Note: This package requires Bun runtime. It uses Bun-specific features and TypeScript imports.
A TypeScript library for building controllable AI agents using Vercel AI SDK. This is a reimplementation of deepagentsjs without any LangChain/LangGraph dependencies.
Using an LLM to call tools in a loop is the simplest form of an agent. This architecture, however, can yield agents that are "shallow" and fail to plan and act over longer, more complex tasks.
Deep Agent addresses these limitations through four core architectural components:
| Component | Purpose | Implementation |
|---|---|---|
| Planning Tool | Long-term task breakdown and tracking | write_todos for maintaining task lists |
| Sub Agents | Task delegation and specialization | task tool for spawning specialized agents |
| File System Access | Persistent state and information storage | Virtual filesystem with read_file, write_file, edit_file |
| Detailed Prompts | Context-aware instructions | Sophisticated prompting strategies |
This package requires Bun runtime:
# Install Bun if you haven't already
curl -fsSL https://bun.sh/install | bash
# Install the package
bun add deepagentsdk
# Or install globally for CLI usage
bun add -g deepagentsdkWhy Bun? This package publishes TypeScript source directly and uses Bun-specific optimizations for better performance.
import { createDeepAgent } from 'deepagentsdk';
import { anthropic } from '@ai-sdk/anthropic';
const agent = createDeepAgent({
model: anthropic('claude-sonnet-4-5-20250929'),
systemPrompt: 'You are an expert researcher.',
});
const result = await agent.generate({
prompt: 'Research the topic of quantum computing and write a report',
});
console.log(result.text);
console.log('Todos:', result.state.todos);
console.log('Files:', Object.keys(result.state.files));Deep agents can return typed, validated objects using Zod schemas alongside text responses:
import { z } from 'zod';
const agent = createDeepAgent({
model: anthropic('claude-sonnet-4-5-20250929'),
output: {
schema: z.object({
summary: z.string(),
keyPoints: z.array(z.string()),
}),
description: 'Research findings',
},
});
const result = await agent.generate({
prompt: "Research latest AI developments",
});
console.log(result.output?.summary); // string
console.log(result.output?.keyPoints); // string[]Stream responses with real-time events for tool calls, file operations, and more:
for await (const event of agent.streamWithEvents({
prompt: 'Build a todo app',
})) {
switch (event.type) {
case 'text':
process.stdout.write(event.text);
break;
case 'tool-call':
console.log(`Calling: ${event.toolName}`);
break;
case 'file-written':
console.log(`Written: ${event.path}`);
break;
}
}- Planning:
write_todosfor task management - Filesystem:
read_file,write_file,edit_file,ls,glob,grep - Web:
web_search,http_request,fetch_url(requires Tavily API key) - Execute: Shell command execution with
LocalSandboxbackend - Subagents: Spawn specialized agents for complex subtasks
For comprehensive guides, API reference, and examples, visit deepagentsdk.vercel.app/docs
- Get Started - Installation and basic setup
- Guides - In-depth tutorials on:
- Configuration options (models, backends, middleware)
- Custom tools and subagents
- Agent memory and persistence
- Prompt caching and conversation summarization
- Web tools and API integration
- Reference - Complete API documentation
The interactive CLI is built with Ink:
# Run without installing (recommended)
bunx deepagentsdk
# Or install globally
bun add -g deepagentsdk
deep-agent
# With options
bunx deepagentsdk --model anthropic/claude-haiku-4-5-20251001API Keys: Load from environment variables (ANTHROPIC_API_KEY, OPENAI_API_KEY, TAVILY_API_KEY) or .env file.
MIT
