS 2025 Dataset and Benchmark Track! πŸŽ‰

πŸ“š Table of Contents

βš™οΈ Installation

Environment Setup

We support both CUDA 11 and CUDA 12 environments. Choose the one that matches your system:

Option 1: CUDA 11.1 Environment
Component Version
CUDA 11.1
cuDNN 8.0.5
PyTorch 1.9.1+cu111
torchvision 0.10.1+cu111
Python 3.10 / 3.11
Option 2: CUDA 12.4 Environment
Component Version
CUDA 12.4
cuDNN 8.0.5
PyTorch 2.5.1+cu124
torchvision 0.20.1+cu124
Python 3.10 / 3.11

Custom CUDA Operators

cd ops/teed_pointnet/pointnet2_batch
python setup.py develop

cd ../roiaware_pool3d
python setup.py develop

πŸ“¦ Pretrained Models

Language Encoder

Download the RoBERTa-base checkpoint from HuggingFace and move it to data/roberta_base.

πŸ’Ύ Dataset

Download

Download the 3EED dataset from HuggingFace:

πŸ”— Dataset Link: https://huggingface.co/datasets/RRRong/3EED

Dataset Structure

After extraction, organize your dataset as follows:

data/3eed/
β”œβ”€β”€ drone/                    # Drone platform data
β”‚   β”œβ”€β”€ scene-0001/
β”‚   β”‚   β”œβ”€β”€ 0000_0/
β”‚   β”‚   β”‚   β”œβ”€β”€ image.jpg
β”‚   β”‚   β”‚   β”œβ”€β”€ lidar.bin
β”‚   β”‚   β”‚   └── meta_info.json
β”‚   β”‚   └── ...
β”‚   └── ...
β”œβ”€β”€ quad/                     # Quadruped platform data
β”‚   β”œβ”€β”€ scene-0001/
β”‚   └── ...
β”œβ”€β”€ waymo/                    # Vehicle platform data
β”‚   β”œβ”€β”€ scene-0001/
β”‚   └── ...
β”œβ”€β”€ roberta_base/            # Language model weights
└── splits/                  # Train/val split files
    β”œβ”€β”€ drone_train.txt
    β”œβ”€β”€ drone_val.txt
    β”œβ”€β”€ quad_train.txt
    β”œβ”€β”€ quad_val.txt
    β”œβ”€β”€ waymo_train.txt
    └── waymo_val.txt

πŸš€ Quick Start

Training

Train the baseline model on different platform combinations:

# Train on all platforms (recommended for best performance)
bash scripts/train_3eed.sh

# Train on single platform
bash scripts/train_waymo.sh   # Vehicle only
bash scripts/train_drone.sh   # Drone only
bash scripts/train_quad.sh    # Quadruped only

Output:

  • Checkpoints: logs/Train_<datasets>_Val_<datasets>/<timestamp>/
  • Training logs: logs/Train_<datasets>_Val_<datasets>/<timestamp>/log.txt
  • TensorBoard logs: logs/Train_<datasets>_Val_<datasets>/<timestamp>/tensorboard/

Evaluation

Evaluate trained models on validation sets:

Quick Evaluation:

# Evaluate on all platforms
bash scripts/val_3eed.sh

# Evaluate on single platform
bash scripts/val_waymo.sh    # Vehicle
bash scripts/val_drone.sh    # Drone
bash scripts/val_quad.sh     # Quadruped

⚠️ Before running evaluation:

  1. Update --checkpoint_path in the script to point to your trained model
  2. Ensure the validation dataset is downloaded and properly structured

Output:

  • Results saved to: <checkpoint_dir>/evaluation/Val_<dataset>/<timestamp>/

Visualization

Visualize predictions with 3D bounding boxes overlaid on point clouds:

# Visualize prediction results
python utils/visualize_pred.py

Visualization Output:

  • 🟒 Ground Truth: Green bounding box
  • πŸ”΄ Prediction: Red bounding box

Output Structure:

visualizations/
β”œβ”€β”€ waymo/
β”‚   β”œβ”€β”€ scene-0001_frame-0000/
β”‚   β”‚   β”œβ”€β”€ pointcloud.ply
β”‚   β”‚   β”œβ”€β”€ pred/gt_bbox.ply
β”‚   β”‚   └── info.txt
β”‚   └── ...
β”œβ”€β”€ drone/
└── quad/

Baseline Checkpoints

Baseline models and predictions are available at: Huggingface

πŸ“„ License

This repository is released under the Apache 2.0 License (see LICENSE).

πŸ™ Acknowledgements

We sincerely thank the following projects and teams that made this work possible:

Codebase & Methods

  • BUTD-DETR - Bottom-Up Top-Down DETR for visual grounding
  • WildRefer - Wild referring expression comprehension

Dataset Sources

Related Projects

😎 Awesome Projects
3D and 4D World Modeling: A Survey
[GitHub Repo] - [Project Page] - [Paper]
WorldLens: Full-Spectrum Evaluations of Driving World Models in Real World
[GitHub Repo] - [Project Page] - [Paper]
LiDARCrafter: Dynamic 4D World Modeling from LiDAR Sequences
[GitHub Repo] - [Project Page] - [Paper]
Are VLMs Ready for Autonomous Driving? A Study from Reliability, Data & Metric Perspectives
[GitHub Repo] - [Project Page] - [Paper]
Perspective-Invariant 3D Object Detection
[GitHub Repo] - [Project Page] - [Paper]
DynamicCity: Large-Scale 4D Occupancy Generation from Dynamic Scenes
[GitHub Repo] - [Project Page] - [Paper]

❀️ by the 3EED Team

⬆️ Back to Top