Skip to content

Secure code execution in isolated lightweight VMs (QEMU microVMs). Python library for running untrusted Python, JavaScript, and shell code with 7-layer security isolation.

License

Notifications You must be signed in to change notification settings

dualeai/exec-sandbox

Repository files navigation

exec-sandbox

Secure code execution in isolated lightweight VMs (QEMU microVMs). Python library for running untrusted Python, JavaScript, and shell code with 7-layer security isolation.

CI Coverage PyPI Python License

Highlights

  • Hardware isolation - Each execution runs in a dedicated lightweight VM (QEMU with KVM/HVF hardware acceleration), not containers
  • Fast startup - 400ms fresh start, 1-2ms with pre-started VMs (warm pool)
  • Simple API - Just Scheduler and run(), async-friendly; plus sbx CLI for quick testing
  • Streaming output - Real-time output as code runs
  • Smart caching - Local + S3 remote cache for VM snapshots
  • Network control - Disabled by default, optional domain allowlisting
  • Memory optimization - Compressed memory (zram) + unused memory reclamation (balloon) for ~30% more capacity, ~80% smaller snapshots

Installation

uv add exec-sandbox              # Core library
uv add "exec-sandbox[s3]"        # + S3 snapshot caching
# Install QEMU runtime
brew install qemu                # macOS
apt install qemu-system          # Ubuntu/Debian

Quick Start

CLI

The sbx command provides quick access to sandbox execution from the terminal:

# Run Python code
sbx run 'print("Hello from sandbox")'

# Run JavaScript
sbx run -l javascript 'console.log("Hello from sandbox")'

# Run a file (language auto-detected from extension)
sbx run script.py
sbx run app.js

# From stdin
echo 'print(42)' | sbx run -

# With packages
sbx run -p requests -p pandas 'import pandas; print(pandas.__version__)'

# With timeout and memory limits
sbx run -t 60 -m 512 long_script.py

# Enable network with domain allowlist
sbx run --network --allow-domain api.example.com fetch_data.py

# Expose ports (guest:8080 → host:dynamic)
sbx run --expose 8080 --json 'print("ready")' | jq '.exposed_ports[0].url'

# Expose with explicit host port (guest:8080 → host:3000)
sbx run --expose 8080:3000 --json 'print("ready")' | jq '.exposed_ports[0].external'

# Start HTTP server with port forwarding (runs until timeout)
sbx run -t 60 --expose 8080 'import http.server; http.server.test(port=8080, bind="0.0.0.0")'

# JSON output for scripting
sbx run --json 'print("test")' | jq .exit_code

# Environment variables
sbx run -e API_KEY=secret -e DEBUG=1 script.py

# Multiple sources (run concurrently)
sbx run 'print(1)' 'print(2)' script.py

# Multiple inline codes
sbx run -c 'print(1)' -c 'print(2)'

# Limit concurrency
sbx run -j 5 *.py

CLI Options:

Option Short Description Default
--language -l python, javascript, raw auto-detect
--code -c Inline code (repeatable, alternative to positional) -
--package -p Package to install (repeatable) -
--timeout -t Timeout in seconds 30
--memory -m Memory in MB 256
--env -e Environment variable KEY=VALUE (repeatable) -
--network Enable network access false
--allow-domain Allowed domain (repeatable) -
--expose Expose port INTERNAL[:EXTERNAL][/PROTOCOL] (repeatable) -
--json JSON output false
--quiet -q Suppress progress output false
--no-validation Skip package allowlist validation false
--concurrency -j Max concurrent VMs for multi-input 10

Python API

Basic Execution

from exec_sandbox import Scheduler

async with Scheduler() as scheduler:
    result = await scheduler.run(
        code="print('Hello, World!')",
        language="python",  # or "javascript", "raw"
    )
    print(result.stdout)     # Hello, World!
    print(result.exit_code)  # 0

With Packages

First run installs and creates snapshot; subsequent runs restore in <400ms.

async with Scheduler() as scheduler:
    result = await scheduler.run(
        code="import pandas; print(pandas.__version__)",
        language="python",
        packages=["pandas==2.2.0", "numpy==1.26.0"],
    )
    print(result.stdout)  # 2.2.0

Streaming Output

async with Scheduler() as scheduler:
    result = await scheduler.run(
        code="for i in range(5): print(i)",
        language="python",
        on_stdout=lambda chunk: print(f"[OUT] {chunk}", end=""),
        on_stderr=lambda chunk: print(f"[ERR] {chunk}", end=""),
    )

Network Access

async with Scheduler() as scheduler:
    result = await scheduler.run(
        code="import urllib.request; print(urllib.request.urlopen('https://httpbin.org/ip').read())",
        language="python",
        allow_network=True,
        allowed_domains=["httpbin.org"],  # Domain allowlist
    )

Port Forwarding

Expose VM ports to the host for health checks, API testing, or service validation.

from exec_sandbox import Scheduler, PortMapping

async with Scheduler() as scheduler:
    # Port forwarding without internet (isolated)
    result = await scheduler.run(
        code="print('server ready')",
        expose_ports=[PortMapping(internal=8080, external=3000)],  # Guest:8080 → Host:3000
        allow_network=False,  # No outbound internet
    )
    print(result.exposed_ports[0].url)  # http://127.0.0.1:3000

    # Dynamic port allocation (OS assigns external port)
    result = await scheduler.run(
        code="print('server ready')",
        expose_ports=[8080],  # external=None → OS assigns port
    )
    print(result.exposed_ports[0].external)  # e.g., 52341

    # Long-running server with port forwarding
    result = await scheduler.run(
        code="import http.server; http.server.test(port=8080, bind='0.0.0.0')",
        expose_ports=[PortMapping(internal=8080)],
        timeout_seconds=60,  # Server runs until timeout
    )

Security: Port forwarding works independently of internet access. When allow_network=False, guest VMs cannot initiate outbound connections (DNS blocked, direct IP blocked), but host-to-guest port forwarding still works.

Production Configuration

from exec_sandbox import Scheduler, SchedulerConfig

config = SchedulerConfig(
    max_concurrent_vms=20,       # Limit parallel executions
    warm_pool_size=1,            # Pre-started VMs (warm pool), size = max_concurrent_vms × 25%
    default_memory_mb=512,       # Per-VM memory
    default_timeout_seconds=60,  # Execution timeout
    s3_bucket="my-snapshots",    # Remote cache for package snapshots
    s3_region="us-east-1",
)

async with Scheduler(config) as scheduler:
    result = await scheduler.run(...)

Error Handling

from exec_sandbox import Scheduler, VmTimeoutError, PackageNotAllowedError, SandboxError

async with Scheduler() as scheduler:
    try:
        result = await scheduler.run(code="while True: pass", language="python", timeout_seconds=5)
    except VmTimeoutError:
        print("Execution timed out")
    except PackageNotAllowedError as e:
        print(f"Package not in allowlist: {e}")
    except SandboxError as e:
        print(f"Sandbox error: {e}")

Asset Downloads

exec-sandbox requires VM images (kernel, initramfs, qcow2) and binaries (gvproxy-wrapper) to run. These assets are automatically downloaded from GitHub Releases on first use.

How it works

  1. On first Scheduler initialization, exec-sandbox checks if assets exist in the cache directory
  2. If missing, it queries the GitHub Releases API for the matching version (v{__version__})
  3. Assets are downloaded over HTTPS, verified against SHA256 checksums (provided by GitHub API), and decompressed
  4. Subsequent runs use the cached assets (no re-download)

Cache locations

Platform Location
macOS ~/Library/Caches/exec-sandbox/
Linux ~/.cache/exec-sandbox/ (or $XDG_CACHE_HOME/exec-sandbox/)

Environment variables

Variable Description
EXEC_SANDBOX_CACHE_DIR Override cache directory
EXEC_SANDBOX_OFFLINE Set to 1 to disable auto-download (fail if assets missing)
EXEC_SANDBOX_ASSET_VERSION Force specific release version

Pre-downloading for offline use

Use sbx prefetch to download all assets ahead of time:

sbx prefetch                    # Download all assets for current arch
sbx prefetch --arch aarch64     # Cross-arch prefetch
sbx prefetch -q                 # Quiet mode (CI/Docker)

Dockerfile example:

FROM ghcr.io/astral-sh/uv:python3.12-bookworm
RUN uv pip install --system exec-sandbox
RUN sbx prefetch -q
ENV EXEC_SANDBOX_OFFLINE=1
# Assets cached, no network needed at runtime

Security

Assets are verified against SHA256 checksums and built with provenance attestations.

Documentation

  • QEMU Documentation - Virtual machine emulator
  • KVM - Linux hardware virtualization
  • HVF - macOS hardware virtualization (Hypervisor.framework)
  • cgroups v2 - Linux resource limits
  • seccomp - System call filtering

Configuration

Parameter Default Description
max_concurrent_vms 10 Maximum parallel VMs
warm_pool_size 0 Pre-started VMs (warm pool). Set >0 to enable. Size = max_concurrent_vms × 25% per language
default_memory_mb 256 VM memory (128-2048 MB). Effective ~25% higher with memory compression (zram)
default_timeout_seconds 30 Execution timeout (1-300s)
images_dir auto VM images directory
snapshot_cache_dir /tmp/exec-sandbox-cache Local snapshot cache
s3_bucket None S3 bucket for remote snapshot cache
s3_region us-east-1 AWS region
enable_package_validation True Validate against top 10k packages (PyPI for Python, npm for JavaScript)
auto_download_assets True Auto-download VM images from GitHub Releases

Environment variables: EXEC_SANDBOX_MAX_CONCURRENT_VMS, EXEC_SANDBOX_IMAGES_DIR, etc.

Memory Optimization

VMs include automatic memory optimization (no configuration required):

  • Compressed swap (zram) - ~25% more usable memory via lz4 compression
  • Memory reclamation (virtio-balloon) - 70-90% smaller snapshots

Execution Result

Field Type Description
stdout str Captured output (max 1MB)
stderr str Captured errors (max 100KB)
exit_code int Process exit code (0 = success)
execution_time_ms int Duration reported by VM
external_cpu_time_ms int CPU time measured by host
external_memory_peak_mb int Peak memory measured by host
timing.setup_ms int Resource setup (filesystem, limits, network)
timing.boot_ms int VM boot time
timing.execute_ms int Code execution
timing.total_ms int End-to-end time
exposed_ports list Port mappings with .internal, .external, .host, .url

Exceptions

Exception Description
SandboxError Base exception
SandboxDependencyError Optional dependency missing (e.g., aioboto3 for S3)
VmError VM operation failed
VmTimeoutError Execution exceeded timeout
VmBootError VM failed to start
CommunicationError VM communication failed
SocketAuthError Socket peer authentication failed
GuestAgentError VM helper process returned error
PackageNotAllowedError Package not in allowlist
SnapshotError Snapshot operation failed
AssetError Asset download/verification error (base)
AssetDownloadError Asset download failed
AssetChecksumError Asset checksum verification failed
AssetNotFoundError Asset not found in registry/release

Pitfalls

# VMs are never reused - state doesn't persist
result1 = await scheduler.run("x = 42", language="python")
result2 = await scheduler.run("print(x)", language="python")  # NameError!
# Fix: single execution with all code
await scheduler.run("x = 42; print(x)", language="python")

# Pre-started VMs (warm pool) only work without packages
config = SchedulerConfig(warm_pool_size=1)
await scheduler.run(code="...", packages=["pandas"])  # Bypasses warm pool, fresh start (400ms)
await scheduler.run(code="...")                        # Uses warm pool (1-2ms)

# Pin package versions for caching
packages=["pandas==2.2.0"]  # Cacheable
packages=["pandas"]         # Cache miss every time

# Streaming callbacks must be fast (blocks async execution)
on_stdout=lambda chunk: time.sleep(1)        # Blocks!
on_stdout=lambda chunk: buffer.append(chunk)  # Fast

# Memory overhead: pre-started VMs use (max_concurrent_vms × 25%) × 2 languages × 256MB
# max_concurrent_vms=20 → 5 VMs/lang × 2 × 256MB = 2.5GB for warm pool alone

# Memory can exceed configured limit due to compressed swap
default_memory_mb=256  # Code can actually use ~280-320MB thanks to compression
# Don't rely on memory limits for security - use timeouts for runaway allocations

# Network without domain restrictions is risky
allow_network=True                              # Full internet access
allow_network=True, allowed_domains=["api.example.com"]  # Controlled

# Port forwarding binds to localhost only
expose_ports=[8080]  # Binds to 127.0.0.1, not 0.0.0.0
# If you need external access, use a reverse proxy on the host

Limits

Resource Limit
Max code size 1MB
Max stdout 1MB
Max stderr 100KB
Max packages 50
Max env vars 100
Max exposed ports 10
Execution timeout 1-300s
VM memory 128-2048MB
Max concurrent VMs 1-100

Security Architecture

Layer Technology Protection
1 Hardware virtualization (KVM/HVF) CPU isolation enforced by hardware
2 Unprivileged QEMU No root privileges, minimal exposure
3 System call filtering (seccomp) Blocks unauthorized OS calls
4 Resource limits (cgroups v2) Memory, CPU, process limits
5 Process isolation (namespaces) Separate process, network, filesystem views
6 Security policies (AppArmor/SELinux) When available
7 Socket authentication (SO_PEERCRED/LOCAL_PEERCRED) Verifies QEMU process identity

Guarantees:

  • VMs are never reused - fresh VM per run(), destroyed immediately after
  • Network disabled by default - requires explicit allow_network=True
  • Domain allowlisting - only specified domains accessible when network enabled
  • Package validation - only top 10k Python/JavaScript packages allowed by default
  • Port forwarding isolation - when expose_ports is used without allow_network, guest cannot initiate any outbound connections (DNS and direct IP blocked)

Requirements

Requirement Supported
Python 3.12, 3.13, 3.14 (including free-threaded)
Linux x64, arm64
macOS x64, arm64
QEMU 8.0+
Hardware acceleration KVM (Linux) or HVF (macOS) recommended, 10-50x faster

Verify hardware acceleration is available:

ls /dev/kvm              # Linux
sysctl kern.hv_support   # macOS

Without hardware acceleration, QEMU uses software emulation (TCG), which is 10-50x slower.

Linux Setup (Optional Security Hardening)

For enhanced security on Linux, exec-sandbox can run QEMU as an unprivileged qemu-vm user. This isolates the VM process from your user account.

# Create qemu-vm system user
sudo useradd --system --no-create-home --shell /usr/sbin/nologin qemu-vm

# Add qemu-vm to kvm group (for hardware acceleration)
sudo usermod -aG kvm qemu-vm

# Add your user to qemu-vm group (for socket access)
sudo usermod -aG qemu-vm $USER

# Re-login or activate group membership
newgrp qemu-vm

Why is this needed? When qemu-vm user exists, exec-sandbox runs QEMU as that user for process isolation. The host needs to connect to QEMU's Unix sockets (0660 permissions), which requires group membership. This follows the libvirt security model.

If qemu-vm user doesn't exist, exec-sandbox runs QEMU as your user (no additional setup required, but less isolated).

VM Images

Pre-built images from GitHub Releases:

Image Runtime Package Manager Size Description
python-3.14-base Python 3.14 uv ~140MB Full Python environment with C extension support
node-1.3-base Bun 1.3 bun ~57MB Fast JavaScript/TypeScript runtime with Node.js compatibility
raw-base None None ~15MB Shell scripts and custom runtimes

All images are based on Alpine Linux 3.21 (Linux 6.12 LTS, musl libc) and include common tools for AI agent workflows.

Common Tools (all images)

Tool Purpose
git Version control, clone repositories
curl HTTP requests, download files
jq JSON processing
bash Shell scripting
coreutils Standard Unix utilities (ls, cp, mv, etc.)
tar, gzip, unzip Archive extraction
file File type detection

Python Image

Component Version Notes
Python 3.14 python-build-standalone (musl)
uv 0.9+ 10-100x faster than pip (docs)
gcc, musl-dev Alpine For C extensions (numpy, pandas, etc.)

Usage notes:

  • Use uv pip install instead of pip install (pip not included)
  • Python 3.14 includes t-strings, deferred annotations, free-threading support

JavaScript Image

Component Version Notes
Bun 1.3 Runtime, bundler, package manager (docs)

Usage notes:

  • Bun is a Node.js-compatible runtime (not Node.js itself)
  • Built-in TypeScript/JSX support, no transpilation needed
  • Use bun install for packages, bun run for scripts
  • Near-complete Node.js API compatibility

Raw Image

Minimal Alpine Linux with common tools only. Use for:

  • Shell script execution (language="raw")
  • Custom runtime installation
  • Lightweight workloads

Build from source:

./scripts/build-images.sh
# Output: ./images/dist/python-3.14-base.qcow2, ./images/dist/node-1.3-base.qcow2, ./images/dist/raw-base.qcow2

Security

Contributing

Contributions welcome! Please open an issue first to discuss changes.

make install      # Setup environment
make test         # Run tests
make lint         # Format and lint

License

Apache-2.0

About

Secure code execution in isolated lightweight VMs (QEMU microVMs). Python library for running untrusted Python, JavaScript, and shell code with 7-layer security isolation.

Topics

Resources

License

Security policy

Stars

Watchers

Forks

Contributors 2

  •  
  •