[🌐 Website] • [📜 Paper] • [🤗 HF Models] • [🤗 HF Dataset] •
Repo for "D³-Predictor: Noise-Free Deterministic Diffusion for Dense Prediction"
-
2025.12: We release the [Training data] .
-
2025.12: We release the checkpoints of the [D³-Predictor model] .
Create a virtual environment and install the required dependencies:
conda create -n d3_predictor python=3.10
conda activate d3_predictor
pip install -r requirements.txtPlease follow the steps below for training:
- For the depth estimation task, use the code in
D3-Predictor-Depth/.- For the surface normal estimation task, use the code in
D3-Predictor-Normal/.- For the image matting task, use the code in
D3-Predictor-Matting/.
- Make sure to set the correct paths in
.yamlconfigs. - Specify the wandb API key before training.
- Start training
bash launch_train_{depth/normal/matting}.sh- Download checkpoints to
checkpoints/{depth/normal/matting} - Make sure to set the correct paths in
inference_{depth/normal/matting}.py. - Start inference
python D3-Predictor-{Depth/Normal/Matting}/inference_{depth/normal/matting}.pyThanks to Marigold for data preprocessing and results evaluation support, Stable Diffusion 2.1 and FLUX.1-dev for powerful pretrained model, and Cleandift for their wonderful open-sourced work.
If you find it helpful, please kindly cite the paper.
@misc{xia2025mathrmdmathrm3predictornoisefreedeterministicdiffusion,
title={D³-Predictor: Noise-Free Deterministic Diffusion for Dense Prediction},
author={Changliang Xia and Chengyou Jia and Minnan Luo and Zhuohang Dang and Xin Shen and Bowen Ping},
year={2025},
eprint={2512.07062},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2512.07062},
}
If you have any inquiries, suggestions, or wish to contact us for any reason, we warmly invite you to email us at 202066@stu.xjtu.edu.cn or cp3jia@stu.xjtu.edu.cn.

