Launch your future with AI-powered college and career tools.
Launch Kit is a comprehensive suite of AI-powered tools designed to help high school and college students navigate their academic and professional journeys. The platform combines intelligent college search capabilities with automated networking and outreach tools.
graph TB
subgraph "๐ Launch Kit - Complete Project Architecture"
subgraph "๐ค User Interface Layer"
UI1["๐ Next.js Web Application<br/>Port: 3000"]
UI2["๐ Curation Tab<br/>โข Upload Resume & LinkedIn<br/>โข Add Target URLs<br/>โข Select Personalizations<br/>โข Review & Edit Emails"]
UI3["๐ Tracking Tab<br/>โข Monitor Sent Emails<br/>โข View Responses<br/>โข Analytics Dashboard<br/>โข Success Metrics"]
UI4["โ๏ธ Settings Tab<br/>โข Profile Management<br/>โข Email Templates<br/>โข Integration Settings<br/>โข Preferences"]
UI5["๐ College Search<br/>โข Natural Language Queries<br/>โข Smart Recommendations<br/>โข Filter & Compare<br/>โข Save Favorites"]
UI1 --> UI2
UI1 --> UI3
UI1 --> UI4
UI1 --> UI5
end
subgraph "๐ Workflow Orchestration - n8n"
N8N1["๐ง Email Generation Workflow<br/>โข Profile Processing Pipeline<br/>โข Personalization Engine<br/>โข Quality Assurance<br/>โข Batch Processing"]
N8N2["๐ Tracking Workflow<br/>โข Email Status Updates<br/>โข Response Detection<br/>โข Analytics Collection<br/>โข Learning Data Prep"]
N8N3["๐ Profile Processing Workflow<br/>โข LinkedIn Data Extraction<br/>โข Company Research<br/>โข Connection Mapping<br/>โข Data Validation"]
N8N1 <--> N8N2
N8N1 <--> N8N3
end
subgraph "๐ค A2A AI Agents Ecosystem"
subgraph "๐ Analysis Agents"
A1["๐ Profile Analysis Agent<br/>โข LinkedIn Profile Parsing<br/>โข Skill Extraction<br/>โข Experience Analysis<br/>โข Activity Monitoring<br/>Input: LinkedIn URLs<br/>Output: Structured Profile Data"]
A2["๐ค User Context Agent<br/>โข Resume PDF Processing<br/>โข Background Analysis<br/>โข Expertise Mapping<br/>โข Goal Identification<br/>Input: Resume, LinkedIn<br/>Output: User Profile Context"]
A3["๐ข Company Research Agent<br/>โข Company Intelligence<br/>โข Recent News & Updates<br/>โข Culture Analysis<br/>โข Industry Insights<br/>Input: Company Names<br/>Output: Company Intelligence"]
end
subgraph "๏ฟฝ๏ฟฝ Intelligence Agents"
A4["๐ Connection Mapping Agent<br/>โข Find Common Ground<br/>โข Shared Experiences<br/>โข Mutual Connections<br/>โข Interest Overlaps<br/>Input: User + Target Profiles<br/>Output: Connection Points"]
A5["โ๏ธ Email Composition Agent<br/>โข Personalized Content<br/>โข Subject Line Generation<br/>โข Tone Adaptation<br/>โข Template Selection<br/>Input: All Profile Data<br/>Output: Draft Emails"]
A6["โ
Quality Assurance Agent<br/>โข Content Review<br/>โข Personalization Check<br/>โข Spam Score Analysis<br/>โข Tone Validation<br/>Input: Draft Emails<br/>Output: Quality Scores"]
end
subgraph "๐ฏ Learning & Optimization"
A7["๐ง Learning AI Agent<br/>โข Performance Analysis<br/>โข Pattern Recognition<br/>โข Success Prediction<br/>โข Recommendation Engine<br/>Input: Interaction Data<br/>Output: Optimization Insights"]
A8["๐ Campaign Management Agent<br/>โข Send Queue Management<br/>โข Timing Optimization<br/>โข Follow-up Scheduling<br/>โข Response Tracking<br/>Input: Email Campaigns<br/>Output: Campaign Analytics"]
end
end
subgraph "๐๏ธ Data Storage Layer"
subgraph "๐ Supabase Infrastructure"
DB1["๐ฅ User Profiles Table<br/>โข Authentication Data<br/>โข LinkedIn URLs<br/>โข Resume References<br/>โข Preferences & Settings"]
DB2["๐ Contact Profiles Table<br/>โข LinkedIn Profile Cache<br/>โข Company Information<br/>โข Last Scraped Timestamps<br/>โข Profile Embeddings"]
DB3["๐ง Email Campaigns Table<br/>โข Campaign Metadata<br/>โข Target Lists<br/>โข Status Tracking<br/>โข Generated Content"]
DB4["๐ Email Interactions Table<br/>โข Send Events<br/>โข Open Tracking<br/>โข Response Data<br/>โข Learning Metrics"]
DB5["๐ง Learning Patterns Table<br/>โข Success Patterns<br/>โข Optimization Rules<br/>โข A/B Test Results<br/>โข Performance Insights"]
ST1["๐ Supabase Storage<br/>โข user-resumes/<br/>โข profile-cache/<br/>โข email-assets/<br/>โข learning-models/"]
end
subgraph "๐ฅ College AI - Firestore"
FS1["๐ Colleges Collection<br/>โข College Metadata<br/>โข Descriptions & Details<br/>โข Vector Embeddings<br/>โข Search Indices"]
FS2["๐ College Analytics<br/>โข Search Queries<br/>โข User Preferences<br/>โข Recommendation Data<br/>โข Usage Statistics"]
end
end
subgraph "๏ฟฝ๏ฟฝ External Integrations"
EXT1["๐ผ LinkedIn API<br/>โข Profile Data Extraction<br/>โข Company Information<br/>โข Connection Data<br/>โข Activity Updates"]
EXT2["๐ง Email Services<br/>โข Gmail API<br/>โข Outlook API<br/>โข SendGrid<br/>โข Email Tracking"]
EXT3["๐ค AI Language Models<br/>โข OpenAI GPT-4<br/>โข Anthropic Claude<br/>โข Google Gemini<br/>โข Embedding Models"]
EXT4["๐ College Data API<br/>โข Federal College Data<br/>โข Institution Information<br/>โข Program Details<br/>โข Statistics"]
end
subgraph "๐๏ธ College AI Module"
CA1["๐ Data Fetcher<br/>fetch_colleges.py<br/>โข API Integration<br/>โข Data Validation<br/>โข Batch Processing<br/>โข Error Handling"]
CA2["๐งฎ Embedding Generator<br/>generate_embeddings.py<br/>โข Text Processing<br/>โข Vector Creation<br/>โข Batch Embedding<br/>โข Index Updates"]
CA3["๐ Search Engine<br/>search_colleges.py<br/>โข Query Processing<br/>โข Semantic Search<br/>โข Result Ranking<br/>โข Response Generation"]
CA4["โ๏ธ Firestore Uploader<br/>upload_to_firestore.py<br/>โข Data Sync<br/>โข Document Updates<br/>โข Batch Operations<br/>โข Version Control"]
end
subgraph "๐ Project File Structure"
PS1["๐ launch-kit/<br/>โโโ README.md<br/>โโโ .gitignore<br/>โโโ package.json"]
PS2["๐ college-ai/<br/>โโโ src/ (Python files)<br/>โโโ data/ (CSV data)<br/>โโโ requirements.txt"]
PS3["๐ email-outreach/<br/>โโโ frontend/ (Next.js)<br/>โโโ agents/ (A2A agents)<br/>โโโ workflows/ (n8n)<br/>โโโ database/ (Schemas)"]
PS4["๐ shared/<br/>โโโ types/ (TypeScript)<br/>โโโ utils/ (Common functions)<br/>โโโ constants/ (Config)"]
end
end
subgraph "๐ Data Flow & Interactions"
DF1["๐ฅ User Input Flow<br/>Resume Upload โ Profile Setup โ Target Selection"]
DF2["๐ Processing Pipeline<br/>LinkedIn URLs โ Profile Analysis โ Company Research โ Connection Mapping"]
DF3["โ๏ธ Email Generation Flow<br/>Profile Data โ Personalization โ Composition โ Quality Check โ User Review"]
DF4["๐ค Campaign Execution<br/>Email Approval โ Send Queue โ Delivery โ Tracking โ Learning"]
DF5["๐ College Search Flow<br/>User Query โ Semantic Search โ Results โ Recommendations"]
end
%% User Interface Connections
UI2 --> N8N1
UI3 --> N8N2
UI5 --> CA3
%% n8n Workflow Connections
N8N1 --> A1
N8N1 --> A2
N8N1 --> A3
N8N3 --> A1
N8N3 --> A3
N8N2 --> A7
N8N2 --> A8
%% Agent Interactions (A2A Protocol)
A1 --> A4
A2 --> A4
A3 --> A4
A4 --> A5
A5 --> A6
A6 --> UI2
A7 --> A5
A8 --> EXT2
%% Database Connections
A1 --> DB2
A2 --> DB1
A5 --> DB3
A8 --> DB4
A7 --> DB5
A2 --> ST1
%% College AI Connections
CA1 --> FS1
CA2 --> FS1
CA3 --> FS1
CA4 --> FS1
CA1 --> EXT4
CA2 --> EXT3
CA3 --> EXT3
%% External API Connections
A1 <--> EXT1
A3 <--> EXT1
A5 <--> EXT3
A6 <--> EXT3
A7 <--> EXT3
A8 <--> EXT2
%% Storage Connections
DB1 <--> UI1
DB2 <--> UI1
DB3 <--> UI1
DB4 <--> UI3
ST1 <--> UI1
FS1 <--> UI5
%% Data Flow Connections
DF1 --> DF2
DF2 --> DF3
DF3 --> DF4
DF5 --> UI5
- Smart College Search: AI-powered semantic search across thousands of colleges
- Personalized Recommendations: Tailored college suggestions based on student preferences
- Real-time Data: Up-to-date college information from official sources
- Natural Language Queries: Search using conversational language
- Automated Networking: AI-generated personalized outreach emails
- LinkedIn Integration: Extract and analyze professional profiles
- Smart Personalization: Find meaningful connections between sender and recipient
- Campaign Management: Track email performance and responses
- Learning AI: Continuously improves email effectiveness based on user data
- Next.js 14 - React framework with App Router
- TypeScript - Type-safe development
- Tailwind CSS - Utility-first styling
- Supabase Auth - User authentication
- Supabase - PostgreSQL database with real-time capabilities
- Supabase Storage - File storage for resumes and assets
- Google Firestore - College data storage (existing)
- n8n - Workflow automation and agent orchestration
- Google Cloud A2A Protocol - Agent-to-agent communication
- OpenAI GPT-4 / Anthropic Claude - Language models
- LangChain - AI application framework
- Vector Embeddings - Semantic search capabilities
- Vercel - Frontend hosting
- Google Cloud Run - A2A agent hosting
- Google Cloud Functions - Serverless functions
launch-kit/
โโโ README.md
โโโ .gitignore
โโโ package.json
โโโ
โโโ college-ai/ # College AI Module
โ โโโ src/
โ โ โโโ fetch_colleges.py
โ โ โโโ generate_embeddings.py
โ โ โโโ search_colleges.py
โ โ โโโ upload_to_firestore.py
โ โโโ data/
โ โโโ college_test_data.csv
โ
โโโ email-outreach/ # Email Outreach Module
โ โโโ frontend/ # Next.js Web Application
โ โ โโโ app/
โ โ โโโ components/
โ โ โโโ lib/
โ โ โโโ public/
โ โ
โ โโโ agents/ # A2A AI Agents
โ โ โโโ profile-analysis/
โ โ โโโ user-context/
โ โ โโโ company-research/
โ โ โโโ connection-mapping/
โ โ โโโ email-composition/
โ โ โโโ quality-assurance/
โ โ โโโ learning-ai/
โ โ
โ โโโ workflows/ # n8n Workflows
โ โ โโโ email-generation.json
โ โ โโโ profile-processing.json
โ โ โโโ tracking-updates.json
โ โ
โ โโโ database/ # Database Schemas & Migrations
โ โโโ supabase/
โ โโโ migrations/
โ
โโโ shared/ # Shared Utilities
โโโ types/
โโโ utils/
โโโ constants/
- Node.js 18+
- Python 3.9+
- Supabase account
- Google Cloud Platform account
- OpenAI/Anthropic API keys
-
Clone the repository:
git clone https://github.com/bshihab/launch-kit.git cd launch-kit -
Install dependencies:
# Frontend dependencies cd email-outreach/frontend npm install # Python dependencies for College AI cd ../../college-ai pip install -r requirements.txt
-
Environment Setup:
# Copy environment template cp .env.example .env # Add your API keys and configuration
-
Database Setup:
# Run Supabase migrations npx supabase db reset -
Start Development:
# Start frontend cd email-outreach/frontend npm run dev # Start n8n (in another terminal) npx n8n start
The College AI module provides intelligent college search and recommendation capabilities:
- Data Pipeline: Automated fetching and processing of college data
- Semantic Search: Vector-based search using OpenAI embeddings
- Natural Language Interface: Query colleges using conversational language
Usage:
# Fetch latest college data
python college-ai/src/fetch_colleges.py
# Generate embeddings
python college-ai/src/generate_embeddings.py
# Interactive search
python college-ai/src/search_colleges.pyThe Email Outreach module automates professional networking through AI-generated personalized emails:
Key Features:
- Upload resume and LinkedIn profile
- Bulk LinkedIn URL processing
- AI-powered email personalization
- Response tracking and analytics
- Continuous learning from user interactions
User Flow:
- Setup: Upload resume and LinkedIn profile
- Import: Add target LinkedIn URLs
- Process: AI analyzes all profiles and finds connections
- Personalize: Select personalization options
- Generate: AI creates tailored emails
- Review: Edit and approve emails
- Send: Bulk send with tracking
- Track: Monitor responses and engagement
We welcome contributions! Please see our Contributing Guidelines for details.
This project is licensed under the MIT License - see the LICENSE file for details.
For questions and support:
- Create an Issue
- Join our Discord Community
- Email: support@launch-kit.dev
Built with โค๏ธ for students, by students.