Skip to content

Conversation

@amadeuszsz
Copy link
Collaborator

@amadeuszsz amadeuszsz commented Jan 29, 2026

Summary

Add T4dataset support for FRNet. Now you can train and run inference on T4dataset with proper multi-sensor LiDAR handling and class mapping.

Change point

  • add T4SegDataset and transforms for loading T4dataset point clouds and semantic masks for single LiDAR
  • add T4dataset config and deploy config
  • reorganize configs and use variables for LiDAR parameters
  • update README with T4dataset instructions

Note

Requires regenerating info files with create_data_t4dataset.py to include lidar_sources field.

Test performed

  • Log
+---------+------------------+--------------------+----------+---------+------------+--------+--------+-------------------+--------+--------+--------------+--------------+----------------------+----------+--------+------------+---------+------------+-------------------+-----
---+-------------------+--------------+----------+--------+-------------+-------------------+--------+--------+---------+                                                                                                                                                          
| classes | drivable_surface | other_flat_surface | sidewalk | manmade | vegetation | car    | bus    | emergency_vehicle | train  | truck  | tractor_unit | semi_trailer | construction_vehicle | forklift | kart   | motorcycle | bicycle | pedestrian | personal_mobility | animal | pushable_pullable | traffic_cone | stroller | debris | other_stuff | noise+ghost_point | miou   | acc    | acc_cls |                                                                                                                                                          
+---------+------------------+--------------------+----------+---------+------------+--------+--------+-------------------+--------+--------+--------------+--------------+----------------------+----------+--------+------------+---------+------------+-------------------+--------+-------------------+--------------+----------+--------+-------------+-------------------+--------+--------+---------+                                                                                                                                                          
| results | 0.9656           | 0.6477             | 0.8462   | 0.8642  | 0.8681     | 0.9175 | 0.8217 | 0.0000            | 0.0000 | 0.8467 | 0.8184       | 0.6843       | 0.6879               | nan      | 0.0000 | 0.9138     | 0.4964  | 0.6915     | 0.0000            | nan    | 0.0934            | 0.5507       | 0.0000   | nan    | 0.7809      | 0.0352            | 0.5448 | 0.9371 | 0.6428  |                                                                                                                                                          
+---------+------------------+--------------------+----------+---------+------------+--------+--------+-------------------+--------+--------+--------------+--------------+----------------------+----------+--------+------------+---------+------------+-------------------+--------+-------------------+--------------+----------+--------+-------------+-------------------+--------+--------+---------+                                                                                                                                                          
01/28 21:07:48 - mmengine - INFO - Iter(val) [47/47]    drivable_surface: 0.9656  other_flat_surface: 0.6477  sidewalk: 0.8462  manmade: 0.8642  vegetation: 0.8681  car: 0.9175  bus: 0.8217  emergency_vehicle: 0.0000  train: 0.0000  truck: 0.8467 tractor_unit: 0.8184  semi_trailer: 0.6843  construction_vehicle: 0.6879  forklift: nan  kart: 0.0000  motorcycle: 0.9138  bicycle: 0.4964  pedestrian: 0.6915  personal_mobility: 0.0000  animal: nan  pushable_pullable: 0.0934  traffic_cone: 0.5507  stroller: 0.0000  debris: nan  other_stuff: 0.7809  noise+ghost_point: 0.0352  miou: 0.5448  acc: 0.9371  acc_cls: 0.6428  data_time: 0.0362  time: 0.1404  

Note: there was no samples where nan / zeros occurs.
Artifacts + demo in TIER IV INTERNAL LINK

Signed-off-by: Amadeusz Szymko <amadeusz.szymko.2@tier4.jp>
@amadeuszsz amadeuszsz requested a review from KSeangTan January 29, 2026 10:12
@amadeuszsz amadeuszsz self-assigned this Jan 29, 2026
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

1 participant