Interactive data visualization project that analyzes NASA's exoplanet archive to identify potentially habitable worlds using the Earth Similarity Index (ESI).
This project combines Data Science with Web Visualization to explore the history of exoplanet discoveries.
- Data Processing: Python scripts ingest raw NASA data, cleaning and filtering candidates.
- Math Modeling: Calculates the Earth Similarity Index based on planetary radius, density, escape velocity, and surface temperature.
- Visualization: An interactive D3.js/JS timeline allowing users to explore the universe's candidates.
The core of the analysis is the ESI formula, implemented in Python:
(See compute_esi.py for implementation details)
- Backend / Processing: Python 3, Pandas, NumPy, Flask.
- Frontend: HTML5, CSS3, Vanilla JavaScript.
- Data Source: NASA Exoplanet Archive.
-
Clone the repository:
git clone [https://github.com/alvarorm3008/VISUALIZATION-UIB.git](https://github.com/alvarorm3008/Exoplanet-Visualization.git) cd Exoplanet-Visualization -
Set up the environment:
python3 -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate pip install -r requirements.txt
-
Launch the Visualization:
python serving_archivos.py
Open your browser at
http://127.0.0.1:5000/timeline.html
Author: Alvaro Rodriguez and Agustin Soares
