A specialized data migration framework designed for compliance auditors overseeing data migrations in regulated industries. This framework provides comprehensive evidence collection, cryptographic proof of data lineage, and detailed transformation tracking to meet stringent regulatory requirements.
- Immutable audit logs with SHA-256 hash chains
- Digital signatures using RSA-PSS for non-repudiation
- Tamper detection to ensure log integrity
- Timestamp proofs for regulatory compliance
- Complete visibility into data flow from source to destination
- Transformation tracking with detailed operation logs
- Impact analysis to understand downstream effects
- Visual lineage graphs for audit presentations
- Multi-framework support: GDPR, SOX, HIPAA, Basel III, PCI-DSS, CCPA
- Real-time validation of data operations
- Configurable rules with severity levels
- Violation tracking and remediation workflows
- Automated evidence collection for audit submissions
- Multiple export formats: JSON, XBRL, HTML
- Cryptographic proofs included in packages
- Regulatory-compliant formatting
- Role-based access control (RBAC)
- Time-based restrictions for business hours
- Attribute-based policies for fine-grained control
- Complete access audit trail
# Clone the repository
git clone <repository-url>
cd data_migration_framework_compliance_auditor
# Create virtual environment
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
# Install the package
pip install -e .
# Install development dependencies
pip install -e ".[dev]"from pymigrate import AuditLogger, LineageTracker, ComplianceRuleEngine
from pymigrate.audit import InMemoryAuditStorage
from pymigrate.models import OperationType, ComplianceFramework
# Initialize components
storage = InMemoryAuditStorage()
audit_logger = AuditLogger(storage)
lineage_tracker = LineageTracker(audit_logger)
compliance_engine = ComplianceRuleEngine()
# Log an audit event
event = audit_logger.log_event(
actor="data_engineer",
operation=OperationType.WRITE,
resource="customer_database",
details={"action": "export", "record_count": 1000}
)
# Track data lineage
source = lineage_tracker.create_source_node(
name="Customer Database",
metadata={"type": "postgresql"},
actor="data_engineer"
)
# Validate compliance
result = compliance_engine.validate_data_operation(
operation_type="read",
data={"contains_pii": True},
context={"is_encrypted": True},
frameworks=[ComplianceFramework.GDPR]
)from datetime import datetime
import pytz
from pymigrate import (
AuditLogger, LineageTracker, ComplianceRuleEngine,
EvidencePackageCompiler, AccessControlManager
)
from pymigrate.models import AccessLevel, ComplianceFramework
# Set up framework
storage = InMemoryAuditStorage()
audit_logger = AuditLogger(storage)
lineage_tracker = LineageTracker(audit_logger)
compliance_engine = ComplianceRuleEngine(audit_logger=audit_logger)
access_manager = AccessControlManager(audit_logger=audit_logger)
evidence_compiler = EvidencePackageCompiler(
audit_logger, storage, lineage_tracker, compliance_engine
)
# 1. Grant access for migration
access_manager.grant_access(
principal="migration_service",
resource="production_database",
permissions={AccessLevel.READ, AccessLevel.WRITE},
granted_by="data_admin"
)
# 2. Create lineage for source data
source = lineage_tracker.create_source_node(
"Production Database",
metadata={"schema": "public", "tables": ["customers", "orders"]},
actor="migration_service"
)
# 3. Start and track transformation
transform_id = "migration_001"
lineage_tracker.start_transformation(
transform_id, [source.node_id], "data_cleansing", "migration_service"
)
lineage_tracker.record_transformation_operation(
transform_id, "anonymize_pii",
{"fields": ["email", "phone"], "method": "hash"}
)
# 4. Complete transformation
output = lineage_tracker.complete_transformation(
transform_id, "Cleaned Data", {"quality_score": 0.98}
)
# 5. Create destination
destination = lineage_tracker.create_destination_node(
"Data Warehouse", [output.node_id], "snowflake",
metadata={"database": "analytics"},
actor="migration_service"
)
# 6. Generate evidence package
package = evidence_compiler.compile_package(
purpose="Q4 2023 Data Migration Audit",
framework=ComplianceFramework.SOX,
start_date=datetime(2023, 10, 1, tzinfo=pytz.UTC),
end_date=datetime(2023, 12, 31, tzinfo=pytz.UTC),
created_by="compliance_officer"
)
# 7. Export evidence
evidence_compiler.export_package(
package, "/path/to/output",
formats=["json", "xbrl", "html"]
)# Create immutable audit events
event = audit_logger.log_event(
actor="username",
operation=OperationType.WRITE,
resource="resource_name",
details={"key": "value"},
timestamp=datetime.now(pytz.UTC) # Optional
)
# Verify event integrity
is_valid = audit_logger.verify_event(event)
# Verify entire chain
chain_valid = audit_logger.verify_chain_integrity()# Create lineage nodes
source = lineage_tracker.create_source_node("Data Source")
transform = lineage_tracker.create_transformation_node(
"Transform", [source.node_id], "filter"
)
dest = lineage_tracker.create_destination_node(
"Destination", [transform.node_id], "database"
)
# Analyze lineage
lineage_info = lineage_tracker.get_node_lineage(dest.node_id)
sources = lineage_tracker.find_data_sources(dest.node_id)
impact = lineage_tracker.graph.get_impact_analysis(source.node_id)# Validate operations
result = compliance_engine.validate_data_operation(
operation_type="write",
data={"field": "value"},
context={"actor": "user", "is_encrypted": True},
frameworks=[ComplianceFramework.GDPR]
)
# Generate compliance reports
report = compliance_engine.generate_compliance_report(
framework=ComplianceFramework.GDPR,
start_time=start_date,
end_time=end_date
)
# Track remediation
compliance_engine.update_violation_status(
violation_id, "REMEDIATED",
{"action": "Data encrypted"}
)# Grant access
ace = access_manager.grant_access(
principal="user",
resource="resource",
permissions={AccessLevel.READ},
granted_by="admin",
expires_at=datetime.now(pytz.UTC) + timedelta(days=30)
)
# Check access
allowed = access_manager.check_access(
"user", "resource", AccessLevel.READ,
context={"roles": ["analyst"]}
)
# Review access
report = access_manager.perform_access_review("auditor")Run the test suite:
# Run all tests
pytest
# Run with coverage
pytest --cov=pymigrate --cov-report=html
# Run specific test file
pytest tests/test_audit_logger.py
# Run with JSON report (required for submission)
pytest --json-report --json-report-file=pytest_results.json- Audit Log Performance: <10ms latency per event, supports 1M+ events/day
- Lineage Graph: Handles complex graphs with 1000s of nodes
- Compliance Validation: 1000 rules/second evaluation rate
- Evidence Package: Compiles 1GB packages in <5 minutes
- All audit events are cryptographically signed
- Hash chains prevent tampering with historical records
- Access control decisions are logged and auditable
- Sensitive data is identified and encryption is enforced
- Evidence packages include cryptographic proofs
- Fork the repository
- Create a feature branch
- Make your changes
- Run tests to ensure everything passes
- Submit a pull request
This project is licensed under the MIT License - see the LICENSE file for details.
For questions or issues, please open an issue on the GitHub repository.