Skip to content

ccdsiub/ml-essentials

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

27 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Machine Learning Essentials

This repository contains the course materials and resources for the Machine Learning Essentials course.

Course Description

This course is designed to provide a beginner-friendly introduction to machine learning. It is intended for those who are new to machine learning, but have some experience with programming. The course will cover the following topics:

  • Feature engineering and data preprocessing
    • Data Imputation
      • Numerical
      • Categorical
    • Data Scaling
      • Standardization
      • Normalization
    • Data Encoding
      • One-hot encoding
      • Label encoding
    • Handling Outliers
      • Removing outliers
      • Replacing outliers
      • Capping outliers
      • Discretization
    • Grouping Operations
      • Categorical columns
      • Numerical columns
    • Feature Split
    • Log Transform
    • Binning
    • Scrubbing
    • Generating Polynomial and Interaction Features
  • Supervised learning
    • Tree-based models
      • Decision Trees
      • Ensemble Methods
        • Bagging
          • Random Forests
        • Boosting
          • AdaBoost
          • Gradient Boosting
          • XGBoost
        • voting
    • Regression
      • Simple Linear Regression
      • Multiple Linear Regression
      • Polynomial Interpolation
      • Ordinary Least Square Regression
      • Ridge Regression
      • Lasso Regression
    • Classification
      • Logistic Regression
      • K-Nearest Neighbors
      • Support Vector Machines
      • Naive Bayes
      • Artificial Neural Networks
  • Unsupervised learning
    • Clustering
      • K-Means
      • Hierarchical Clustering
    • Dimensionality Reduction
      • Principal Component Analysis
      • Random Projection
    • Association Rule Learning
      • Apriori
      • FP-Growth
  • Model Selection
    • Resampling Methods
      • Random Split
      • Time Based Split
      • K-Fold Cross Validation
      • Stratified K-Fold Cross Validation
      • Bootstrapping
    • Probabilistic Methods
      • Akaiki Information Criterion
      • Bayesian Information Criterion
      • Minimum Description Length
      • Structural Risk Minimization
    • Trade Off Methods
      • Bias-Variance Trade Off
      • Precision-Recall Trade Off
      • Overfitting vs Underfitting
  • Model Evaluation
    • Regression Metrics
      • Mean Absolute Error
      • Mean Squared Error
      • Root Mean Squared Error
      • Relative Squared Log Error
      • R2 Score
      • Adjusted R2 Score
    • Classification Metrics
      • Accuracy
      • Precision
      • Recall
      • F1 Score
      • ROC Curve
      • AUC Score
      • Log Loss
      • Confusion Matrix
      • Gain and Lift Charts
      • Kolmogorov-Smirnov Chart
    • Clustering Metrics
      • Dunn Index
      • Silhouette Coefficient
      • Elbow Method
      • Devis-Bouldin Index
      • Fowlkes-Mallows Index
      • Homegeneity, Completeness, and V-Measure
      • Mutual Information
    • Dimensionality Reduction Metrics
      • Reconstruction Error
      • Explained Variance Ratio
    • Association Rule Learning Metrics
      • Support
      • Confidence
      • Lift
      • Leverage
      • Conviction

Recommended Packages

The following packages are required for this course:

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages