Skip to content

code-refactor/code_pattern_detector_performance_engineer

Repository files navigation

PyPatternGuard - Performance Pattern Detection Engine

A specialized code pattern detection system designed for performance engineers to identify code patterns that impact application performance. PyPatternGuard detects inefficient algorithms, resource-intensive operations, and performance anti-patterns before they reach production.

Features

  • Algorithm Complexity Analysis: Detects Big O notation complexity for functions
  • Memory Leak Detection: Identifies circular references and missing resource cleanup
  • Database Pattern Analysis: Finds N+1 queries and inefficient database operations
  • Concurrency Analysis: Detects race conditions and thread safety issues
  • Performance Regression Tracking: Compares performance metrics across code versions

Installation

From Source

# Clone the repository
git clone <repository-url>
cd pypatternguard

# Install in development mode
pip install -e .

# Or install with development dependencies
pip install -e ".[dev]"

Requirements

  • Python 3.8 or higher
  • No external dependencies for core functionality
  • pytest and pytest-json-report for running tests

Usage

Command Line Interface

Analyze a single file:

pypatternguard path/to/file.py

Analyze an entire directory:

pypatternguard path/to/project/

Analysis Options

# Run specific analysis type
pypatternguard path/to/code --analyze complexity
pypatternguard path/to/code --analyze memory
pypatternguard path/to/code --analyze database
pypatternguard path/to/code --analyze concurrency
pypatternguard path/to/code --analyze regression

# Filter by severity
pypatternguard path/to/code --severity high

# Output in JSON format
pypatternguard path/to/code --output json

# Update performance baseline
pypatternguard path/to/project --analyze regression --baseline

Python API

from pypatternguard import (
    ComplexityAnalyzer,
    MemoryLeakDetector,
    DatabasePatternAnalyzer,
    ConcurrencyAnalyzer,
    PerformanceRegressionTracker
)

# Analyze complexity
analyzer = ComplexityAnalyzer()
results = analyzer.analyze_file("example.py")
for result in results:
    print(f"{result.function_name}: {result.time_complexity}")

# Detect memory leaks
detector = MemoryLeakDetector()
issues = detector.analyze_file("example.py")
for issue in issues:
    print(f"{issue.leak_type}: {issue.description}")

# Track performance regressions
tracker = PerformanceRegressionTracker()
regressions = tracker.analyze_codebase("./src")
for regression in regressions:
    print(f"{regression.function_name}: {regression.description}")

Analysis Types

Complexity Analysis

Detects algorithmic complexity patterns:

  • O(1) - Constant time
  • O(log n) - Logarithmic
  • O(n) - Linear
  • O(n log n) - Linearithmic
  • O(n²) - Quadratic
  • O(n³) - Cubic
  • O(2ⁿ) - Exponential
  • O(n!) - Factorial

Memory Leak Detection

Identifies:

  • Circular references between objects
  • Missing cleanup in __del__ methods
  • Unbounded global cache growth
  • Generator exhaustion issues
  • Event listener leaks

Database Pattern Analysis

Detects:

  • N+1 query problems
  • Missing bulk operations
  • Inefficient pagination
  • Missing index usage
  • Excessive joins
  • Unbounded result sets

Supports Django, SQLAlchemy, Peewee, and generic SQL patterns.

Concurrency Analysis

Finds:

  • Race conditions in shared state access
  • Potential deadlocks from lock ordering
  • Missing synchronization
  • Blocking operations in async contexts
  • Thread-unsafe operations

Performance Regression Tracking

Monitors:

  • Complexity increases across versions
  • New inefficiencies introduced
  • Removed optimizations
  • Resource usage increases
  • Concurrency degradation

Examples

Example 1: Detecting O(n²) Complexity

# Input code
def find_duplicates(items):
    duplicates = []
    for i in range(len(items)):
        for j in range(i + 1, len(items)):
            if items[i] == items[j]:
                duplicates.append(items[i])
    return duplicates

# PyPatternGuard output:
# find_duplicates: O(n²) time complexity
# Recommendation: Consider using a set or dictionary for O(n) solution

Example 2: Finding N+1 Queries

# Input code
def get_user_orders(users):
    for user in users:
        orders = Order.objects.filter(user=user).all()
        print(f"{user.name}: {len(orders)}")

# PyPatternGuard output:
# N+1 Query Problem detected at line 3
# Recommendation: Use select_related() or prefetch_related()

Example 3: Detecting Race Conditions

# Input code
counter = 0

def increment():
    global counter
    counter += 1  # Race condition!

# PyPatternGuard output:
# Race Condition: Unprotected shared state mutation
# Recommendation: Use threading.Lock or atomic operations

Running Tests

Install test dependencies:

pip install pytest pytest-json-report

Run all tests:

pytest

Run with coverage:

pytest --cov=pypatternguard

Generate JSON test report:

pytest --json-report --json-report-file=pytest_results.json

Configuration

PyPatternGuard stores performance baselines in .performance_baseline.json in your project root. This file is used for regression tracking and should be committed to version control.

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Add tests for new functionality
  4. Ensure all tests pass
  5. Submit a pull request

License

This project is licensed under the MIT License.

Support

For issues and feature requests, please use the GitHub issue tracker.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages