Skip to content

meta-pytorch/tritonparse

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

TritonParse

License: BSD-3 GitHub Pages

A comprehensive visualization and analysis tool for Triton kernel compilation and launch β€” helping developers analyze, debug, and understand Triton kernel compilation processes.

🌐 Try it online β†’

✨ Key Features

πŸ” Visualization & Analysis

  • πŸš€ Launch Difference Analysis - Detect and visualize kernel launch parameter variations
  • πŸ“Š IR Code View - Side-by-side IR viewing with synchronized highlighting and line mapping
  • πŸ”„ File Diff View - Compare kernels across different trace files side-by-side
  • πŸ“ Multi-format IR Support - View TTGIR, TTIR, LLIR, PTX, and AMDGCN
  • 🎯 Interactive Code Views - Click-to-highlight corresponding lines across IR stages

πŸ”§ Reproducer & Debugging Tools

  • πŸ”„ Standalone Script Generation - Extract any kernel into a self-contained Python script
  • πŸ’Ύ Tensor Data Reconstruction - Preserve actual tensor data or use statistical approximation
  • 🎯 Custom Templates - Flexible reproducer templates for different workflows
  • πŸ› Bug Isolation - Share reproducible test cases for debugging and collaboration

πŸ“Š Structured Logging & Analysis

  • πŸ“ Compilation & Launch Tracing - Capture detailed events with source mapping
  • πŸ” Stack Trace Integration - Full Python stack traces for debugging
  • πŸ“ˆ Metadata Extraction - Comprehensive kernel statistics

πŸ› οΈ Developer Tools

  • 🌐 Browser-based Interface - No installation required, works in your browser
  • πŸ”’ Privacy-first - All processing happens locally, no data uploaded

πŸš€ Quick Start

1. Installation

Four options to install:

# install nightly version
pip install -U --pre tritonparse
# install stable version
pip install tritonparse
# install from source
git clone https://github.com/meta-pytorch/tritonparse.git
cd tritonparse
pip install -e .
# pip install the latest version from github
pip install git+https://github.com/meta-pytorch/tritonparse.git

Prerequisites: Python β‰₯ 3.10, Triton β‰₯ 3.4.0, GPU required (NVIDIA/AMD)

TritonParse relies on new features in Triton. If you're using nightly PyTorch, Triton is already included. Otherwise, install the latest Triton:

pip install triton

2. Generate Traces

import tritonparse.structured_logging
import tritonparse.utils

# Initialize logging with full tracing options
tritonparse.structured_logging.init(
    "./logs/",
    enable_trace_launch=True,                 # Capture kernel launch events (enables torch.compile tracing automatically)
    enable_more_tensor_information=True,      # Optional: collect tensor statistics (min/max/mean/std)
)

# Your Triton/PyTorch code here
# ... your kernels ...

# Parse and generate trace files
tritonparse.utils.unified_parse("./logs/", out="./parsed_output")

πŸ’‘ Note: enable_trace_launch=True automatically enables tracing for both native Triton kernels (@triton.jit) and torch.compile / TorchInductor kernels.

πŸ“ Example output (click to expand)
================================================================================
πŸ“ TRITONPARSE PARSING RESULTS
================================================================================
πŸ“‚ Parsed files directory: /scratch/findhao/tritonparse/tests/parsed_output
πŸ“Š Total files generated: 2

πŸ“„ Generated files:
   1. πŸ“ dedicated_log_triton_trace_findhao__mapped.ndjson.gz (7.2KB)
   2. πŸ“ log_file_list.json (181B)
================================================================================
βœ… Parsing completed successfully!
================================================================================

3. Visualize Results

Visit https://meta-pytorch.org/tritonparse/ and open your local trace files (.ndjson.gz format).

πŸ”’ Privacy Note: Your trace files are processed entirely in your browser - nothing is uploaded to any server!

4. Generate Reproducers (Optional)

Extract any kernel into a standalone, executable Python script for debugging or testing:

# Generate reproducer for the first launch event
# (--line is 0-based: line 0 is compilation event, line 1 is first launch event)
tritonparseoss reproduce ./parsed_output/trace.ndjson.gz --line 1 --out-dir repro_output

# Run the generated reproducer
cd repro_output/<kernel_name>/
python repro_*.py

Python API:

from tritonparse.reproducer.orchestrator import reproduce

result = reproduce(
    input_path="./parsed_output/trace.ndjson.gz",
    line_index=0,           # 0-based index (first event is 0)
    out_dir="repro_output"
)
🎯 Common Reproducer Use Cases (click to expand)
  • πŸ› Bug Isolation: Extract a failing kernel into a minimal standalone script
  • ⚑ Performance Testing: Benchmark specific kernels without running the full application
  • 🀝 Team Collaboration: Share reproducible test cases with colleagues or in bug reports
  • πŸ“Š Regression Testing: Compare kernel behavior and performance across different versions
  • πŸ” Deep Debugging: Modify and experiment with kernel parameters in isolation

πŸ“š Complete Documentation

πŸ“– Guide Description
🏠 Wiki Home Complete documentation and quick navigation
πŸ“¦ Installation Setup guide for all scenarios
πŸ“‹ Usage Guide Complete workflow, reproducer generation, and examples
🌐 Web Interface Master the visualization interface
πŸ”§ Developer Guide Contributing and architecture overview
πŸ“ Code Formatting Formatting standards and tools
❓ FAQ Quick answers and troubleshooting
βš™οΈ Environment Variables Complete environment variable reference
πŸ“– Python API Reference Full API documentation
πŸ”„ Reproducer Guide Comprehensive kernel reproducer guide

πŸ“Š Understanding Triton Compilation

TritonParse visualizes the complete Triton compilation pipeline:

Python Source β†’ TTIR β†’ TTGIR β†’ LLIR β†’ PTX/AMDGCN

Each stage can be inspected and compared to understand optimization transformations.

🀝 Contributing

We welcome contributions! Please see our Developer Guide for:

  • Development setup and prerequisites
  • Code formatting standards (Formatting Guide)
  • Pull request and code review process
  • Testing guidelines
  • Architecture overview

πŸ“ž Support & Community

πŸ“„ License

This project is licensed under the BSD-3 License - see the LICENSE file for details.


✨ Ready to get started? Visit our Installation Guide or try the online tool directly!