Skip to content

nvlong21/Lightweight-face-detection-CenterNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Center face

Center face detection model

img1 This model is a lightweight facedetection model designed for edge computing devices

Tested the environment that works

  • Ubuntu16.04、Ubuntu18.04、Windows 10(for inference)
  • Python3.6
  • Pytorch1.0.1
  • CUDA10.0 + CUDNN7.6

Accuracy, speed, model size comparison

Using the cleaned widerface labels provided by Retinaface

Widerface test

  • Test accuracy in the WIDER FACE val set (single-scale input resolution: 640*640 or scaling by the maximum side length of 320)
Model Easy Set Medium Set Hard Set
libfacedetection v1(caffe) 0.65 0.5 0.233
libfacedetection v2(caffe) 0.714 0.585 0.306
Retinaface-Mobilenet-0.25 (Mxnet) 0.745 0.553 0.232
CenterFace -- -- --
  • Test accuracy in the WIDER FACE val set (single-scale input resolution: VGA 640*480 or scaling by the maximum side length of 640 )
Model Easy Set Medium Set Hard Set
libfacedetection v1(caffe) 0.741 0.683 0.421
libfacedetection v2(caffe) 0.773 0.718 0.485
Retinaface-Mobilenet-0.25 (Mxnet) 0.879 0.807 0.481
CenterFace -- -- --

Pretrain

Reference

About

Lightweight-face-detection-CenterNet

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages