Skip to content
This repository was archived by the owner on Apr 18, 2018. It is now read-only.
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
80 changes: 80 additions & 0 deletions so_box_biogeo/diags/estNsq.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,80 @@
import numpy as np
from MITgcmutils import rdmds, densjmd95
from mitgcmgrid import loadgrid
import matplotlib.pyplot as plt
"""
Estimating Brunt-Vaisala frequency using T and S.
In case when N$^2$ is needed but do not have 'DRHODR' saved,
one can still estimate it using T and S,
and the appropriate equation of state.
"""
#
# Constants
#
rhoconst = 1.035e3
g = 9.81
#
# Load grid files
# (hspython is available at https://github.com/hajsong/hspython)
#
grd = loadgrid('../results', varname=['XC','YC','RC','hFacC','DRC','RF'])
[nz, ny, nx] = grd.hFacC.shape
#
# Compute the stratification frequency using DRHODR.
# It is defined at the center of the level.
#
dRHOdr = rdmds('ocestrat', 9, rec=0); # DRHODR is in the first record in "ocestrat"
Nsq = - dRHOdr*g/rhoconst*grd.mskC
#
# Now, estimate Nsq using T and S.
# When computing "drhodr" at the interface between tracer cells,
# density at upper and lower cell is computed using the pressure at the interface.
# Nsq is defined at the interface.
#
T = rdmds('dynDiag', 9, rec=2) # THETA is in the third record in "dynDiag"
S = rdmds('dynDiag', 9, rec=3) # SALT is in the fourth record in "dynDiag"
Nsq_TS = np.zeros([nz, ny, nx])
for k in range(1,nz):
press = -rhoconst*g*grd.RF[k]/1e4 # pressure at the interface
# rho at the center of the upper level
urho = densjmd95(S[k-1, :, :],T[k-1, :, :], press)
# rho at the center of the lower level
lrho = densjmd95(S[k, :, :], T[k, :, :], press)
drhodr = (urho-lrho)/grd.DRC[k]*grd.mskC[k, :, :]*grd.mskC[k-1, :, :]
Nsq_TS[k, :, :] = -drhodr*g/rhoconst
#
# Estimating N$^2$ using "RHOAnoma" is not appropriate
# because "RHOAnoma" is computed using the pressure at that level
#
rho = rdmds('ocestrat', 9, rec=1) + rhoconst # RHOAnoma is in the second record
Nsq_ra = np.zeros([nz, ny, nx])
for k in range(1,nz):
drhodz = (rho[k-1, :, :] - rho[k, :, :])/grd.DRC[k]\
*grd.mskC[k, :, :]*grd.mskC[k-1, :, :]
Nsq_ra[k, :, :] = -drhodz*g/rhoconst
#
# Check N$^2$
#
showz = 5
showx = 5
scale = 1e5

Y, Z = np.meshgrid(grd.YC[:, 0], grd.RC[:showz])

f, ax = plt.subplots(1, 3, figsize=(16, 4))

im = ax[0].contourf(Y, Z, Nsq[:showz, :, showx]*scale, np.arange(0, 15.1 , 1), cmap='Reds')
cb = plt.clabel(im,colors='black',fmt='%3.1f')
ax[0].set_title('N$^2$ from DRHODR [x 10$^5$ s$^{-1}$]', color='black', fontsize=15)
ax[0].set_xlabel('latitude')
ax[0].set_ylabel('depth [m]')

im = ax[1].contourf(Y, Z, Nsq_TS[:showz,:,showx]*scale, np.arange(0,15.1,1), cmap='Reds')
cb = plt.clabel(im,colors='black',fmt='%3.1f')
ax[1].set_title('N$^2$ from T and S [x 10$^5$ s$^{-1}$]', color='black', fontsize=15)
ax[1].set_xlabel('latitude')

im = ax[2].contourf(Y, Z, Nsq_ra[:showz,:,showx]*scale, np.arange(0,15.1,1), cmap='Reds')
cb = plt.clabel(im,colors='black',fmt='%3.1f')
ax[2].set_title('N$^2$, from RHOAnoma [x 10$^5$ s$^{-1}$]', color='black', fontsize=15)
ax[2].set_xlabel('latitude')
56 changes: 56 additions & 0 deletions so_box_biogeo/diags/mitgcmgrid.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,56 @@
from MITgcmutils import rdmds
import numpy as np

def loadgrid(gridpath, region=None, varname=None):
"""
[Function]
grd=loadgrid(gridname, region=None, varname=None):

[Description]
Read grid files and load them into the 'grd' object

[Inputs]
gridpath : A path to the grid files.
region : A list defining the boundary for the grid.
[x0,x1,y0,y1] (default is [0,nx,0,ny])
varname : A list of strings for the grid data to load

[Output]
grd : An object containing grid data.

"""

if varname is None:
varname = ['XC','YC','RAC','DXC','DYC','hFacC','hFacW','hFacS',\
'Depth','RC','RF','DRC','DRF','XG','YG','RAZ','DXG','DYG']

class grd(object):
for iv, vname in enumerate(varname):
if region is None:
exec('tmpvar = rdmds("'+gridpath+varname[iv]+'")')
tmpvar = tmpvar.squeeze()
exec(varname[iv]+' = tmpvar')
else:
if vname is 'RC' or vname is 'RF' or vname is 'DRC' or vname is 'DRF':
exec('tmpvar = rdmds("'+gridpath+varname[iv]+'")')
else:
exec('tmpvar = rdmds("'+gridpath+varname[iv]+\
'",region = '+str(region)+')')
tmpvar = tmpvar.squeeze()
exec(varname[iv]+' = tmpvar')
if vname == 'hFacC':
mskC = hFacC.copy()
mskC[mskC==0] = np.nan
mskC[np.isfinite(mskC)] = 1.
if vname == 'hFacW':
mskW = hFacW.copy()
mskW[mskW==0] = np.nan
mskW[np.isfinite(mskW)] = 1.
if vname == 'hFacS':
mskS = hFacS.copy()
mskS[mskS==0] = np.nan
mskS[np.isfinite(mskS)] = 1.
del tmpvar
del grd.iv,grd.vname

return grd