Skip to content

Conversation

@codeflash-ai
Copy link

@codeflash-ai codeflash-ai bot commented Dec 20, 2025

📄 2,883% (28.83x) speedup for _get_optimal_value_for_bbox in unstructured/partition/pdf_image/analysis/bbox_visualisation.py

⏱️ Runtime : 11.9 milliseconds 398 microseconds (best of 250 runs)

📝 Explanation and details

The optimized code achieves a 2882% speedup by applying two key optimizations:

1. Numba JIT Compilation:
Added @njit(cache=True, fastmath=True) decorators to _get_bbox_to_page_ratio and the new _linear_polyfit_2point functions. Numba compiles these Python functions to machine code, eliminating interpreter overhead and providing near-C performance for numerical computations.

2. Replaced NumPy's General-Purpose Linear Regression:
The original code used np.polyfit() for simple 2-point linear interpolation, which is overkill and involves significant overhead. The optimization replaces this with a custom _linear_polyfit_2point function that directly computes slope and intercept using basic arithmetic: slope = (y1-y0)/(x1-x0) and intercept = y0 - slope*x0. This eliminates the overhead of NumPy's general polynomial fitting algorithm.

Performance Impact:
From the line profiler results, the original np.polyfit call consumed 86.5% of execution time (24.7ms out of 28.6ms total). The optimized version reduces this to just 15.2% of a much smaller total runtime. The first call to each JIT-compiled function includes compilation overhead, but subsequent calls benefit from cached machine code.

Real-World Benefits:
Based on function references, _get_optimal_value_for_bbox is called by get_bbox_text_size and get_bbox_thickness for PDF visualization. These functions likely process many bounding boxes during document analysis, making the 20x+ speedup significant for document processing pipelines.

Test Case Performance:
The optimizations excel across all test scenarios, showing 15-30x speedups for individual calls and even higher gains (30x) for bulk processing tests with many bounding boxes, demonstrating the value of JIT compilation for repeated computational workloads.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 🔘 None Found
🌀 Generated Regression Tests 722 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage 100.0%
🌀 Generated Regression Tests and Runtime
import math

import numpy as np

# imports
from unstructured.partition.pdf_image.analysis.bbox_visualisation import _get_optimal_value_for_bbox

# unit tests

# -------- BASIC TEST CASES --------


def test_min_ratio_returns_min_value():
    """Test: bbox with ratio exactly at ratio_for_min_value returns min_value."""
    page_size = (1000, 1000)
    min_value = 10
    max_value = 50
    ratio_for_min_value = 0.01
    ratio_for_max_value = 0.5
    # Find bbox with diagonal such that bbox_diagonal/page_diagonal = ratio_for_min_value
    page_diag = math.sqrt(page_size[0] ** 2 + page_size[1] ** 2)
    bbox_diag = page_diag * ratio_for_min_value
    # Make a square bbox at origin with this diagonal
    side = bbox_diag / math.sqrt(2)
    bbox = (0, 0, int(side), int(side))
    codeflash_output = _get_optimal_value_for_bbox(
        bbox, page_size, min_value, max_value, ratio_for_min_value, ratio_for_max_value
    )
    result = codeflash_output  # 24.8μs -> 1.17μs (2024% faster)


def test_max_ratio_returns_max_value():
    """Test: bbox with ratio exactly at ratio_for_max_value returns max_value."""
    page_size = (1000, 1000)
    min_value = 10
    max_value = 50
    ratio_for_min_value = 0.01
    ratio_for_max_value = 0.5
    page_diag = math.sqrt(page_size[0] ** 2 + page_size[1] ** 2)
    bbox_diag = page_diag * ratio_for_max_value
    side = bbox_diag / math.sqrt(2)
    bbox = (0, 0, int(side), int(side))
    codeflash_output = _get_optimal_value_for_bbox(
        bbox, page_size, min_value, max_value, ratio_for_min_value, ratio_for_max_value
    )
    result = codeflash_output  # 23.8μs -> 1.08μs (2093% faster)


def test_mid_ratio_returns_mid_value():
    """Test: bbox with ratio halfway between min and max returns value halfway between min_value and max_value."""
    page_size = (1000, 1000)
    min_value = 10
    max_value = 50
    ratio_for_min_value = 0.01
    ratio_for_max_value = 0.5
    mid_ratio = (ratio_for_min_value + ratio_for_max_value) / 2
    page_diag = math.sqrt(page_size[0] ** 2 + page_size[1] ** 2)
    bbox_diag = page_diag * mid_ratio
    side = bbox_diag / math.sqrt(2)
    bbox = (0, 0, int(side), int(side))
    codeflash_output = _get_optimal_value_for_bbox(
        bbox, page_size, min_value, max_value, ratio_for_min_value, ratio_for_max_value
    )
    result = codeflash_output  # 23.5μs -> 1.08μs (2066% faster)
    # The function does int() flooring, so result should be the floored midpoint
    expected = int((min_value + max_value) / 2)


def test_linear_increase_between_min_and_max():
    """Test: As bbox size increases, value increases linearly between min and max."""
    page_size = (1000, 1000)
    min_value = 10
    max_value = 50
    ratio_for_min_value = 0.01
    ratio_for_max_value = 0.5
    page_diag = math.sqrt(page_size[0] ** 2 + page_size[1] ** 2)
    # Test a few ratios in between
    for frac in [0.2, 0.3, 0.4]:
        ratio = ratio_for_min_value + frac * (ratio_for_max_value - ratio_for_min_value)
        bbox_diag = page_diag * ratio
        side = bbox_diag / math.sqrt(2)
        bbox = (0, 0, int(side), int(side))
        codeflash_output = _get_optimal_value_for_bbox(
            bbox, page_size, min_value, max_value, ratio_for_min_value, ratio_for_max_value
        )
        result = codeflash_output  # 57.4μs -> 2.87μs (1898% faster)
        # Compute expected value using the same linear fit
        coefficients = np.polyfit(
            (ratio_for_min_value, ratio_for_max_value), (min_value, max_value), 1
        )
        expected = int(ratio * coefficients[0] + coefficients[1])


# -------- EDGE TEST CASES --------


def test_bbox_smaller_than_min_ratio_clamps_to_min():
    """Test: bbox smaller than ratio_for_min_value returns min_value (clamping)."""
    page_size = (1000, 1000)
    min_value = 10
    max_value = 50
    ratio_for_min_value = 0.01
    ratio_for_max_value = 0.5
    page_diag = math.sqrt(page_size[0] ** 2 + page_size[1] ** 2)
    bbox_diag = page_diag * (ratio_for_min_value / 2)
    side = bbox_diag / math.sqrt(2)
    bbox = (0, 0, int(side), int(side))
    codeflash_output = _get_optimal_value_for_bbox(
        bbox, page_size, min_value, max_value, ratio_for_min_value, ratio_for_max_value
    )
    result = codeflash_output  # 23.2μs -> 1.08μs (2043% faster)


def test_bbox_larger_than_max_ratio_clamps_to_max():
    """Test: bbox larger than ratio_for_max_value returns max_value (clamping)."""
    page_size = (1000, 1000)
    min_value = 10
    max_value = 50
    ratio_for_min_value = 0.01
    ratio_for_max_value = 0.5
    page_diag = math.sqrt(page_size[0] ** 2 + page_size[1] ** 2)
    bbox_diag = page_diag * (ratio_for_max_value * 1.2)
    side = bbox_diag / math.sqrt(2)
    bbox = (0, 0, int(side), int(side))
    codeflash_output = _get_optimal_value_for_bbox(
        bbox, page_size, min_value, max_value, ratio_for_min_value, ratio_for_max_value
    )
    result = codeflash_output  # 23.3μs -> 1.04μs (2135% faster)


def test_min_value_equals_max_value():
    """Test: If min_value == max_value, always returns that value."""
    page_size = (1000, 1000)
    min_value = max_value = 42
    ratio_for_min_value = 0.01
    ratio_for_max_value = 0.5
    # Try a variety of bbox sizes
    for ratio in [0.01, 0.1, 0.25, 0.5, 0.75]:
        page_diag = math.sqrt(page_size[0] ** 2 + page_size[1] ** 2)
        bbox_diag = page_diag * ratio
        side = bbox_diag / math.sqrt(2)
        bbox = (0, 0, int(side), int(side))
        codeflash_output = _get_optimal_value_for_bbox(
            bbox, page_size, min_value, max_value, ratio_for_min_value, ratio_for_max_value
        )
        result = codeflash_output  # 92.7μs -> 3.42μs (2613% faster)


def test_zero_sized_bbox():
    """Test: Zero-sized bbox returns min_value."""
    page_size = (1000, 1000)
    min_value = 5
    max_value = 10
    bbox = (0, 0, 0, 0)
    codeflash_output = _get_optimal_value_for_bbox(bbox, page_size, min_value, max_value)
    result = codeflash_output  # 23.5μs -> 1.17μs (1915% faster)


def test_non_square_page_and_bbox():
    """Test: non-square page and bbox are handled correctly."""
    page_size = (800, 1200)
    min_value = 3
    max_value = 9
    ratio_for_min_value = 0.05
    ratio_for_max_value = 0.3
    page_diag = math.sqrt(page_size[0] ** 2 + page_size[1] ** 2)
    bbox_diag = page_diag * ratio_for_min_value
    side = bbox_diag / math.sqrt(2)
    bbox = (0, 0, int(side), int(side))
    codeflash_output = _get_optimal_value_for_bbox(
        bbox, page_size, min_value, max_value, ratio_for_min_value, ratio_for_max_value
    )
    result = codeflash_output  # 33.5μs -> 1.67μs (1908% faster)


def test_negative_bbox_coordinates():
    """Test: bbox with negative coordinates is handled (should be treated as normal)."""
    page_size = (1000, 1000)
    min_value = 1
    max_value = 100
    bbox = (-10, -10, 100, 100)
    # The diagonal is the same as (0,0,110,110)
    expected_diag = math.sqrt((100 - (-10)) ** 2 + (100 - (-10)) ** 2)
    page_diag = math.sqrt(page_size[0] ** 2 + page_size[1] ** 2)
    expected_ratio = expected_diag / page_diag
    # Compute expected value using the same linear fit
    coefficients = np.polyfit((0.01, 0.5), (min_value, max_value), 1)
    expected = int(expected_ratio * coefficients[0] + coefficients[1])
    expected = max(min_value, min(max_value, expected))
    codeflash_output = _get_optimal_value_for_bbox(bbox, page_size, min_value, max_value)
    result = codeflash_output  # 21.3μs -> 1.33μs (1496% faster)


def test_min_ratio_greater_than_max_ratio():
    """Test: If ratio_for_min_value > ratio_for_max_value, the function still works (reversed)."""
    page_size = (1000, 1000)
    min_value = 10
    max_value = 50
    ratio_for_min_value = 0.5
    ratio_for_max_value = 0.01
    # Use a ratio between the two
    page_diag = math.sqrt(page_size[0] ** 2 + page_size[1] ** 2)
    mid_ratio = (ratio_for_min_value + ratio_for_max_value) / 2
    bbox_diag = page_diag * mid_ratio
    side = bbox_diag / math.sqrt(2)
    bbox = (0, 0, int(side), int(side))
    codeflash_output = _get_optimal_value_for_bbox(
        bbox, page_size, min_value, max_value, ratio_for_min_value, ratio_for_max_value
    )
    result = codeflash_output  # 24.8μs -> 1.17μs (2023% faster)


def test_non_integer_bbox_and_page_size():
    """Test: bbox and page_size with float values are handled (should work as ints)."""
    page_size = (1000.0, 1000.0)
    min_value = 10
    max_value = 20
    ratio_for_min_value = 0.1
    ratio_for_max_value = 0.2
    page_diag = math.sqrt(page_size[0] ** 2 + page_size[1] ** 2)
    bbox_diag = page_diag * ratio_for_min_value
    side = bbox_diag / math.sqrt(2)
    bbox = (0.0, 0.0, side, side)
    codeflash_output = _get_optimal_value_for_bbox(
        bbox, page_size, min_value, max_value, ratio_for_min_value, ratio_for_max_value
    )
    result = codeflash_output  # 23.8μs -> 1.46μs (1528% faster)


# -------- LARGE SCALE TEST CASES --------


def test_many_bboxes_linear_increase():
    """Test: For many bboxes of increasing size, the output increases monotonically."""
    page_size = (1000, 1000)
    min_value = 5
    max_value = 25
    ratio_for_min_value = 0.01
    ratio_for_max_value = 0.5
    page_diag = math.sqrt(page_size[0] ** 2 + page_size[1] ** 2)
    prev_result = None
    # Test 100 bboxes from min_ratio to max_ratio
    for i in range(100):
        ratio = ratio_for_min_value + i * (ratio_for_max_value - ratio_for_min_value) / 99
        bbox_diag = page_diag * ratio
        side = bbox_diag / math.sqrt(2)
        bbox = (0, 0, int(side), int(side))
        codeflash_output = _get_optimal_value_for_bbox(
            bbox, page_size, min_value, max_value, ratio_for_min_value, ratio_for_max_value
        )
        result = codeflash_output  # 1.61ms -> 51.3μs (3030% faster)
        if prev_result is not None:
            pass
        prev_result = result


def test_large_page_and_bbox_sizes():
    """Test: Handles very large page and bbox sizes without overflow."""
    page_size = (10**6, 10**6)
    min_value = 1
    max_value = 1000
    ratio_for_min_value = 0.01
    ratio_for_max_value = 0.5
    page_diag = math.sqrt(page_size[0] ** 2 + page_size[1] ** 2)
    bbox_diag = page_diag * ratio_for_max_value
    side = bbox_diag / math.sqrt(2)
    bbox = (0, 0, int(side), int(side))
    codeflash_output = _get_optimal_value_for_bbox(
        bbox, page_size, min_value, max_value, ratio_for_min_value, ratio_for_max_value
    )
    result = codeflash_output  # 23.4μs -> 1.08μs (2062% faster)


def test_many_random_bboxes():
    """Test: Handles 500 random bboxes and returns values in [min_value, max_value]."""
    import random

    page_size = (1000, 1000)
    min_value = 10
    max_value = 100
    for _ in range(500):
        x1 = random.randint(0, 900)
        y1 = random.randint(0, 900)
        x2 = random.randint(x1, 1000)
        y2 = random.randint(y1, 1000)
        bbox = (x1, y1, x2, y2)
        codeflash_output = _get_optimal_value_for_bbox(bbox, page_size, min_value, max_value)
        result = codeflash_output  # 7.98ms -> 259μs (2981% faster)
# imports
from unstructured.partition.pdf_image.analysis.bbox_visualisation import _get_optimal_value_for_bbox

# unit tests

# BASIC TESTS


def test_basic_small_bbox():
    """Test with a small bbox, expect min_value returned."""
    bbox = (0, 0, 10, 10)
    page_size = (1000, 1000)
    min_value = 2
    max_value = 10
    # Small bbox so ratio is very small, should return min_value
    codeflash_output = _get_optimal_value_for_bbox(bbox, page_size, min_value, max_value)
    result = codeflash_output  # 34.8μs -> 1.79μs (1845% faster)


def test_basic_large_bbox():
    """Test with a large bbox, expect max_value returned."""
    bbox = (0, 0, 900, 900)
    page_size = (1000, 1000)
    min_value = 2
    max_value = 10
    # Large bbox so ratio is large, should return max_value
    codeflash_output = _get_optimal_value_for_bbox(bbox, page_size, min_value, max_value)
    result = codeflash_output  # 28.1μs -> 1.17μs (2310% faster)


def test_basic_mid_bbox():
    """Test with a mid-sized bbox, expect value between min and max."""
    bbox = (0, 0, 500, 500)
    page_size = (1000, 1000)
    min_value = 2
    max_value = 10
    codeflash_output = _get_optimal_value_for_bbox(bbox, page_size, min_value, max_value)
    result = codeflash_output  # 26.3μs -> 1.17μs (2155% faster)


def test_basic_non_square_bbox_and_page():
    """Test with non-square bbox and page."""
    bbox = (10, 20, 60, 120)
    page_size = (200, 400)
    min_value = 1
    max_value = 5
    codeflash_output = _get_optimal_value_for_bbox(bbox, page_size, min_value, max_value)
    result = codeflash_output  # 25.4μs -> 1.12μs (2156% faster)


def test_basic_min_equals_max():
    """Test when min_value == max_value, always return min_value/max_value."""
    bbox = (0, 0, 100, 100)
    page_size = (1000, 1000)
    min_value = max_value = 7
    codeflash_output = _get_optimal_value_for_bbox(bbox, page_size, min_value, max_value)
    result = codeflash_output  # 25.0μs -> 1.17μs (2048% faster)


# EDGE CASES


def test_edge_bbox_at_origin():
    """Test bbox at the origin (0,0,0,0), should return min_value."""
    bbox = (0, 0, 0, 0)
    page_size = (1000, 1000)
    min_value = 1
    max_value = 9
    codeflash_output = _get_optimal_value_for_bbox(bbox, page_size, min_value, max_value)
    result = codeflash_output  # 24.9μs -> 1.12μs (2115% faster)


def test_edge_bbox_equals_page():
    """Test bbox same as page, should return max_value."""
    page_size = (1000, 1000)
    bbox = (0, 0, 1000, 1000)
    min_value = 2
    max_value = 8
    codeflash_output = _get_optimal_value_for_bbox(bbox, page_size, min_value, max_value)
    result = codeflash_output  # 24.6μs -> 1.12μs (2085% faster)


def test_edge_negative_coordinates():
    """Test bbox with negative coordinates."""
    bbox = (-10, -10, 10, 10)
    page_size = (100, 100)
    min_value = 1
    max_value = 5
    codeflash_output = _get_optimal_value_for_bbox(bbox, page_size, min_value, max_value)
    result = codeflash_output  # 24.3μs -> 1.12μs (2063% faster)


def test_edge_min_greater_than_max():
    """Test with min_value > max_value, should always return min_value (clamped)."""
    bbox = (0, 0, 500, 500)
    page_size = (1000, 1000)
    min_value = 10
    max_value = 5
    codeflash_output = _get_optimal_value_for_bbox(bbox, page_size, min_value, max_value)
    result = codeflash_output  # 24.1μs -> 1.12μs (2044% faster)


def test_edge_ratio_for_min_equals_max():
    """Test with ratio_for_min_value == ratio_for_max_value, should handle gracefully."""
    bbox = (0, 0, 100, 100)
    page_size = (1000, 1000)
    min_value = 2
    max_value = 10
    # Both ratios are the same, polyfit will warn but should not crash
    codeflash_output = _get_optimal_value_for_bbox(bbox, page_size, min_value, max_value, 0.1, 0.1)
    result = codeflash_output  # 28.5μs -> 1.12μs (2433% faster)


def test_edge_bbox_width_or_height_zero():
    """Test bbox with zero width or height."""
    bbox = (10, 10, 10, 100)  # width zero
    page_size = (100, 100)
    min_value = 1
    max_value = 4
    codeflash_output = _get_optimal_value_for_bbox(bbox, page_size, min_value, max_value)
    result = codeflash_output  # 24.0μs -> 1.12μs (2037% faster)

    bbox = (10, 10, 100, 10)  # height zero
    codeflash_output = _get_optimal_value_for_bbox(bbox, page_size, min_value, max_value)
    result2 = codeflash_output  # 19.1μs -> 666ns (2765% faster)


def test_edge_small_page_large_bbox():
    """Test with a very small page and a large bbox."""
    bbox = (0, 0, 100, 100)
    page_size = (1, 1)
    min_value = 1
    max_value = 20
    codeflash_output = _get_optimal_value_for_bbox(bbox, page_size, min_value, max_value)
    result = codeflash_output  # 24.0μs -> 1.21μs (1883% faster)


def test_edge_large_page_small_bbox():
    """Test with a very large page and a small bbox."""
    bbox = (0, 0, 1, 1)
    page_size = (10000, 10000)
    min_value = 1
    max_value = 20
    codeflash_output = _get_optimal_value_for_bbox(bbox, page_size, min_value, max_value)
    result = codeflash_output  # 23.8μs -> 1.12μs (2018% faster)


def test_edge_float_values_for_ratios():
    """Test with custom float values for ratio_for_min_value and ratio_for_max_value."""
    bbox = (0, 0, 500, 500)
    page_size = (1000, 1000)
    min_value = 1
    max_value = 10
    codeflash_output = _get_optimal_value_for_bbox(
        bbox, page_size, min_value, max_value, 0.05, 0.25
    )
    result = codeflash_output  # 23.8μs -> 1.08μs (2097% faster)


def test_edge_non_integer_values():
    """Test with non-integer min/max values (should be int, but check type safety)."""
    bbox = (0, 0, 100, 100)
    page_size = (1000, 1000)
    # Should work, but output is always int
    codeflash_output = _get_optimal_value_for_bbox(bbox, page_size, 2.7, 9.3)
    result = codeflash_output  # 23.7μs -> 1.46μs (1526% faster)


# LARGE SCALE TESTS


def test_large_scale_many_bboxes():
    """Test with many bboxes and pages to check performance and correctness."""
    page_size = (1000, 1000)
    min_value = 1
    max_value = 20
    # 1000 bboxes, increasing size
    for i in range(1, 1001, 100):
        bbox = (0, 0, i, i)
        codeflash_output = _get_optimal_value_for_bbox(bbox, page_size, min_value, max_value)
        result = codeflash_output  # 176μs -> 6.16μs (2762% faster)


def test_large_scale_maximum_bbox():
    """Test with bbox at the maximum allowed by a large page."""
    page_size = (9999, 9999)
    bbox = (0, 0, 9999, 9999)
    min_value = 1
    max_value = 100
    codeflash_output = _get_optimal_value_for_bbox(bbox, page_size, min_value, max_value)
    result = codeflash_output  # 23.5μs -> 1.12μs (1989% faster)


def test_large_scale_random_bboxes():
    """Test with random bboxes and page sizes (deterministic with fixed seed)."""
    import random

    random.seed(42)
    min_value = 1
    max_value = 50
    for _ in range(50):
        w = random.randint(100, 1000)
        h = random.randint(100, 1000)
        x1 = random.randint(0, w // 2)
        y1 = random.randint(0, h // 2)
        x2 = random.randint(x1, w)
        y2 = random.randint(y1, h)
        bbox = (x1, y1, x2, y2)
        page_size = (w, h)
        codeflash_output = _get_optimal_value_for_bbox(bbox, page_size, min_value, max_value)
        result = codeflash_output  # 816μs -> 27.1μs (2919% faster)


def test_large_scale_extreme_ratios():
    """Test with extreme ratio_for_min_value and ratio_for_max_value."""
    bbox = (0, 0, 500, 500)
    page_size = (1000, 1000)
    min_value = 1
    max_value = 100
    # Very small ratio for min, very large for max
    codeflash_output = _get_optimal_value_for_bbox(
        bbox, page_size, min_value, max_value, 0.0001, 0.9999
    )
    result = codeflash_output  # 23.4μs -> 1.08μs (2056% faster)


def test_large_scale_dense_grid():
    """Test a dense grid of bboxes over the page."""
    page_size = (1000, 1000)
    min_value = 1
    max_value = 10
    step = 200
    for x1 in range(0, 801, step):
        for y1 in range(0, 801, step):
            x2 = x1 + step
            y2 = y1 + step
            bbox = (x1, y1, min(x2, 1000), min(y2, 1000))
            codeflash_output = _get_optimal_value_for_bbox(bbox, page_size, min_value, max_value)
            result = codeflash_output


# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

To edit these changes git checkout codeflash/optimize-_get_optimal_value_for_bbox-mjdl64kx and push.

Codeflash Static Badge

The optimized code achieves a **2882% speedup** by applying two key optimizations:

**1. Numba JIT Compilation:**
Added `@njit(cache=True, fastmath=True)` decorators to `_get_bbox_to_page_ratio` and the new `_linear_polyfit_2point` functions. Numba compiles these Python functions to machine code, eliminating interpreter overhead and providing near-C performance for numerical computations.

**2. Replaced NumPy's General-Purpose Linear Regression:**
The original code used `np.polyfit()` for simple 2-point linear interpolation, which is overkill and involves significant overhead. The optimization replaces this with a custom `_linear_polyfit_2point` function that directly computes slope and intercept using basic arithmetic: `slope = (y1-y0)/(x1-x0)` and `intercept = y0 - slope*x0`. This eliminates the overhead of NumPy's general polynomial fitting algorithm.

**Performance Impact:**
From the line profiler results, the original `np.polyfit` call consumed 86.5% of execution time (24.7ms out of 28.6ms total). The optimized version reduces this to just 15.2% of a much smaller total runtime. The first call to each JIT-compiled function includes compilation overhead, but subsequent calls benefit from cached machine code.

**Real-World Benefits:**
Based on function references, `_get_optimal_value_for_bbox` is called by `get_bbox_text_size` and `get_bbox_thickness` for PDF visualization. These functions likely process many bounding boxes during document analysis, making the 20x+ speedup significant for document processing pipelines.

**Test Case Performance:**
The optimizations excel across all test scenarios, showing 15-30x speedups for individual calls and even higher gains (30x) for bulk processing tests with many bounding boxes, demonstrating the value of JIT compilation for repeated computational workloads.
@codeflash-ai codeflash-ai bot requested a review from aseembits93 December 20, 2025 00:55
@codeflash-ai codeflash-ai bot added ⚡️ codeflash Optimization PR opened by Codeflash AI 🎯 Quality: High Optimization Quality according to Codeflash labels Dec 20, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI 🎯 Quality: High Optimization Quality according to Codeflash

Projects

None yet

Development

Successfully merging this pull request may close these issues.

1 participant