A set of routines to enable construction of completely unstructured multifidelity surrogate models for fusing multiple information sources. For a detailed background of how it works please see
- Gorodetsky, A. A., Jakeman, J. D., and Geraci, G. “MFNets: Learning network representations for multifidelity surrogates.” 2020, http://arxiv.org/abs/2008.02672
For the autogenerated documentation (using pdoc) please see here.
This library depends on
The main routines are in net.py, there are tests in test_mfnet.py.
Essentially, the process for building and training a surrogate has two steps
- Setup a network
- Train a network
A multifidelity surrogate is defined by a set of functions along the nodes and edges. Each of these functions can be user specified. Below is an example of using linear functions along the nodes and edges for the case where training data comes form eight information sources.
def lin(param, xinput):
"""A linear parametric model
Parameters
----------
param : np.ndarray (nparams)
The parameters of the model
xinput : np.ndarray (nsamples,nparams)
The independent variables of the model
Returns
-------
vals : np.ndarray (nsamples)
Evaluation of the linear model
grad : np.ndarray (nsamples,nparams)
gradient of the linear model with respect to the model parameters
"""
print(param.shape,xinput.shape)
one = np.ones((xinput.shape[0], 1))
grad = np.concatenate((one, xinput), axis=1)
return param[0] + np.dot(param[1:], xinput.T), gradNext we setup a network for the surrogates
def make_graph_8(nnode_param=2, nedge_param=2, linfunc=lin):
"""A graph with 8 nodes
3 -> 7 -> 8
^
|
1 -> 4
/ ^
/ |
2 -> 5 -> 6
"""
graph = nx.DiGraph()
pnodes = np.random.randn(10, nnode_param)
pedges = np.random.randn(8, nedge_param)
for node in range(1, 9):
graph.add_node(node, param=pnodes[node-1], func=linfunc)
graph.add_edge(1, 4, param=pedges[0, :], func=linfunc)
graph.add_edge(2, 5, param=pedges[1, :], func=linfunc)
graph.add_edge(5, 6, param=pedges[2, :], func=linfunc)
graph.add_edge(6, 4, param=pedges[3, :], func=linfunc)
graph.add_edge(3, 7, param=pedges[4, :], func=linfunc)
graph.add_edge(7, 8, param=pedges[5, :], func=linfunc)
graph.add_edge(4, 8, param=pedges[6, :], func=linfunc)
graph.add_edge(5, 4, param=pedges[7, :], func=linfunc)
roots = set([1, 2, 3])
return graph, rootsNext, we convert the graph into a multifidelity surrogate.
from net import MFSurrogate
num_nodes = 8
graph, roots = make_graph_8(2, 2, linfunc=lin)
surr = MFSurrogate(graph, roots) # create the surrogate
param0 = surr.get_param() # get the initial parameters (randomized)
# The script below is training
# all_nodes -> list of node indices for which data is available
# input_train -> list of input features for the nodes in all_nodes
# ouput_train -> list of the output for each of the nodes
# std -> list of standard deviations of the errors for each of the training sets
surr_learned = surr.train(param0, all_nodes, input_train, output_train, std, niters=400, verbose=False, warmup=True)
# Get evaluations of the highest fidelity model
# samples should be some inputs at which to evaluate the model
evals_hf = surr_learned.forward(samples, num_nodes)
evals_surr = surr_learned.get_evals() # can also get all the fidelity evaluations at *samples*To clarify the training function signature , below I reproduce the documentation of the function
def train(self, param0in, nodes, xtrain, ytrain, stdtrain, niters=200,
func=least_squares,
verbose=False, warmup=True, opts=dict()):
"""Train the multifidelity surrogate.
This is the main entrance point for data-driven training.
Parameters
----------
param0in : np.ndarray (nparams)
The initial guess for the parameters
nodes : list
A list of nodes for which data is available
xtrain : list
A list of input features for each node in *nodes*
ytrain : list
A list of output values for each node in *nodes*
stdtrain : float
The standard devaition for data for each node in *nodes*
niters : integer
The number of optimization iterations
func : callable
A scalar valued objective function with the signature
``func(target, predicted) -> val (float), grad (np.ndarray)``
where ``target`` is a np.ndarray of shape (nobs)
containing the observations and ``predicted`` is a np.ndarray of
shape (nobs) containing the model predictions of the observations
verbose : integer
The verbosity level
warmup : boolean
Specify whether or not to progressively find a good guess before
optimizing
Returns
-------
Upon completion of this function, the parameters of the graph are set
to the values that best fit the data, as defined by *func*
"""
...Please cite the following paper if you find this code to be useful
- Gorodetsky, A. A., Jakeman, J. D., and Geraci, G. “MFNets: Learning network representations for multifidelity surrogates.” 2020, http://arxiv.org/abs/2008.02672
Author: Alex Gorodetsky
Contact: goroda@umich.edu
Copyright (c) 2020 Alex Gorodetsky
License: MIT