Skip to content

ufdatastudio/predictions

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Predictions

A project to recognize and assess prediction data (text, numerical, audio, visual). The goal is to provide an analysis of how accurate predictions are.

Table of Contents

File Structure

├── misc                        # Contains random pieces of unfinished code.
├── prediction_classification   # Contains the pipeline to classify if a sentence is a prediction or not. 
├── prediction_correctness      # Contains the pipeline to assess how similar a prediction is to an actual outcome.
├── classification_models.py    # Contains the models to classify if a sentence is a prediction or not. 
├── clean_predictions.py        # Contains the code to clean our data.
├── data_processing.py          # Contains the code to manipulate our data.
├── feature_extraction.py       # Contains the code to extract features from predictions.
├── log_files.py                # Contains the code to produce a log file.
├── requirements.py             # Contains the requiremmts to run code in project.
├── text_generation_models.py   # Contains the LLMs to generate our data.
└── README.md                   # Project documentation

Installation

Use the package manager you prefer. If uv package manager, follow the below

  1. Install the uv package manager. For macOS, you can use brew install uv,
  2. OPTIONAL: Create a project with uv init . that'll default to name of directory. It may need to be repository name predictions, so you could try uv init predictions
    • If you already see a .toml file, you should be able to skip.
  3. Create virtual environment with uv venv or uv venv <name> (uv venv .venv_predictions)
  4. Activate virtual environment with source .venv/bin/activate or source .<name>/bin/activate (source .venv_predictions/bin/activate)
  5. Install requirements with uv pip install -r pyproject.toml
  6. Install uv pip install ipykernel so you can run the jupyter notebooks
  7. Create a .env file
    • Create a NaviGator API key -- NAVI_GATOR_API_KEY = "djb2"
    • OPTIONAL: Create a Groq Cloud API key -- GROQ_CLOUD_API_KEY = "djb"

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •