Skip to content

hellolzc/AD_detection_open

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

AD Detection

Detecting Alzheimer's disease(AD) from spontaneous speech.

Paper

Please cite:

  • [1] Liu Z, Guo Z, Ling Z, et al. Dementia Detection by Analyzing Spontaneous Mandarin Speech[C]//2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC). IEEE, 2019: 289-296.

  • [2] Liu Z, Guo Z, Ling Z, et al. Detecting Alzheimer's Disease from Speech Using Neural Networks with Bottleneck Features and Data Augmentation [C]// ICASSP 2021.

Data Set

Repository Structure

├── ad_detection
│   ├── dlcode                         # Deep learning model
│   ├── feature_cn                     # feature extraction of mandarin dataset
│   ├── feature_en                     # feature extraction of dementia bank dataset
│   ├── mlcode                         # Traditional meachine learing model
│   ├── prepare_cn                     # Data preprocessing for mandarin dataset
│   ├── prepare_en                     # Data preprocessing for dementia bank dataset
│   │   └── pylangacq_modified
│   └── tool                           # Tools
│       └── opensmile_scripts
├── notebook                           # Jupyter notebooks of Dementia bank dataset
│   └── log
├── notebook_cn                        # Jupyter notebooks of mandarin dataset
├── ws_cn                              # Workspace of mandarin dataset. Similiar as ws_en
└── ws_en                              # Workspace of Dementia bank dataset
    ├── data                           # Preprocessed data or extracted feature
    │   ├── bottleneck
    │   │   ├── high_pass
    │   │   └── hp_aug
    │   ├── speech_extract_b
    │   ├── speech_keep_b
    │   ├── tsv
    │   ├── tsv_sr
    │   ├── wav_mono
    │   ├── high-pass
    │   └── wav_hp_aug
    ├── data_ori                       # Original data from Pitt corpus
    │   ├── ctrl
    │   │   └── cookie
    │   └── dementia
    │       └── cookie
    ├── fusion                         # Merged features
    ├── label                          # summary.csv  blacklist.csv
    ├── list                           # Results of feature merging, K-fold division and prediction
    │   ├── result
    │   ├── result_aug
    │   ├── result_bottleneck
    │   ├── result_bottleneck_aug
    │       ......
    │   ├── split
    │   └── split_aug
    ├── mfa                            # Forced align using Montreal-Forced-Aligner(MFA)
    └── opensmile                      # Files generated by OpenSMILE toolkit
        ├── audio_features_CPE16_
            ......
        ├── audio_features_mfcc_
        └── audio_features_mfcc_aug

Requirements and Installation

In order to run this code, you'll need the following packages.

And you need following python libraries.

How to run

  1. Download and prepare data following steps in run_en.sh (DementiaBank Pitt corpus)

  2. Launch Jupyter and, using your browser, navigate to the URL shown in the terminal output (usually http://localhost:8888/)

    • Split data to 10 folds using notebook/ML7-DataPrepareAndSplit.ipynb
    • Train baseline models using notebook/ML7-Test_acoustic_feature.ipynb
    • Train deeplearing models with OpenSMILE LLDs: notebook/DL2-OpenSMILE_LLDs.ipynb
    • Train deeplearing models with bottleneck features: notebook/DL2-LLDs-BottleNeck.ipynb

Note

The ASR model used for bottleneck feature extraction will not be made public.

The *.py files in notebook directory are auto generated from *.ipynb files. You can find more information on this page and this page.

License

The MIT License; please see LICENSE.txt

About

Detecting AD from Audio Data Using Neural Networks with Bottleneck Features and Data Augmentation

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published