Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 4 additions & 1 deletion esm/layers/transformer_stack.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,8 +37,10 @@ def __init__(
ffn_type: str = "swiglu", # swiglu | gelu
expansion_ratio: float = 8 / 3,
use_flash_attn: bool = False,
return_hidden_states: bool = False,
):
super().__init__()
self.return_hidden_states = return_hidden_states
self.blocks = nn.ModuleList(
[
UnifiedTransformerBlock(
Expand Down Expand Up @@ -90,5 +92,6 @@ def forward(
hiddens = []
for block in self.blocks:
x = block(x, sequence_id, affine, affine_mask, chain_id)
hiddens.append(x)
if self.return_hidden_states:
hiddens.append(x)
return self.norm(x), x, hiddens
9 changes: 5 additions & 4 deletions esm/models/esm3.py
Original file line number Diff line number Diff line change
Expand Up @@ -165,7 +165,8 @@ def __init__(self, d_model: int):
self.function_head = RegressionHead(d_model, 260 * 8)
self.residue_head = RegressionHead(d_model, 1478)

def forward(self, x: torch.Tensor, embed: torch.Tensor) -> ESMOutput:
def forward(self, x: torch.Tensor, last_hidden_state: torch.Tensor) -> ESMOutput:
embeddings = x.clone()
sequence_logits = self.sequence_head(x)
structure_logits = self.structure_head(x)
secondary_structure_logits = self.ss8_head(x)
Expand All @@ -182,7 +183,7 @@ def forward(self, x: torch.Tensor, embed: torch.Tensor) -> ESMOutput:
sasa_logits=sasa_logits,
function_logits=function_logits,
residue_logits=residue_logits,
embeddings=embed,
embeddings=embeddings,
)


Expand Down Expand Up @@ -376,10 +377,10 @@ def forward(
function_tokens,
residue_annotation_tokens,
)
x, embedding, _ = self.transformer(
x, last_hidden_states, _ = self.transformer(
x, sequence_id, affine, affine_mask, chain_id
)
return self.output_heads(x, embedding)
return self.output_heads(x, last_hidden_states)

# The following methods are for the ESM3InferenceClient interface
def generate(self, input: ProteinType, config: GenerationConfig) -> ProteinType:
Expand Down
6 changes: 5 additions & 1 deletion esm/models/esmc.py
Original file line number Diff line number Diff line change
Expand Up @@ -58,18 +58,21 @@ def __init__(
n_layers: int,
tokenizer: EsmSequenceTokenizer,
use_flash_attn: bool = True,
return_hidden_states: bool = False,
):
super().__init__()
self.embed = nn.Embedding(64, d_model)

self._use_flash_attn = is_flash_attn_available and use_flash_attn
self.return_hidden_states = return_hidden_states
self.transformer = TransformerStack(
d_model,
n_heads,
None,
n_layers,
n_layers_geom=0,
use_flash_attn=self._use_flash_attn,
return_hidden_states=self.return_hidden_states
)

self.sequence_head = RegressionHead(d_model, 64)
Expand Down Expand Up @@ -164,7 +167,8 @@ def forward(
]

# Stack hidden states into a [n_layers, B, L, D] matrix.
hiddens = torch.stack(hiddens, dim=0) # type: ignore
if len(hiddens):
hiddens = torch.stack(hiddens, dim=0) # type: ignore

sequence_logits = self.sequence_head(x)
output = ESMCOutput(
Expand Down