This is a coarse implementation of BlockGPT proposed by Yu et al. Although we argue the practicality of this tool according to the stated FPR and the bias of the transaction in real world, the tool is implemented anyway.
The BlockGPT consists of 3 modules, they are ITR Builder, Trainer, and Detector module separately.
- Prerequisites:
$ git clone https://github.com/dm4sec/BlockGPT.git
$ cd BlockGPT
$ virtualenv -p python3 venv
$ source venv/bin/activate
$ pip3 install -r requirements.txt
- use
python3 M1.ITR_Builder.pyto get txs and build data. A local archive node is preferred for the given node inconfig.pyis fairly slow. - use
python3 M2.Trainer.py --train-tokenizerto train a tokenizer. - use
python3 M2.Trainer.py --train-classifierto train a classifier. - use
python3 M3.Detector.pyto detect abnormally txs.
1. Yu Gai, Liyi Zhou, Kaihua Qin, Dawn Song, Arthur Gervais:
Blockchain Large Language Models. IACR Cryptol. ePrint Arch. 2023: 592 (2023)
2. https://github.com/BLOCK-GPT-NEW/blockGPT
3. https://github.com/sec3-service/Owl-LM
4. https://ethervm.io/