This repository contains Jupyter notebooks implementing various machine learning algorithms covered in the Udemy course Machine Learning A-Z™: AI, Python & R + ChatGPT Bonus [2023]. Each notebook provides hands-on implementation of key machine learning techniques using Python.
The course is divided into several sections, and the corresponding Jupyter notebooks for each algorithm are listed below.
- Simple Linear Regression:
simple_linear_regression.ipynb - Multiple Linear Regression:
multiple_linear_regression.ipynb - Polynomial Regression:
polynomial_regression.ipynb - Support Vector Regression (SVR):
support_vector_regression.ipynb - Decision Tree Regression:
decision_tree_regression.ipynb - Random Forest Regression:
random_forest_regression.ipynb
- Logistic Regression:
logistic_regression.ipynb - K-Nearest Neighbors (KNN):
k_nearest_neighbors.ipynb - Support Vector Machine (SVM):
support_vector_machine.ipynb - Kernel SVM:
kernel_svm.ipynb - Naive Bayes:
naive_bayes.ipynb - Decision Tree Classification:
decision_tree_classification.ipynb - Random Forest Classification:
random_forest_classification.ipynb
- K-Means Clustering:
k_means_clustering.ipynb - Hierarchical Clustering:
hierarchical_clustering.ipynb
- Apriori:
apriori.ipynb - Eclat:
eclat.ipynb
- Upper Confidence Bound (UCB):
upper_confidence_bound.ipynb - Thompson Sampling:
thompson_sampling.ipynb
- Natural Language Processing (NLP):
natural_language_processing.ipynb
- Artificial Neural Networks (ANN):
artificial_neural_network.ipynb - Convolutional Neural Networks (CNN):
convolutional_neural_network.ipynb
- Principal Component Analysis (PCA):
principal_component_analysis.ipynb - Linear Discriminant Analysis (LDA):
linear_discriminant_analysis.ipynb - Kernel PCA:
kernel_pca.ipynb
- K-Fold Cross Validation:
k_fold_cross_validation.ipynb - Grid Search:
grid_search.ipynb - XGBoost:
xg_boost.ipynb