-
Notifications
You must be signed in to change notification settings - Fork 237
Add read_nwb_as_analyzer function
#4270
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Draft
alejoe91
wants to merge
6
commits into
SpikeInterface:main
Choose a base branch
from
alejoe91:load_analyzer_from_nwb
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
+296
−5
Draft
Changes from all commits
Commits
Show all changes
6 commits
Select commit
Hold shift + click to select a range
23cef31
wip: load_analyzer_from_nwb function
alejoe91 6aaac55
Merge branch 'main' of github.com:SpikeInterface/spikeinterface into …
alejoe91 fcba7d3
Make dtype/is_filtered optional attrs and suggestions from code review
alejoe91 e0a551a
Merge branch 'main' into load_analyzer_from_nwb
alejoe91 b72a39d
fix ibl tests
alejoe91 f65f2ce
Merge branch 'load_analyzer_from_nwb' of github.com:alejoe91/spikeint…
alejoe91 File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
|
|
@@ -7,7 +7,14 @@ | |
| import numpy as np | ||
|
|
||
| from spikeinterface import get_global_tmp_folder | ||
| from spikeinterface.core import BaseRecording, BaseRecordingSegment, BaseSorting, BaseSortingSegment | ||
| from spikeinterface.core import ( | ||
| BaseRecording, | ||
| BaseRecordingSegment, | ||
| BaseSorting, | ||
| BaseSortingSegment, | ||
| SortingAnalyzer, | ||
| get_default_analyzer_extension_params, | ||
| ) | ||
| from spikeinterface.core.core_tools import define_function_from_class | ||
|
|
||
|
|
||
|
|
@@ -1259,6 +1266,7 @@ def _fetch_sorting_segment_info_backend( | |
|
|
||
| # need this for later | ||
| self.units_table = units_table | ||
| self._file = open_file | ||
|
|
||
| return unit_ids, spike_times_data, spike_times_index_data | ||
|
|
||
|
|
@@ -1789,3 +1797,285 @@ def read_nwb(file_path, load_recording=True, load_sorting=False, electrical_seri | |
| outputs = outputs[0] | ||
|
|
||
| return outputs | ||
|
|
||
|
|
||
| def read_nwb_as_analyzer( | ||
| file_path: str | Path, | ||
| t_start: float | None = None, | ||
| sampling_frequency: float | None = None, | ||
| electrical_series_path: str | None = None, | ||
| unit_table_path: str | None = None, | ||
| stream_mode: Literal["fsspec", "remfile", "zarr"] | None = None, | ||
| stream_cache_path: str | Path | None = None, | ||
| cache: bool = False, | ||
| storage_options: dict | None = None, | ||
| use_pynwb: bool = False, | ||
| group_name: str | None = None, | ||
| compute_extra: List[str] | None = ["unit_locations", "correlograms"], | ||
| compute_extra_params: dict | None = None, | ||
| verbose: bool = False, | ||
| ) -> SortingAnalyzer: | ||
| import pandas as pd | ||
| from spikeinterface.metrics.template import ComputeTemplateMetrics | ||
| from spikeinterface.metrics.quality import ComputeQualityMetrics | ||
|
|
||
| # try to read recording object to get the analyzer | ||
| try: | ||
| recording = NwbRecordingExtractor( | ||
| file_path=file_path, | ||
| electrical_series_path=electrical_series_path, | ||
| stream_mode=stream_mode, | ||
| stream_cache_path=stream_cache_path, | ||
| cache=cache, | ||
| storage_options=storage_options, | ||
| use_pynwb=use_pynwb, | ||
| ) | ||
| except Exception: | ||
| if verbose: | ||
| print("Could not load recording, proceeding without it") | ||
| recording = None | ||
|
|
||
| t_start_tmp = 0 if t_start is None else t_start | ||
|
|
||
| sorting_tmp = NwbSortingExtractor( | ||
| file_path=file_path, | ||
| electrical_series_path=electrical_series_path, | ||
| unit_table_path=unit_table_path, | ||
| stream_mode=stream_mode, | ||
| stream_cache_path=stream_cache_path, | ||
| cache=cache, | ||
| storage_options=storage_options, | ||
| use_pynwb=use_pynwb, | ||
| t_start=t_start_tmp, | ||
| sampling_frequency=sampling_frequency, | ||
| ) | ||
|
|
||
| if recording is None and t_start is None: | ||
| # re-estimate t_start from spike times | ||
| if verbose: | ||
| print("Re-estimating t_start from spike_times") | ||
| t_start_new = np.min(sorting_tmp._sorting_segments[0].spike_times_data) - 0.001 | ||
| if verbose: | ||
| print(f"Found new t_start: {t_start_new} s") | ||
| sorting = NwbSortingExtractor( | ||
| file_path=file_path, | ||
| electrical_series_path=electrical_series_path, | ||
| unit_table_path=unit_table_path, | ||
| stream_mode=stream_mode, | ||
| stream_cache_path=stream_cache_path, | ||
| cache=cache, | ||
| storage_options=storage_options, | ||
| use_pynwb=use_pynwb, | ||
| t_start=t_start_new, | ||
| sampling_frequency=sampling_frequency, | ||
| ) | ||
| else: | ||
| sorting = sorting_tmp | ||
|
|
||
| if use_pynwb: | ||
| units = sorting.units_table | ||
| colnames = units.colnames | ||
| units = units.to_dataframe(index=True) | ||
| else: | ||
| units_dset = sorting._file["units"] | ||
| units = _create_df_from_nwb_table(units_dset) | ||
| colnames = units.columns | ||
|
|
||
| electrodes_indices = None | ||
| if use_pynwb: | ||
| electrodes_table = sorting._nwbfile.electrodes.to_dataframe(index=True) | ||
| if "electrodes" in colnames: | ||
| electrodes_indices = units["electrodes"] | ||
| else: | ||
| electrodes_table = _create_df_from_nwb_table(sorting._file["/general/extracellular_ephys/electrodes"]) | ||
| if "electrodes" in colnames: | ||
| electrodes_indices = electrodes_indices = units["electrodes"][:] | ||
|
|
||
| if electrodes_indices is not None: | ||
| # here we assume all groups are the same for each unit, so we just check one. | ||
| if "group_name" in electrodes_table.columns: | ||
| group_names = np.array([electrodes_table.iloc[int(ei[0])]["group_name"] for ei in electrodes_indices]) | ||
| if len(np.unique(group_names)) > 0: | ||
| if group_name is None: | ||
| raise Exception( | ||
| f"More than one group, use group_name option to select units. Available groups: {np.unique(group_names)}" | ||
| ) | ||
| else: | ||
| unit_mask = group_names == group_name | ||
| if verbose: | ||
| print(f"Selecting {sum(unit_mask)} / {len(units)} units from {group_name}") | ||
| sorting = sorting.select_units(unit_ids=sorting.unit_ids[unit_mask]) | ||
| units = units.loc[units.index[unit_mask]] | ||
| electrodes_indices = units["electrodes"] | ||
|
Comment on lines
+1894
to
+1909
Member
Author
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. we could use the same trick as the "aggregation_key" when instantiating a sorting analyzer from grouped recordings/sortings |
||
|
|
||
| # TODO: figure out sparsity | ||
|
|
||
| # handle recording if available | ||
| if recording is not None: | ||
| # check groups | ||
| group_names = np.unique(recording.get_channel_groups()) | ||
| if group_name is not None and len(group_names) > 1: | ||
| recording = recording.split_by("group")[group_name] | ||
| rec_attributes = None | ||
| else: | ||
| recording = None | ||
| rec_attributes = {} | ||
|
|
||
| # get sliced electrodes table from electrode_indices union | ||
| electrode_indices_all = [] | ||
| for ei in electrodes_indices: | ||
| electrode_indices_all.extend(ei) | ||
| electrode_indices_all = np.sort(np.unique(electrode_indices_all)) | ||
| if verbose: | ||
| print(f"Found {len(electrode_indices_all)} electrodes") | ||
| electrodes_table_sliced = electrodes_table.iloc[electrode_indices_all] | ||
| if "channel_name" in electrodes_table_sliced: | ||
| channel_ids = electrodes_table_sliced["channel_name"][:] | ||
| else: | ||
| channel_ids = electrodes_table_sliced["id"][:] | ||
| num_samples = [sorting.to_spike_vector()[-1]["sample_index"]] | ||
| rec_attributes = dict( | ||
| channel_ids=channel_ids, | ||
| sampling_frequency=sorting.sampling_frequency, | ||
| num_channels=len(channel_ids), | ||
| num_samples=num_samples, | ||
| ) | ||
| # make a probegroup | ||
| electrode_colnames = electrodes_table_sliced.columns | ||
| assert ( | ||
| "rel_x" in electrode_colnames and "rel_y" in electrode_colnames | ||
| ), "'rel_x' and 'rel_y' should be columns in the electrode name" | ||
| locations = np.array([electrodes_table_sliced["rel_x"][:], electrodes_table_sliced["rel_y"][:]]).T | ||
| probegroup = _create_dummy_probegroup_from_locations(locations) | ||
| rec_attributes["probegroup"] = probegroup | ||
|
|
||
| # instantiate analyzer | ||
| analyzer = SortingAnalyzer.create_memory( | ||
| sorting=sorting, recording=recording, sparsity=None, rec_attributes=rec_attributes, return_in_uV=True | ||
| ) | ||
|
|
||
| # templates | ||
| if "waveform_mean" in units: | ||
| from spikeinterface.core.analyzer_extension_core import ComputeTemplates, ComputeRandomSpikes | ||
|
|
||
| # compute random spikes, which is a dependency for templates | ||
| # since we don't know the spike samples, we compute with method 'all' | ||
| analyzer.compute("random_spikes", method="all") | ||
|
|
||
| # instantiate templates | ||
| templates_ext = ComputeTemplates(sorting_analyzer=analyzer) | ||
| templates_avg_data = np.array([t for t in units["waveform_mean"].values]).astype("float") | ||
| total_ms = templates_avg_data.shape[1] / analyzer.sampling_frequency * 1000 | ||
| # estimate ms_before and ms_after from minimum point in the average template | ||
| nbefore = np.unravel_index(np.argmin(templates_avg_data, axis=1), templates_avg_data.shape)[1] | ||
| print(nbefore) | ||
| ms_before = int(nbefore / analyzer.sampling_frequency * 1000) | ||
| ms_after = int(total_ms - ms_before) | ||
| template_params = {} | ||
| template_params["ms_before"] = ms_before | ||
| template_params["ms_after"] = ms_after | ||
| template_params["operators"] = ["average", "std"] | ||
| templates_ext.set_params(**template_params) | ||
| templates_avg_data = np.array([t for t in units["waveform_mean"].values]).astype("float") | ||
| templates_ext.data["average"] = templates_avg_data | ||
| if "waveforms_sd" in units: | ||
| templates_std_data = np.array([t for t in units["waveform_sd"].values]).astype("float") | ||
| else: | ||
| templates_std_data = np.zeros_like(templates_avg_data) | ||
| templates_ext.data["std"] = templates_std_data | ||
| templates_ext.run_info["run_completed"] = True | ||
|
|
||
| analyzer.extensions["templates"] = templates_ext | ||
|
|
||
| template_metric_columns = ComputeTemplateMetrics.get_metric_columns() | ||
| quality_metric_columns = ComputeQualityMetrics.get_metric_columns() | ||
|
|
||
| template_metrics_df = pd.DataFrame(index=sorting.unit_ids) | ||
| quality_metric_df = pd.DataFrame(index=sorting.unit_ids) | ||
|
|
||
| for col in units.columns: | ||
| if col in template_metric_columns: | ||
| template_metrics_df.loc[:, col] = units[col].values | ||
| if col in quality_metric_columns: | ||
| quality_metric_df.loc[:, col] = units[col].values | ||
|
|
||
| if len(template_metrics_df.columns) > 0: | ||
| if verbose: | ||
| print("Adding template metrics") | ||
| template_metrics_ext = ComputeTemplateMetrics(analyzer) | ||
| template_metrics_ext.data["metrics"] = template_metrics_df | ||
| template_metrics_ext.run_info["run_completed"] = True | ||
| # cast to correct dtypes | ||
| template_metrics_ext._cast_metrics() | ||
| analyzer.extensions["template_metrics"] = template_metrics_ext | ||
| if len(quality_metric_df.columns) > 0: | ||
| if verbose: | ||
| print("Adding quality metrics") | ||
| quality_metrics_ext = ComputeQualityMetrics(analyzer) | ||
| quality_metrics_ext.data["metrics"] = quality_metric_df | ||
| quality_metrics_ext.run_info["run_completed"] = True | ||
| quality_metrics_ext._cast_metrics() | ||
| analyzer.extensions["quality_metrics"] = quality_metrics_ext | ||
|
|
||
| # compute extra required | ||
| if compute_extra is not None: | ||
| if verbose: | ||
| print(f"Computing extra extensions: {compute_extra}") | ||
| compute_extra_params = {} if compute_extra_params is None else compute_extra_params | ||
| analyzer.compute(compute_extra, **compute_extra_params) | ||
|
|
||
| return analyzer | ||
|
|
||
|
|
||
| def _create_dummy_probegroup_from_locations(locations, shape="circle", shape_params={"radius": 1}): | ||
| """ | ||
| Creates a "dummy" probe based on locations. | ||
|
|
||
| Parameters | ||
| ---------- | ||
| locations : np.array | ||
| Array with channel locations (num_channels, ndim) [ndim can be 2 or 3] | ||
| shape : str, default: "circle" | ||
| Electrode shapes | ||
| shape_params : dict, default: {"radius": 1} | ||
| Shape parameters | ||
|
|
||
| Returns | ||
| ------- | ||
| probe : Probe | ||
| The created probe | ||
| """ | ||
| from probeinterface import Probe, ProbeGroup | ||
|
|
||
| ndim = locations.shape[1] | ||
| assert ndim == 2 | ||
| probe = Probe(ndim=2) | ||
| probe.set_contacts(locations, shapes=shape, shape_params=shape_params) | ||
| probe.set_device_channel_indices(np.arange(len(probe.contact_positions))) | ||
| probe.create_auto_shape() | ||
| probegroup = ProbeGroup() | ||
| probegroup.add_probe(probe) | ||
|
|
||
| return probegroup | ||
|
|
||
|
|
||
| def _create_df_from_nwb_table(group): | ||
| """Makes pandas DataFrame from hdf5/zarr NWB group""" | ||
| import pandas as pd | ||
|
|
||
| colnames = list(group.keys()) | ||
| data = {} | ||
| for col in colnames: | ||
| if "_index" in col: | ||
| continue | ||
| item = group[col][:] | ||
| if f"{col}_index" in colnames: | ||
| item = np.split(item, group[f"{col}_index"][:])[:-1] | ||
| data[col] = item | ||
| elif item.ndim > 1: | ||
| data[col] = [item_flat for item_flat in item] | ||
| else: | ||
| data[col] = item | ||
| df = pd.DataFrame(data=data) | ||
| df.set_index("id", inplace=True) | ||
| return df | ||
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
We could use
session_start_timeinstead.