Skip to content

X-GenGroup/D3-Predictor

Repository files navigation

D³-Predictor: Noise-Free Deterministic Diffusion for Dense Prediction

[🌐 Website][📜 Paper][🤗 HF Models][🤗 HF Dataset]

Repo for "D³-Predictor: Noise-Free Deterministic Diffusion for Dense Prediction"

Visual

D³-Predictor Model

D³-Predictor

News

Installation

Create a virtual environment and install the required dependencies:

conda create -n d3_predictor python=3.10
conda activate d3_predictor
pip install -r requirements.txt

Training

Please follow the steps below for training:

  • For the depth estimation task, use the code in D3-Predictor-Depth/.
  • For the surface normal estimation task, use the code in D3-Predictor-Normal/.
  • For the image matting task, use the code in D3-Predictor-Matting/.
  1. Make sure to set the correct paths in .yaml configs.
  2. Specify the wandb API key before training.
  3. Start training
bash launch_train_{depth/normal/matting}.sh

Inference

  1. Download checkpoints to checkpoints/{depth/normal/matting}
  2. Make sure to set the correct paths in inference_{depth/normal/matting}.py.
  3. Start inference
python D3-Predictor-{Depth/Normal/Matting}/inference_{depth/normal/matting}.py

Acknowledgment

Thanks to Marigold for data preprocessing and results evaluation support, Stable Diffusion 2.1 and FLUX.1-dev for powerful pretrained model, and Cleandift for their wonderful open-sourced work.

Citation

If you find it helpful, please kindly cite the paper.

@misc{xia2025mathrmdmathrm3predictornoisefreedeterministicdiffusion,
      title={D³-Predictor: Noise-Free Deterministic Diffusion for Dense Prediction}, 
      author={Changliang Xia and Chengyou Jia and Minnan Luo and Zhuohang Dang and Xin Shen and Bowen Ping},
      year={2025},
      eprint={2512.07062},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2512.07062}, 
}

📬 Contact

If you have any inquiries, suggestions, or wish to contact us for any reason, we warmly invite you to email us at 202066@stu.xjtu.edu.cn or cp3jia@stu.xjtu.edu.cn.

About

D³-Predictor: Noise-Free Deterministic Diffusion for Dense Prediction

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages