Skip to content

Commit 5e474f4

Browse files
author
ci-doc-deploy-bot
committed
[skip ci] docs build of 63ca94e
1 parent ec0f142 commit 5e474f4

27 files changed

+684
-1314
lines changed

_images/tutorial-deep-reinforcement-learning-with-pong-from-pixels_29_2.png renamed to _images/tutorial-deep-reinforcement-learning-with-pong-from-pixels_14_2.png

File renamed without changes.

_images/tutorial-deep-reinforcement-learning-with-pong-from-pixels_33_2.png renamed to _images/tutorial-deep-reinforcement-learning-with-pong-from-pixels_18_1.png

File renamed without changes.

_sources/content/mooreslaw-tutorial.ipynb

Lines changed: 51 additions & 56 deletions
Large diffs are not rendered by default.

_sources/content/mooreslaw-tutorial.md.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -12,7 +12,7 @@ kernelspec:
1212
---
1313

1414
# Determining Moore's Law with real data in NumPy
15-
![image.png](01-mooreslaw-tutorial-intro.png)
15+
![Plot of Moore's Law data](_static/01-mooreslaw-tutorial-intro.png)
1616

1717
_The number of transistors reported on a given chip plotted on a log scale in the y axis with the date of introduction on the linear scale x-axis. The blue data points are from a [transistor count table](https://en.wikipedia.org/wiki/Transistor_count#Microprocessors). The red line is an ordinary least squares prediction and the orange line is Moore's law._
1818

_sources/content/pairing.ipynb

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22
"cells": [
33
{
44
"cell_type": "markdown",
5-
"id": "5585ada0",
5+
"id": "23324181",
66
"metadata": {},
77
"source": [
88
"# Pairing Jupyter notebooks and MyST-NB\n",
@@ -76,7 +76,7 @@
7676
{
7777
"cell_type": "code",
7878
"execution_count": 1,
79-
"id": "a21bd74e",
79+
"id": "c9775d2b",
8080
"metadata": {},
8181
"outputs": [
8282
{
@@ -94,7 +94,7 @@
9494
},
9595
{
9696
"cell_type": "markdown",
97-
"id": "7932d553",
97+
"id": "17a1b3b9",
9898
"metadata": {},
9999
"source": [
100100
"---\n",
@@ -224,14 +224,14 @@
224224
" <summary>\n",
225225
" <b>1. Classic Jupyter Jupytext pairing</b>.\n",
226226
" </summary>\n",
227-
" <img src=\"01-classic.gif\" width=80% height=80%>\n",
227+
" <img src=\"../_static/01-classic.gif\" width=80% height=80%>\n",
228228
"</details>\n",
229229
" \n",
230230
"<details>\n",
231231
" <summary>\n",
232232
" <b>2. Jupyter Lab Jupytext pairing</b>\n",
233233
" </summary>\n",
234-
" <img src=\"02-jupyterlab.gif\" width=80% height=80%>\n",
234+
"\t<img src=\"../_static/02-jupyterlab.gif\" width=80% height=80%>\n",
235235
"</details>\n",
236236
"\n",
237237
"<details>\n",

_sources/content/pairing.md.txt

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -209,14 +209,14 @@ or the command line:
209209
<summary>
210210
<b>1. Classic Jupyter Jupytext pairing</b>.
211211
</summary>
212-
<img src="01-classic.gif" width=80% height=80%>
212+
<img src="../_static/01-classic.gif" width=80% height=80%>
213213
</details>
214214

215215
<details>
216216
<summary>
217217
<b>2. Jupyter Lab Jupytext pairing</b>
218218
</summary>
219-
<img src="02-jupyterlab.gif" width=80% height=80%>
219+
<img src="../_static/02-jupyterlab.gif" width=80% height=80%>
220220
</details>
221221

222222
<details>

_sources/content/save-load-arrays.ipynb

Lines changed: 26 additions & 26 deletions
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22
"cells": [
33
{
44
"cell_type": "markdown",
5-
"id": "dd98a600",
5+
"id": "2764c4d0",
66
"metadata": {},
77
"source": [
88
"# Saving and sharing your NumPy arrays\n",
@@ -37,7 +37,7 @@
3737
{
3838
"cell_type": "code",
3939
"execution_count": 1,
40-
"id": "35d4cf08",
40+
"id": "dc5ab629",
4141
"metadata": {},
4242
"outputs": [],
4343
"source": [
@@ -46,7 +46,7 @@
4646
},
4747
{
4848
"cell_type": "markdown",
49-
"id": "98cb4c4e",
49+
"id": "c41598fd",
5050
"metadata": {},
5151
"source": [
5252
"In this tutorial, you will use the following Python, IPython magic, and NumPy functions:\n",
@@ -64,7 +64,7 @@
6464
},
6565
{
6666
"cell_type": "markdown",
67-
"id": "6f8f71ce",
67+
"id": "5d5da535",
6868
"metadata": {},
6969
"source": [
7070
"---\n",
@@ -81,7 +81,7 @@
8181
{
8282
"cell_type": "code",
8383
"execution_count": 2,
84-
"id": "1f8f5927",
84+
"id": "4670ae09",
8585
"metadata": {},
8686
"outputs": [
8787
{
@@ -102,7 +102,7 @@
102102
},
103103
{
104104
"cell_type": "markdown",
105-
"id": "fd7e5182",
105+
"id": "4af2deeb",
106106
"metadata": {},
107107
"source": [
108108
"## Save your arrays with NumPy's [`savez`](https://numpy.org/doc/stable/reference/generated/numpy.savez.html?highlight=savez#numpy.savez)\n",
@@ -125,7 +125,7 @@
125125
{
126126
"cell_type": "code",
127127
"execution_count": 3,
128-
"id": "d4a0b108",
128+
"id": "ca4c932c",
129129
"metadata": {},
130130
"outputs": [],
131131
"source": [
@@ -134,7 +134,7 @@
134134
},
135135
{
136136
"cell_type": "markdown",
137-
"id": "a3f896f6",
137+
"id": "25f411ea",
138138
"metadata": {},
139139
"source": [
140140
"## Remove the saved arrays and load them back with NumPy's [`load`](https://numpy.org/doc/stable/reference/generated/numpy.load.html#numpy.load)\n",
@@ -159,7 +159,7 @@
159159
{
160160
"cell_type": "code",
161161
"execution_count": 4,
162-
"id": "d2d6cdba",
162+
"id": "c5cbba94",
163163
"metadata": {},
164164
"outputs": [],
165165
"source": [
@@ -169,7 +169,7 @@
169169
{
170170
"cell_type": "code",
171171
"execution_count": 5,
172-
"id": "424d63bd",
172+
"id": "463b653f",
173173
"metadata": {},
174174
"outputs": [
175175
{
@@ -189,7 +189,7 @@
189189
{
190190
"cell_type": "code",
191191
"execution_count": 6,
192-
"id": "5394ae50",
192+
"id": "6f8a7238",
193193
"metadata": {},
194194
"outputs": [
195195
{
@@ -209,7 +209,7 @@
209209
{
210210
"cell_type": "code",
211211
"execution_count": 7,
212-
"id": "938b8cfb",
212+
"id": "53227bac",
213213
"metadata": {},
214214
"outputs": [
215215
{
@@ -218,7 +218,7 @@
218218
"text": [
219219
"Variable Type Data/Info\n",
220220
"-------------------------------\n",
221-
"load_xy NpzFile <numpy.lib.npyio.NpzFile <...>object at 0x7f514c7cd6a0>\n",
221+
"load_xy NpzFile <numpy.lib.npyio.NpzFile <...>object at 0x7fa0b2ce0af0>\n",
222222
"np module <module 'numpy' from '/ho<...>kages/numpy/__init__.py'>\n"
223223
]
224224
}
@@ -229,7 +229,7 @@
229229
},
230230
{
231231
"cell_type": "markdown",
232-
"id": "2124f17a",
232+
"id": "709e6e8f",
233233
"metadata": {},
234234
"source": [
235235
"## Reassign the NpzFile arrays to `x` and `y`\n",
@@ -242,7 +242,7 @@
242242
{
243243
"cell_type": "code",
244244
"execution_count": 8,
245-
"id": "68748164",
245+
"id": "a7d245bf",
246246
"metadata": {},
247247
"outputs": [
248248
{
@@ -263,7 +263,7 @@
263263
},
264264
{
265265
"cell_type": "markdown",
266-
"id": "fcd4c68d",
266+
"id": "e4ba85f8",
267267
"metadata": {},
268268
"source": [
269269
"## Success\n",
@@ -294,7 +294,7 @@
294294
{
295295
"cell_type": "code",
296296
"execution_count": 9,
297-
"id": "937db58a",
297+
"id": "32f394d0",
298298
"metadata": {},
299299
"outputs": [
300300
{
@@ -323,7 +323,7 @@
323323
},
324324
{
325325
"cell_type": "markdown",
326-
"id": "7de5819a",
326+
"id": "ae2fcb83",
327327
"metadata": {},
328328
"source": [
329329
"## Save the data to csv file using [`savetxt`](https://numpy.org/doc/stable/reference/generated/numpy.savetxt.html#numpy.savetxt)\n",
@@ -338,7 +338,7 @@
338338
{
339339
"cell_type": "code",
340340
"execution_count": 10,
341-
"id": "b7d0ade6",
341+
"id": "7114f700",
342342
"metadata": {},
343343
"outputs": [],
344344
"source": [
@@ -347,7 +347,7 @@
347347
},
348348
{
349349
"cell_type": "markdown",
350-
"id": "29367127",
350+
"id": "66c0208c",
351351
"metadata": {},
352352
"source": [
353353
"Open the file, `x_y-squared.csv`, and you'll see the following:\n",
@@ -387,7 +387,7 @@
387387
{
388388
"cell_type": "code",
389389
"execution_count": 11,
390-
"id": "e8b235de",
390+
"id": "09d0d00b",
391391
"metadata": {},
392392
"outputs": [],
393393
"source": [
@@ -397,7 +397,7 @@
397397
{
398398
"cell_type": "code",
399399
"execution_count": 12,
400-
"id": "b9983a38",
400+
"id": "27c60774",
401401
"metadata": {},
402402
"outputs": [],
403403
"source": [
@@ -409,7 +409,7 @@
409409
{
410410
"cell_type": "code",
411411
"execution_count": 13,
412-
"id": "99ef069f",
412+
"id": "e2617aa4",
413413
"metadata": {},
414414
"outputs": [
415415
{
@@ -430,7 +430,7 @@
430430
{
431431
"cell_type": "code",
432432
"execution_count": 14,
433-
"id": "5c1000e9",
433+
"id": "66245fab",
434434
"metadata": {},
435435
"outputs": [
436436
{
@@ -451,7 +451,7 @@
451451
},
452452
{
453453
"cell_type": "markdown",
454-
"id": "0fe8c262",
454+
"id": "822af148",
455455
"metadata": {},
456456
"source": [
457457
"## Success, but remember your types\n",
@@ -462,7 +462,7 @@
462462
},
463463
{
464464
"cell_type": "markdown",
465-
"id": "a763846c",
465+
"id": "13862047",
466466
"metadata": {},
467467
"source": [
468468
"## Wrapping up\n",

0 commit comments

Comments
 (0)