Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
60 changes: 36 additions & 24 deletions python/pyspark/pandas/indexes/datetimes.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,7 @@
from pandas.tseries.offsets import DateOffset
from pyspark._globals import _NoValue

from pyspark.loose_version import LooseVersion
from pyspark import pandas as ps
from pyspark.pandas import DataFrame
from pyspark.pandas.indexes.base import Index
Expand Down Expand Up @@ -109,39 +110,17 @@ def __new__(
cls,
data=None,
freq=_NoValue,
normalize=False,
closed=None,
normalize=_NoValue,
closed=_NoValue,
ambiguous="raise",
dayfirst=False,
yearfirst=False,
dtype=None,
copy=False,
name=None,
) -> "DatetimeIndex":
if closed is not None:
warnings.warn(
"The 'closed' keyword in DatetimeIndex construction is deprecated "
"and will be removed in a future version.",
FutureWarning,
)
if normalize is not None:
warnings.warn(
"The 'normalize' keyword in DatetimeIndex construction is deprecated "
"and will be removed in a future version.",
FutureWarning,
)
if not is_hashable(name):
raise TypeError("Index.name must be a hashable type")

if isinstance(data, (Series, Index)):
if dtype is None:
dtype = "datetime64[ns]"
return cast(DatetimeIndex, Index(data, dtype=dtype, copy=copy, name=name))

kwargs = dict(
data=data,
normalize=normalize,
closed=closed,
ambiguous=ambiguous,
dayfirst=dayfirst,
yearfirst=yearfirst,
Expand All @@ -152,6 +131,39 @@ def __new__(
if freq is not _NoValue:
kwargs["freq"] = freq

if LooseVersion(pd.__version__) < "3.0.0":
if normalize is not _NoValue:
warnings.warn(
"The 'normalize' keyword in DatetimeIndex construction is deprecated "
"and will be removed in a future version.",
FutureWarning,
)
kwargs["normalize"] = normalize
else:
kwargs["normalize"] = False
if closed is not _NoValue:
warnings.warn(
"The 'closed' keyword in DatetimeIndex construction is deprecated "
"and will be removed in a future version.",
FutureWarning,
)
kwargs["closed"] = closed
else:
if normalize is not _NoValue:
raise TypeError(
"The 'normalize' keyword is not supported in pandas 3.0.0 and later."
)
if closed is not _NoValue:
raise TypeError("The 'closed' keyword is not supported in pandas 3.0.0 and later.")

if not is_hashable(name):
raise TypeError("Index.name must be a hashable type")

if isinstance(data, (Series, Index)):
if dtype is None:
dtype = "datetime64[ns]"
return cast(DatetimeIndex, Index(data, dtype=dtype, copy=copy, name=name))

return cast(DatetimeIndex, ps.from_pandas(pd.DatetimeIndex(**kwargs)))

def __getattr__(self, item: str) -> Any:
Expand Down
4 changes: 2 additions & 2 deletions python/pyspark/pandas/indexes/timedelta.py
Original file line number Diff line number Diff line change
Expand Up @@ -133,10 +133,10 @@ def __new__(
kwargs["closed"] = closed
else:
if unit is not _NoValue:
raise ValueError("The 'unit' keyword is not supported in pandas 3.0.0 and later.")
raise TypeError("The 'unit' keyword is not supported in pandas 3.0.0 and later.")

if closed is not _NoValue:
raise ValueError("The 'closed' keyword is not supported in pandas 3.0.0 and later.")
raise TypeError("The 'closed' keyword is not supported in pandas 3.0.0 and later.")

return cast(TimedeltaIndex, ps.from_pandas(pd.TimedeltaIndex(**kwargs)))

Expand Down
39 changes: 22 additions & 17 deletions python/pyspark/pandas/namespace.py
Original file line number Diff line number Diff line change
Expand Up @@ -52,6 +52,8 @@
import pyarrow as pa
import pyarrow.parquet as pq

from pyspark._globals import _NoValue, _NoValueType
from pyspark.loose_version import LooseVersion
from pyspark.sql import functions as F, Column as PySparkColumn
from pyspark.sql.functions import pandas_udf
from pyspark.sql.types import (
Expand Down Expand Up @@ -1595,7 +1597,7 @@ def to_datetime(
errors: str = "raise",
format: Optional[str] = None,
unit: Optional[str] = None,
infer_datetime_format: bool = False,
infer_datetime_format: Union[bool, _NoValueType] = _NoValue,
origin: str = "unix",
):
"""
Expand Down Expand Up @@ -1735,19 +1737,29 @@ def to_datetime(
"microseconds": "us",
}

kwargs = dict(
errors=errors,
format=format,
unit=unit,
origin=origin,
)

if LooseVersion(pd.__version__) < "3.0.0":
kwargs["infer_datetime_format"] = (
infer_datetime_format if infer_datetime_format is not _NoValue else False
)
else:
if infer_datetime_format is not _NoValue:
raise TypeError(
"The 'infer_datetime_format' keyword is not supported in pandas 3.0.0 and later."
)

def pandas_to_datetime(
pser_or_pdf: Union[pd.DataFrame, pd.Series], cols: Optional[List[str]] = None
) -> Series[np.datetime64]:
if isinstance(pser_or_pdf, pd.DataFrame):
pser_or_pdf = pser_or_pdf[cols]
return pd.to_datetime(
pser_or_pdf,
errors=errors,
format=format,
unit=unit,
infer_datetime_format=infer_datetime_format,
origin=origin,
)
return pd.to_datetime(pser_or_pdf, **kwargs)

if isinstance(arg, Series):
return arg.pandas_on_spark.transform_batch(pandas_to_datetime)
Expand All @@ -1762,14 +1774,7 @@ def pandas_to_datetime(

psdf = arg[list_cols]
return psdf.pandas_on_spark.transform_batch(pandas_to_datetime, list_cols)
return pd.to_datetime(
arg,
errors=errors,
format=format,
unit=unit,
infer_datetime_format=infer_datetime_format,
origin=origin,
)
return pd.to_datetime(arg, **kwargs)


def date_range(
Expand Down
11 changes: 7 additions & 4 deletions python/pyspark/pandas/tests/series/test_conversion.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@

import pandas as pd

from pyspark.loose_version import LooseVersion
from pyspark import pandas as ps
from pyspark.testing.pandasutils import PandasOnSparkTestCase
from pyspark.testing.sqlutils import SQLTestUtils
Expand All @@ -43,10 +44,12 @@ def test_to_datetime(self):
pser = pd.Series(["3/11/2000", "3/12/2000", "3/13/2000"] * 100)
psser = ps.from_pandas(pser)

self.assert_eq(
pd.to_datetime(pser, infer_datetime_format=True),
ps.to_datetime(psser, infer_datetime_format=True),
)
self.assert_eq(pd.to_datetime(pser), ps.to_datetime(psser))
if LooseVersion(pd.__version__) < "3.0.0":
self.assert_eq(
pd.to_datetime(pser, infer_datetime_format=True),
ps.to_datetime(psser, infer_datetime_format=True),
)

def test_to_list(self):
self.assert_eq(self.psser.tolist(), self.pser.tolist())
Expand Down