Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions xllm/core/framework/sampling/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -10,12 +10,14 @@ cc_library(
rejection_sampler.h
sampler.h
beam_searcher.h
rec_constrained_decoding.h
SRCS
sampling_params.cpp
logits_utils.cpp
rejection_sampler.cpp
sampler.cpp
beam_searcher.cpp
rec_constrained_decoding.cpp
DEPS
:common
glog::glog
Expand Down
47 changes: 47 additions & 0 deletions xllm/core/framework/sampling/constrained_decoding.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,47 @@
/* Copyright 2025 The xLLM Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

https://github.com/jd-opensource/xllm/blob/main/LICENSE

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#pragma once
#include <c10/core/TensorOptions.h>
#include <torch/torch.h>
#include <torch/types.h>

namespace xllm {

// Constrained decoding is used to ensure that the generated content
// conforms to specific formats or rules.
class ConstrainedDecoding {
public:
virtual ~ConstrainedDecoding() = default;

// Precompute and cache fixed constraint masks (e.g., static vocabulary
// whitelists) to avoid redundant calculations during token generation.
// Returns: true if cache built successfully, false otherwise
virtual bool build_mask_cache() = 0;

// Generate dynamic constraint mask based on already generated token
// sequences. This mask will be applied to filter invalid tokens.
//
// Input: generated_token_list - 2D vector of token IDs, where each inner
// vector represents the generated tokens for a single sequence in the batch
// (format:[sequence_num][token_ids])
// Output: tensor of shape [sequence_num, vocab_size], where 0.0f
// indicates allowed tokens and a large negative number indicates forbidden
// tokens for each sequence, the usage is to filter invalid tokens by adding
// the mask to the model logits.
virtual torch::Tensor generate_mask(
const std::vector<std::vector<int32_t>>& generated_token_list) = 0;
};
} // namespace xllm
197 changes: 197 additions & 0 deletions xllm/core/framework/sampling/rec_constrained_decoding.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,197 @@
/* Copyright 2025 The xLLM Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

https://github.com/jd-opensource/xllm/blob/main/LICENSE

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#include "rec_constrained_decoding.h"

#include <c10/core/TensorOptions.h>
#include <folly/Unit.h>
#include <folly/futures/Future.h>
#include <glog/logging.h>

#include <algorithm>
#include <filesystem>
#include <fstream>
#include <future>
#include <mutex>

#include "common/global_flags.h"
#include "common/version_singleton.h"
#include "framework/state_dict/rec_vocab_dict.h"
#include "util/slice.h"
#include "util/tensor_helper.h"

namespace xllm {
RecConstrainedDecoding::RecConstrainedDecoding(uint64_t model_version,
const int32_t vocab_size,
torch::ScalarType dtype,
torch::Device device,
bool use_gen_threadpool)
: use_gen_threadpool_(use_gen_threadpool),
vocab_size_(vocab_size),
model_version_(model_version),
device_(device),
dtype_(dtype) {
if (use_gen_threadpool_) {
gen_threadpool_ = std::make_unique<ThreadPool>(GEN_MASK_THREAD_NUM);
}

build_mask_cache_ = false;
}

bool RecConstrainedDecoding::build_mask_cache() {
first_token_mask_ = torch::full({vocab_size_}, PRE_MASK_FACTOR, dtype_);

std::vector<int32_t> empty_token_ids;
Slice<int32_t> prefix_token_ids = {empty_token_ids.data(),
empty_token_ids.size()};

const std::set<int32_t>& first_token_ids =
VersionSingleton<RecVocabDict>::GetInstance(
std::to_string(model_version_))
->get_next_tokens_by_prefix_tokens(prefix_token_ids);

for (auto token_id : first_token_ids) {
first_token_mask_[token_id] = 0;
}

first_token_mask_ = safe_to(first_token_mask_, device_, true);

build_mask_cache_ = true;

LOG(INFO) << "Build mask cache, first token ids size:"
<< first_token_ids.size();

return true;
}

torch::Tensor RecConstrainedDecoding::generate_mask(
const std::vector<std::vector<int32_t>>& generated_token_list) {
if (!build_mask_cache_ || 0 == generated_token_list.size()) {
return torch::Tensor();
}

size_t token_size = generated_token_list[0].size();

// Generate mask for first token
if (0 == token_size) {
size_t sequence_num = generated_token_list.size();
auto mask = first_token_mask_.unsqueeze(0);
return mask.repeat({sequence_num, 1});
}

// Generate mask for non-first token
return generate_decode_mask(generated_token_list);
}

torch::Tensor RecConstrainedDecoding::generate_decode_mask(
const std::vector<std::vector<int32_t>>& generated_token_list) {
size_t sequence_num = generated_token_list.size();
torch::TensorOptions options = torch::dtype(dtype_).device(device_);
auto mask =
torch::full({sequence_num, vocab_size_}, PRE_MASK_FACTOR, options);

std::mutex global_batch_mutex;
std::vector<int64_t> global_batch_token_indices;
std::vector<int64_t> global_batch_vocab_indices;

int max_index_num_per_token = 8192;
global_batch_token_indices.reserve(max_index_num_per_token * sequence_num);
global_batch_vocab_indices.reserve(max_index_num_per_token * sequence_num);

auto update_mask = [&](size_t start_idx, size_t end_idx) {
std::vector<int64_t> local_token_indices;
std::vector<int64_t> local_vocab_indices;
local_token_indices.reserve(max_index_num_per_token *
(end_idx - start_idx));
local_vocab_indices.reserve(max_index_num_per_token *
(end_idx - start_idx));

for (size_t token_idx = start_idx; token_idx < end_idx; ++token_idx) {
Slice<int32_t> tokens_slice(generated_token_list[token_idx]);

const std::set<int32_t>& next_token_ids =
VersionSingleton<RecVocabDict>::GetInstance(
std::to_string(model_version_))
->get_next_tokens_by_prefix_tokens(tokens_slice);

if (next_token_ids.size() > 0) {
for (int32_t vocab_idx : next_token_ids) {
local_token_indices.push_back(static_cast<int64_t>(token_idx));
local_vocab_indices.push_back(static_cast<int64_t>(vocab_idx));
}
} else {
LOG(ERROR) << "Fail to generate mask for tokens:"
<< generated_token_list[token_idx];
}
}

// Merge local results to global batch (thread-safe)
if (!local_token_indices.empty()) {
std::lock_guard<std::mutex> lock(global_batch_mutex);
global_batch_token_indices.insert(global_batch_token_indices.end(),
local_token_indices.begin(),
local_token_indices.end());
global_batch_vocab_indices.insert(global_batch_vocab_indices.end(),
local_vocab_indices.begin(),
local_vocab_indices.end());
}
};

if (use_gen_threadpool_) {
const size_t batch_size = std::max(
1UL, (sequence_num + GEN_MASK_THREAD_NUM - 1) / GEN_MASK_THREAD_NUM);
const size_t num_batches = (sequence_num + batch_size - 1) / batch_size;

std::vector<std::future<void>> futures;
std::vector<std::shared_ptr<std::promise<void>>> promises;

promises.reserve(num_batches);
futures.reserve(num_batches);

for (size_t batch_idx = 0; batch_idx < num_batches; ++batch_idx) {
auto promise = std::make_shared<std::promise<void>>();
futures.push_back(promise->get_future());
promises.push_back(promise);

size_t start_idx = batch_idx * batch_size;
size_t end_idx = std::min(start_idx + batch_size, sequence_num);

gen_threadpool_->schedule(
[update_mask, start_idx, end_idx, promise]() mutable {
update_mask(start_idx, end_idx);
promise->set_value();
});
}

for (auto& future : futures) {
future.get();
}
} else {
update_mask(0, sequence_num);
}

if (!global_batch_token_indices.empty()) {
auto token_indices =
torch::tensor(global_batch_token_indices, torch::kInt64);
auto vocab_indices =
torch::tensor(global_batch_vocab_indices, torch::kInt64);
token_indices = safe_to(token_indices, device_, true);
vocab_indices = safe_to(vocab_indices, device_, true);
mask.index_put_({token_indices, vocab_indices}, 0.0f);
}

return mask;
}
} // namespace xllm
58 changes: 58 additions & 0 deletions xllm/core/framework/sampling/rec_constrained_decoding.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,58 @@
/* Copyright 2025 The xLLM Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

https://github.com/jd-opensource/xllm/blob/main/LICENSE

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#pragma once
#include <torch/torch.h>
#include <torch/types.h>

#include "constrained_decoding.h"
#include "util/threadpool.h"

namespace xllm {

class RecConstrainedDecoding : public ConstrainedDecoding {
public:
RecConstrainedDecoding(uint64_t model_version,
const int32_t vocab_size,
torch::ScalarType dtype,
torch::Device device,
bool use_gen_threadpool_ = true);
virtual ~RecConstrainedDecoding() = default;

bool build_mask_cache() override;

torch::Tensor generate_mask(
const std::vector<std::vector<int32_t>>& generated_token_list) override;

private:
torch::Tensor generate_decode_mask(
const std::vector<std::vector<int32_t>>& generated_token_list);

private:
constexpr static float PRE_MASK_FACTOR = -10000.0f;
constexpr static int GEN_MASK_THREAD_NUM = 16;

private:
bool build_mask_cache_;
bool use_gen_threadpool_;
int32_t vocab_size_;
uint64_t model_version_;
torch::Device device_;
torch::ScalarType dtype_;
torch::Tensor first_token_mask_;
std::unique_ptr<ThreadPool> gen_threadpool_;
};

} // namespace xllm
Loading