Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
132 changes: 132 additions & 0 deletions C-Random/MatrixInverse.c
Original file line number Diff line number Diff line change
@@ -0,0 +1,132 @@
#include<stdio.h>
#include<math.h>
float determinant(float [][25], float);
void cofactor(float [][25], float);
void transpose(float [][25], float [][25], float);
int main()
{
float a[25][25], k, d;
int i, j;
printf("Enter the order of the Matrix : ");
scanf("%f", &k);
printf("Enter the elements of %.0fX%.0f Matrix : \n", k, k);
for (i = 0;i < k; i++)
{
for (j = 0;j < k; j++)
{
scanf("%f", &a[i][j]);
}
}
d = determinant(a, k);
if (d == 0)
printf("\nInverse of Entered Matrix is not possible\n");
else
cofactor(a, k);
}

/*For calculating Determinant of the Matrix */
float determinant(float a[25][25], float k)
{
float s = 1, det = 0, b[25][25];
int i, j, m, n, c;
if (k == 1)
{
return (a[0][0]);
}
else
{
det = 0;
for (c = 0; c < k; c++)
{
m = 0;
n = 0;
for (i = 0;i < k; i++)
{
for (j = 0 ;j < k; j++)
{
b[i][j] = 0;
if (i != 0 && j != c)
{
b[m][n] = a[i][j];
if (n < (k - 2))
n++;
else
{
n = 0;
m++;
}
}
}
}
det = det + s * (a[0][c] * determinant(b, k - 1));
s = -1 * s;
}
}

return (det);
}

void cofactor(float num[25][25], float f)
{
float b[25][25], fac[25][25];
int p, q, m, n, i, j;
for (q = 0;q < f; q++)
{
for (p = 0;p < f; p++)
{
m = 0;
n = 0;
for (i = 0;i < f; i++)
{
for (j = 0;j < f; j++)
{
if (i != q && j != p)
{
b[m][n] = num[i][j];
if (n < (f - 2))
n++;
else
{
n = 0;
m++;
}
}
}
}
fac[q][p] = pow(-1, q + p) * determinant(b, f - 1);
}
}
transpose(num, fac, f);
}
/*Finding transpose of matrix*/
void transpose(float num[25][25], float fac[25][25], float r)
{
int i, j;
float b[25][25], inverse[25][25], d;

for (i = 0;i < r; i++)
{
for (j = 0;j < r; j++)
{
b[i][j] = fac[j][i];
}
}
d = determinant(num, r);
for (i = 0;i < r; i++)
{
for (j = 0;j < r; j++)
{
inverse[i][j] = b[i][j] / d;
}
}
printf("\n\n\nThe inverse of matrix is : \n");

for (i = 0;i < r; i++)
{
for (j = 0;j < r; j++)
{
printf("\t%f", inverse[i][j]);
}
printf("\n");
}
}