Skip to content

Commit ec0f142

Browse files
author
ci-doc-deploy-bot
committed
[skip ci] docs build of 3224fa1
1 parent 8ee6df8 commit ec0f142

13 files changed

+377
-377
lines changed

_sources/content/mooreslaw-tutorial.ipynb

Lines changed: 48 additions & 48 deletions
Large diffs are not rendered by default.

_sources/content/pairing.ipynb

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22
"cells": [
33
{
44
"cell_type": "markdown",
5-
"id": "562f87b4",
5+
"id": "5585ada0",
66
"metadata": {},
77
"source": [
88
"# Pairing Jupyter notebooks and MyST-NB\n",
@@ -76,7 +76,7 @@
7676
{
7777
"cell_type": "code",
7878
"execution_count": 1,
79-
"id": "3fa4178e",
79+
"id": "a21bd74e",
8080
"metadata": {},
8181
"outputs": [
8282
{
@@ -94,7 +94,7 @@
9494
},
9595
{
9696
"cell_type": "markdown",
97-
"id": "038e0a35",
97+
"id": "7932d553",
9898
"metadata": {},
9999
"source": [
100100
"---\n",

_sources/content/save-load-arrays.ipynb

Lines changed: 26 additions & 26 deletions
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22
"cells": [
33
{
44
"cell_type": "markdown",
5-
"id": "0ab3bed5",
5+
"id": "dd98a600",
66
"metadata": {},
77
"source": [
88
"# Saving and sharing your NumPy arrays\n",
@@ -37,7 +37,7 @@
3737
{
3838
"cell_type": "code",
3939
"execution_count": 1,
40-
"id": "12f5c3c3",
40+
"id": "35d4cf08",
4141
"metadata": {},
4242
"outputs": [],
4343
"source": [
@@ -46,7 +46,7 @@
4646
},
4747
{
4848
"cell_type": "markdown",
49-
"id": "b4d201f6",
49+
"id": "98cb4c4e",
5050
"metadata": {},
5151
"source": [
5252
"In this tutorial, you will use the following Python, IPython magic, and NumPy functions:\n",
@@ -64,7 +64,7 @@
6464
},
6565
{
6666
"cell_type": "markdown",
67-
"id": "0fbf5dff",
67+
"id": "6f8f71ce",
6868
"metadata": {},
6969
"source": [
7070
"---\n",
@@ -81,7 +81,7 @@
8181
{
8282
"cell_type": "code",
8383
"execution_count": 2,
84-
"id": "2395cb8b",
84+
"id": "1f8f5927",
8585
"metadata": {},
8686
"outputs": [
8787
{
@@ -102,7 +102,7 @@
102102
},
103103
{
104104
"cell_type": "markdown",
105-
"id": "87d592d2",
105+
"id": "fd7e5182",
106106
"metadata": {},
107107
"source": [
108108
"## Save your arrays with NumPy's [`savez`](https://numpy.org/doc/stable/reference/generated/numpy.savez.html?highlight=savez#numpy.savez)\n",
@@ -125,7 +125,7 @@
125125
{
126126
"cell_type": "code",
127127
"execution_count": 3,
128-
"id": "d50145b1",
128+
"id": "d4a0b108",
129129
"metadata": {},
130130
"outputs": [],
131131
"source": [
@@ -134,7 +134,7 @@
134134
},
135135
{
136136
"cell_type": "markdown",
137-
"id": "d5ac2f24",
137+
"id": "a3f896f6",
138138
"metadata": {},
139139
"source": [
140140
"## Remove the saved arrays and load them back with NumPy's [`load`](https://numpy.org/doc/stable/reference/generated/numpy.load.html#numpy.load)\n",
@@ -159,7 +159,7 @@
159159
{
160160
"cell_type": "code",
161161
"execution_count": 4,
162-
"id": "cd79cb67",
162+
"id": "d2d6cdba",
163163
"metadata": {},
164164
"outputs": [],
165165
"source": [
@@ -169,7 +169,7 @@
169169
{
170170
"cell_type": "code",
171171
"execution_count": 5,
172-
"id": "eda4848f",
172+
"id": "424d63bd",
173173
"metadata": {},
174174
"outputs": [
175175
{
@@ -189,7 +189,7 @@
189189
{
190190
"cell_type": "code",
191191
"execution_count": 6,
192-
"id": "d80c6b32",
192+
"id": "5394ae50",
193193
"metadata": {},
194194
"outputs": [
195195
{
@@ -209,7 +209,7 @@
209209
{
210210
"cell_type": "code",
211211
"execution_count": 7,
212-
"id": "11dfc71f",
212+
"id": "938b8cfb",
213213
"metadata": {},
214214
"outputs": [
215215
{
@@ -218,7 +218,7 @@
218218
"text": [
219219
"Variable Type Data/Info\n",
220220
"-------------------------------\n",
221-
"load_xy NpzFile <numpy.lib.npyio.NpzFile <...>object at 0x7f01300399a0>\n",
221+
"load_xy NpzFile <numpy.lib.npyio.NpzFile <...>object at 0x7f514c7cd6a0>\n",
222222
"np module <module 'numpy' from '/ho<...>kages/numpy/__init__.py'>\n"
223223
]
224224
}
@@ -229,7 +229,7 @@
229229
},
230230
{
231231
"cell_type": "markdown",
232-
"id": "58ddb872",
232+
"id": "2124f17a",
233233
"metadata": {},
234234
"source": [
235235
"## Reassign the NpzFile arrays to `x` and `y`\n",
@@ -242,7 +242,7 @@
242242
{
243243
"cell_type": "code",
244244
"execution_count": 8,
245-
"id": "a780d240",
245+
"id": "68748164",
246246
"metadata": {},
247247
"outputs": [
248248
{
@@ -263,7 +263,7 @@
263263
},
264264
{
265265
"cell_type": "markdown",
266-
"id": "ab2b9813",
266+
"id": "fcd4c68d",
267267
"metadata": {},
268268
"source": [
269269
"## Success\n",
@@ -294,7 +294,7 @@
294294
{
295295
"cell_type": "code",
296296
"execution_count": 9,
297-
"id": "93a5dc58",
297+
"id": "937db58a",
298298
"metadata": {},
299299
"outputs": [
300300
{
@@ -323,7 +323,7 @@
323323
},
324324
{
325325
"cell_type": "markdown",
326-
"id": "64c1c0ec",
326+
"id": "7de5819a",
327327
"metadata": {},
328328
"source": [
329329
"## Save the data to csv file using [`savetxt`](https://numpy.org/doc/stable/reference/generated/numpy.savetxt.html#numpy.savetxt)\n",
@@ -338,7 +338,7 @@
338338
{
339339
"cell_type": "code",
340340
"execution_count": 10,
341-
"id": "5f7c92bc",
341+
"id": "b7d0ade6",
342342
"metadata": {},
343343
"outputs": [],
344344
"source": [
@@ -347,7 +347,7 @@
347347
},
348348
{
349349
"cell_type": "markdown",
350-
"id": "a6d06623",
350+
"id": "29367127",
351351
"metadata": {},
352352
"source": [
353353
"Open the file, `x_y-squared.csv`, and you'll see the following:\n",
@@ -387,7 +387,7 @@
387387
{
388388
"cell_type": "code",
389389
"execution_count": 11,
390-
"id": "d8303f14",
390+
"id": "e8b235de",
391391
"metadata": {},
392392
"outputs": [],
393393
"source": [
@@ -397,7 +397,7 @@
397397
{
398398
"cell_type": "code",
399399
"execution_count": 12,
400-
"id": "42439e86",
400+
"id": "b9983a38",
401401
"metadata": {},
402402
"outputs": [],
403403
"source": [
@@ -409,7 +409,7 @@
409409
{
410410
"cell_type": "code",
411411
"execution_count": 13,
412-
"id": "1cbcba77",
412+
"id": "99ef069f",
413413
"metadata": {},
414414
"outputs": [
415415
{
@@ -430,7 +430,7 @@
430430
{
431431
"cell_type": "code",
432432
"execution_count": 14,
433-
"id": "ab6d50a6",
433+
"id": "5c1000e9",
434434
"metadata": {},
435435
"outputs": [
436436
{
@@ -451,7 +451,7 @@
451451
},
452452
{
453453
"cell_type": "markdown",
454-
"id": "d1d268ce",
454+
"id": "0fe8c262",
455455
"metadata": {},
456456
"source": [
457457
"## Success, but remember your types\n",
@@ -462,7 +462,7 @@
462462
},
463463
{
464464
"cell_type": "markdown",
465-
"id": "fa410049",
465+
"id": "a763846c",
466466
"metadata": {},
467467
"source": [
468468
"## Wrapping up\n",

0 commit comments

Comments
 (0)