Skip to content

ccprocessor/web2json-agent

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

211 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

🌐 web2json-agent

Stop Coding Scrapers, Start Getting Data β€” from Hours to Seconds

Python LangChain OpenAI PyPI

English | δΈ­ζ–‡


πŸ“– What is web2json-agent?

An AI-powered web scraping agent that automatically generates production-ready parser code from HTML samples β€” no manual XPath/CSS selector writing required.


πŸ“‹ Demo

20260120204054.mp4

πŸ“Š SWDE Benchmark Results

The SWDE dataset covers 8 vertical fields, 80 websites, and 124,291 pages

Precision Recall F1 Score
COT 87.75 79.90 76.95
Reflexion 93.28 82.76 82.40
AUTOSCRAPER 92.49 89.13 88.69
Web2JSON-Agent 91.50 90.46 89.93

πŸš€ Quick Start

Install via pip

# 1. Install package
pip install web2json-agent

# 2. Initialize configuration
web2json setup

Install for Developers

# 1. Clone the repository
git clone https://github.com/ccprocessor/web2json-agent
cd web2json-agent

# 2. Install in editable mode
pip install -e .

# 3. Initialize configuration
web2json setup

πŸ“š Complete User Guide

For a comprehensive tutorial covering installation, configuration, and all usage scenarios, see:

πŸ“– Web2JSON-Agent Complete User Guide (δΈ­ζ–‡)

This guide includes:

  • Detailed installation steps
  • Configuration methods (interactive wizard, config file, environment variables)
  • Layout clustering for mixed HTML types
  • Complete API examples and use cases
  • FAQ and troubleshooting

🐍 API Usage

Web2JSON provides five simple APIs. Perfect for databases, APIs, and real-time processing!

API 1: extract_data - Complete Workflow

Extract structured data from HTML in one step (schema + parser + data).

Auto Mode - Let AI automatically discover and extract fields:

from web2json import Web2JsonConfig, extract_data

config = Web2JsonConfig(
    name="my_project",
    html_path="html_samples/",
    # save=['schema', 'code', 'data'],  # Save to local disk
    # output_path="./results",  # Custom output directory (default: "output")
)

result = extract_data(config)

# Results are always returned in memory
print(result.final_schema)        # Dict: extracted schema
print(result.parser_code)          # str: generated parser code
print(result.parsed_data[0])       # List[Dict]: parsed JSON data

Predefined Mode - Extract only specific fields:

from web2json import Web2JsonConfig, extract_data

config = Web2JsonConfig(
    name="articles",
    html_path="html_samples/",
    schema={
        "title": "string",
        "author": "string",
        "date": "string",
        "content": "string"
    },
    # save=['schema', 'code', 'data'],  # Save to local disk
    # output_path="./results",  # Custom output directory
)

result = extract_data(config)
# Returns: ExtractDataResult with schema, code, and data in memory

API 2: extract_schema - Extract Schema Only

Generate a JSON schema describing the data structure in HTML.

from web2json import Web2JsonConfig, extract_schema

config = Web2JsonConfig(
    name="schema_only",
    html_path="html_samples/",
    # save=['schema'],  # Save schema to disk
    # output_path="./schemas",  # Custom output directory
)

result = extract_schema(config)

print(result.final_schema)         # Dict: final schema
print(result.intermediate_schemas) # List[Dict]: iteration history

API 3: infer_code - Generate Parser Code

Generate parser code from a schema (Dict or from previous step).

from web2json import Web2JsonConfig, infer_code

# Use schema from previous step or define manually
my_schema = {
    "title": "string",
    "author": "string",
    "content": "string"
}

config = Web2JsonConfig(
    name="my_parser",
    html_path="html_samples/",
    schema=my_schema,
    # save=['code'],  # Save parser code and schema to disk
    # output_path="./parsers",  # Custom output directory
)

result = infer_code(config)

print(result.parser_code)  # str: BeautifulSoup parser code
print(result.schema)       # Dict: schema used

API 4: extract_data_with_code - Parse with Code

Use parser code to extract data from HTML files.

from web2json import Web2JsonConfig, extract_data_with_code

config = Web2JsonConfig(
    name="parse_demo",
    html_path="new_html_files/",
    parser_code="output/blog/parsers/final_parser.py",  # Path to parser .py file
    save=['data'],  # Save parsed data to disk
    output_path="./parse_results",  # Custom output directory
)

result = extract_data_with_code(config)

print(f"Success: {result.success_count}, Failed: {result.failed_count}")
for item in result.parsed_data:
    print(f"File: {item['filename']}")
    print(f"Data: {item['data']}")

API 5: classify_html_dir - Classify HTML by Layout

Group HTML files by layout similarity (for mixed-layout datasets).

from web2json import Web2JsonConfig, classify_html_dir

config = Web2JsonConfig(
    name="classify_demo",
    html_path="mixed_html/",
    # save=['report', 'files'],  # Save cluster report and copy files to subdirectories
    # output_path="./cluster_analysis",  # Custom output directory
)

result = classify_html_dir(config)

print(f"Found {result.cluster_count} layout types")
print(f"Noise files: {len(result.noise_files)}")

for cluster_name, files in result.clusters.items():
    print(f"{cluster_name}: {len(files)} files")
    for file in files[:3]:
        print(f"  - {file}")

Configuration Reference

Web2JsonConfig Parameters:

Parameter Type Default Description
name str Required Project name (for identification)
html_path str Required HTML directory or file path
output_path str "output" Output directory (used when save is specified)
iteration_rounds int 3 Number of samples for learning
schema Dict None Predefined schema (None = auto mode)
enable_schema_edit bool False Enable manual schema editing
parser_code str None Parser code (for extract_data_with_code)
save List[str] None Items to save locally (e.g., ['schema', 'code', 'data']). None = memory only

Standalone API Parameters:

API Parameters Returns
extract_data config: Web2JsonConfig ExtractDataResult
extract_schema config: Web2JsonConfig ExtractSchemaResult
infer_code config: Web2JsonConfig InferCodeResult
extract_data_with_code config: Web2JsonConfig ParseResult
classify_html_dir config: Web2JsonConfig ClusterResult

All result objects provide:

  • Direct access to data via object attributes
  • .to_dict() method for serialization
  • .get_summary() method for quick stats

Which API Should I Use?

# Need data immediately? β†’ extract_data
config = Web2JsonConfig(name="my_run", html_path="html_samples/")
result = extract_data(config)
print(result.parsed_data)

# Want to review/edit schema first? β†’ extract_schema + infer_code
config = Web2JsonConfig(name="schema_run", html_path="html_samples/")
schema_result = extract_schema(config)

# Edit schema if needed, then generate code
config = Web2JsonConfig(
    name="code_run",
    html_path="html_samples/",
    schema=schema_result.final_schema
)
code_result = infer_code(config)

# Parse with the generated code
config = Web2JsonConfig(
    name="parse_run",
    html_path="new_html_files/",
    parser_code=code_result.parser_code
)
data_result = extract_data_with_code(config)

# Have parser code, need to parse more files? β†’ extract_data_with_code
config = Web2JsonConfig(
    name="parse_more",
    html_path="more_files/",
    parser_code=my_parser_code
)
result = extract_data_with_code(config)

# Mixed layouts (list + detail pages)? β†’ classify_html_dir
config = Web2JsonConfig(name="classify", html_path="mixed_html/")
result = classify_html_dir(config)

πŸ“„ License

Apache-2.0 License


Made with ❀️ by the web2json-agent team

⭐ Star us on GitHub | πŸ› Report Issues | πŸ“– Documentation

About

Web Structured Data Extraction Agent

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 5