The developed model creates a faithful composition of an image with erased areas, sketch and colormap.
usage: train.py [-h] [--dataset DATASET] [--num_workers NUM_WORKERS]
[--image_size IMAGE_SIZE] [--bbox_shape BBOX_SHAPE]
[--bbox_randomness BBOX_RANDOMNESS]
[--bbox_margin BBOX_MARGIN] [--bbox_max_num BBOX_MAX_NUM]
[--vis_dataset VIS_DATASET] [--overfit]
[--max_epoch MAX_EPOCH] [--save_epoch SAVE_EPOCH]
[--lr LR] [--weight_decay WEIGHT_DECAY] [--l1_c_h L1_C_H]
[--l1_c_nh L1_C_NH] [--l1_r_h L1_R_H] [--l1_r_nh L1_R_NH]
[--gen_loss_alpha GEN_LOSS_ALPHA]
[--disc_loss_alpha DISC_LOSS_ALPHA]
[--batch_size BATCH_SIZE] [--input_nc INPUT_NC]
[--experiment EXPERIMENT]
[--visualization_set VISUALIZATION_SET]
[--load_G LOAD_G] [--load_D LOAD_D]Arguments:
--dataset DATASET dataset name
--num_workers NUM_WORKERS num workers
--image_size IMAGE_SIZE input image size
--bbox_shape BBOX_SHAPE random box size
--bbox_randomness BBOX_RANDOMNESS variation in box size
--bbox_margin BBOX_MARGIN margin from boundaries for box
--bbox_max_num BBOX_MAX_NUM max num of boxes
--vis_dataset VIS_DATASET images to be visualized after each epoch
--overfit overfit
--max_epoch MAX_EPOCH number of epochs to train for
--save_epoch SAVE_EPOCH save every nth epoch
--lr LR learning rate, default=0.001
--weight_decay WEIGHT_DECAY weight decay
--l1_c_h L1_C_H reconstruction coarse weight for holes
--l1_c_nh L1_C_NH reconstruction coarse weight for non-holes
--l1_r_h L1_R_H reconstruction coarse weight for holes
--l1_r_nh L1_R_NH reconstruction coarse weight for non-holes
--gen_loss_alpha GEN_LOSS_ALPHA reconstruction coarse weight for non-holes
--disc_loss_alpha DISC_LOSS_ALPHA reconstruction coarse weight for non-holes
--batch_size BATCH_SIZE batch size
--input_nc INPUT_NC number of input channels + mask
--experiment EXPERIMENT experiment directory
--visualization_set VISUALIZATION_SET validation samples to be visualized
--load_G LOAD_G path to pretrained generator weights
--load_D LOAD_D path to pretrained discriminator weightsThe defaults should give reasonable performance in most cases.
