Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 4 additions & 4 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -75,7 +75,7 @@

### General Purpose Machine Learning
* [SciPy](https://scipy.org/) - Fundamental algorithms for scientific computing in Python
* [scikit-learn](http://scikit-learn.org/stable/) - Machine learning in Python. <img height="20" src="img/sklearn_big.png" alt="sklearn">
* [scikit-learn](https://scikit-learn.org/stable/) - Machine learning in Python. <img height="20" src="img/sklearn_big.png" alt="sklearn">
* [PyCaret](https://github.com/pycaret/pycaret) - An open-source, low-code machine learning library in Python. <img height="20" src="img/R_big.png" alt="R inspired lib">
* [Shogun](https://github.com/shogun-toolbox/shogun) - Machine learning toolbox.
* [xLearn](https://github.com/aksnzhy/xlearn) - High Performance, Easy-to-use, and Scalable Machine Learning Package.
Expand Down Expand Up @@ -105,7 +105,7 @@
* [TensorFlow Decision Forests](https://github.com/tensorflow/decision-forests) - A collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models in Keras. <img height="20" src="img/keras_big.png" alt="keras"> <img height="20" src="img/tf_big2.png" alt="TensorFlow">

### Ensemble Methods
* [ML-Ensemble](http://ml-ensemble.com/) - High performance ensemble learning. <img height="20" src="img/sklearn_big.png" alt="sklearn">
* [ML-Ensemble](https://ml-ensemble.com/) - High performance ensemble learning. <img height="20" src="img/sklearn_big.png" alt="sklearn">
* [Stacking](https://github.com/ikki407/stacking) - Simple and useful stacking library written in Python. <img height="20" src="img/sklearn_big.png" alt="sklearn">
* [stacked_generalization](https://github.com/fukatani/stacked_generalization) - Library for machine learning stacking generalization. <img height="20" src="img/sklearn_big.png" alt="sklearn">
* [vecstack](https://github.com/vecxoz/vecstack) - Python package for stacking (machine learning technique). <img height="20" src="img/sklearn_big.png" alt="sklearn">
Expand Down Expand Up @@ -291,8 +291,8 @@
## Probabilistic Methods
* [pyro](https://github.com/uber/pyro) - A flexible, scalable deep probabilistic programming library built on PyTorch. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
* [PyMC](https://github.com/pymc-devs/pymc) - Bayesian Stochastic Modelling in Python.
* [ZhuSuan](http://zhusuan.readthedocs.io/en/latest/) - Bayesian Deep Learning. <img height="20" src="img/tf_big2.png" alt="sklearn">
* [GPflow](http://gpflow.readthedocs.io/en/latest/?badge=latest) - Gaussian processes in TensorFlow. <img height="20" src="img/tf_big2.png" alt="sklearn">
* [ZhuSuan](https://zhusuan.readthedocs.io/en/latest/) - Bayesian Deep Learning. <img height="20" src="img/tf_big2.png" alt="sklearn">
* [GPflow](https://gpflow.readthedocs.io/en/latest/?badge=latest) - Gaussian processes in TensorFlow. <img height="20" src="img/tf_big2.png" alt="sklearn">
* [InferPy](https://github.com/PGM-Lab/InferPy) - Deep Probabilistic Modelling Made Easy. <img height="20" src="img/tf_big2.png" alt="sklearn">
* [PyStan](https://github.com/stan-dev/pystan) - Bayesian inference using the No-U-Turn sampler (Python interface).
* [sklearn-bayes](https://github.com/AmazaspShumik/sklearn-bayes) - Python package for Bayesian Machine Learning with scikit-learn API. <img height="20" src="img/sklearn_big.png" alt="sklearn">
Expand Down