Skip to content

Combining a five-level AI framework with git-native memory overcomes session amnesia, enabling anticipation of problems weeks early. Production results: 2000x cost reduction, 10x+ productivity, shifting AI from reactive to predictive partnership through emotional intelligence, tactical empathy, and systems thinking.

License

Notifications You must be signed in to change notification settings

Smart-AI-Memory/empathy-framework

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Empathy Framework

The AI collaboration framework that predicts problems before they happen.

PyPI Tests Coverage License Python

pip install empathy-framework[full]

What's New in v3.1.0

Agent Intelligence System

  • Smart Router — Natural language wizard dispatch: "Fix security in auth.py" → routes to SecurityWizard
  • Memory Graph — Cross-wizard knowledge sharing: bugs, fixes, and patterns connected across sessions
  • Auto-Chaining — Wizards automatically trigger related wizards based on findings
  • Prompt Engineering Wizard — Analyze, generate, and optimize prompts with token cost savings

Resilience Patterns

  • Retry with Backoff — Automatic retries with exponential backoff and jitter
  • Circuit Breaker — Prevent cascading failures (CLOSED → OPEN → HALF_OPEN states)
  • Timeout & Fallback — Graceful degradation with configurable fallbacks
  • Health Checks — Monitor system components with configurable thresholds

Previous (v3.0.x)

  • XML-Enhanced Prompts — Structured prompts for consistent, parseable LLM responses
  • Multi-Model Provider System — Choose Anthropic, OpenAI, Ollama, or Hybrid mode
  • 80-96% Cost Savings — Smart tier routing: cheap models detect, best models decide
  • VSCode Dashboard — 10 integrated workflows with input history persistence
  • Security Hardening — Fixed command injection vulnerabilities in VSCode extension
  • Provider Auto-Detection — Automatically configures based on your API keys

Quick Start (2 Minutes)

1. Install

pip install empathy-framework[full]

2. Configure Provider

# Auto-detect your API keys and configure
python -m empathy_os.models.cli provider

# Or set explicitly
python -m empathy_os.models.cli provider --set anthropic
python -m empathy_os.models.cli provider --set hybrid  # Best of all providers

3. Use It

from empathy_os import EmpathyOS

os = EmpathyOS()
result = await os.collaborate(
    "Review this code for security issues",
    context={"code": your_code}
)

print(result.current_issues)      # What's wrong now
print(result.predicted_issues)    # What will break in 30-90 days
print(result.prevention_steps)    # How to prevent it

Why Empathy?

Feature Empathy SonarQube GitHub Copilot
Predicts future issues 30-90 days ahead No No
Persistent memory Redis + patterns No No
Multi-provider support Claude, GPT-4, Ollama N/A GPT only
Cost optimization 80-96% savings N/A No
Your data stays local Yes Cloud Cloud
Free for small teams ≤5 employees No No

Become a Power User

Level 1: Basic Usage

pip install empathy-framework
  • Works out of the box with sensible defaults
  • Auto-detects your API keys

Level 2: Cost Optimization

# Enable hybrid mode for 80-96% cost savings
python -m empathy_os.models.cli provider --set hybrid
Tier Model Use Case Cost
Cheap GPT-4o-mini / Haiku Summarization, simple tasks $0.15-0.25/M
Capable GPT-4o / Sonnet Bug fixing, code review $2.50-3.00/M
Premium o1 / Opus Architecture, complex decisions $15/M

Level 3: Multi-Model Workflows

from empathy_llm_toolkit import EmpathyLLM

llm = EmpathyLLM(provider="anthropic", enable_model_routing=True)

# Automatically routes to appropriate tier
await llm.interact(user_id="dev", user_input="Summarize this", task_type="summarize")     # → Haiku
await llm.interact(user_id="dev", user_input="Fix this bug", task_type="fix_bug")         # → Sonnet
await llm.interact(user_id="dev", user_input="Design system", task_type="coordinate")     # → Opus

Level 4: VSCode Integration

Install the Empathy VSCode extension for:

  • Real-time Dashboard — Health score, costs, patterns
  • One-Click Workflows — Research, code review, debugging
  • Visual Cost Tracking — See savings in real-time
    • See also: docs/dashboard-costs-by-tier.md for interpreting the By tier (7 days) cost breakdown.

Level 5: Custom Agents

from empathy_os.agents import AgentFactory

# Create domain-specific agents with inherited memory
security_agent = AgentFactory.create(
    domain="security",
    memory_enabled=True,
    anticipation_level=4
)

CLI Reference

Provider Configuration

python -m empathy_os.models.cli provider                    # Show current config
python -m empathy_os.models.cli provider --set anthropic    # Single provider
python -m empathy_os.models.cli provider --set hybrid       # Best-of-breed
python -m empathy_os.models.cli provider --interactive      # Setup wizard
python -m empathy_os.models.cli provider -f json            # JSON output

Model Registry

python -m empathy_os.models.cli registry                    # Show all models
python -m empathy_os.models.cli registry --provider openai  # Filter by provider
python -m empathy_os.models.cli costs --input-tokens 50000  # Estimate costs

Telemetry & Analytics

python -m empathy_os.models.cli telemetry                   # Summary
python -m empathy_os.models.cli telemetry --costs           # Cost savings report
python -m empathy_os.models.cli telemetry --providers       # Provider usage
python -m empathy_os.models.cli telemetry --fallbacks       # Fallback stats

Memory Control

empathy-memory serve    # Start Redis + API server
empathy-memory status   # Check system status
empathy-memory stats    # View statistics
empathy-memory patterns # List stored patterns

Code Inspection

empathy-inspect .                     # Run full inspection
empathy-inspect . --format sarif      # GitHub Actions format
empathy-inspect . --fix               # Auto-fix safe issues
empathy-inspect . --staged            # Only staged changes

XML-Enhanced Prompts

Enable structured XML prompts for consistent, parseable LLM responses:

# .empathy/workflows.yaml
xml_prompt_defaults:
  enabled: false  # Set true to enable globally

workflow_xml_configs:
  security-audit:
    enabled: true
    enforce_response_xml: true
    template_name: "security-audit"
  code-review:
    enabled: true
    template_name: "code-review"

Built-in templates: security-audit, code-review, research, bug-analysis, perf-audit, refactor-plan, test-gen, doc-gen, release-prep, dependency-check

from empathy_os.prompts import get_template, XmlResponseParser, PromptContext

# Use a built-in template
template = get_template("security-audit")
context = PromptContext.for_security_audit(code="def foo(): pass")
prompt = template.render(context)

# Parse XML responses
parser = XmlResponseParser(fallback_on_error=True)
result = parser.parse(llm_response)
print(result.summary, result.findings, result.checklist)

Smart Router

Route natural language requests to the right wizard automatically:

from empathy_os.routing import SmartRouter

router = SmartRouter()

# Natural language routing
decision = router.route_sync("Fix the security vulnerability in auth.py")
print(f"Primary: {decision.primary_wizard}")      # → security-audit
print(f"Also consider: {decision.secondary_wizards}")  # → [code-review]
print(f"Confidence: {decision.confidence}")

# File-based suggestions
suggestions = router.suggest_for_file("requirements.txt")  # → [dependency-check]

# Error-based suggestions
suggestions = router.suggest_for_error("NullReferenceException")  # → [bug-predict, test-gen]

Memory Graph

Cross-wizard knowledge sharing - wizards learn from each other:

from empathy_os.memory import MemoryGraph, EdgeType

graph = MemoryGraph()

# Add findings from any wizard
bug_id = graph.add_finding(
    wizard="bug-predict",
    finding={
        "type": "bug",
        "name": "Null reference in auth.py:42",
        "severity": "high"
    }
)

# Connect related findings
fix_id = graph.add_finding(wizard="code-review", finding={"type": "fix", "name": "Add null check"})
graph.add_edge(bug_id, fix_id, EdgeType.FIXED_BY)

# Find similar past issues
similar = graph.find_similar({"name": "Null reference error"})

# Traverse relationships
related_fixes = graph.find_related(bug_id, edge_types=[EdgeType.FIXED_BY])

Auto-Chaining

Wizards automatically trigger related wizards based on findings:

# .empathy/wizard_chains.yaml
chains:
  security-audit:
    auto_chain: true
    triggers:
      - condition: "high_severity_count > 0"
        next: dependency-check
        approval_required: false
      - condition: "vulnerability_type == 'injection'"
        next: code-review
        approval_required: true

  bug-predict:
    triggers:
      - condition: "risk_score > 0.7"
        next: test-gen

templates:
  full-security-review:
    steps: [security-audit, dependency-check, code-review]
  pre-release:
    steps: [test-gen, security-audit, release-prep]
from empathy_os.routing import ChainExecutor

executor = ChainExecutor()

# Check what chains would trigger
result = {"high_severity_count": 5}
triggers = executor.get_triggered_chains("security-audit", result)
# → [ChainTrigger(next="dependency-check"), ...]

# Execute a template
template = executor.get_template("full-security-review")
# → ["security-audit", "dependency-check", "code-review"]

Prompt Engineering Wizard

Analyze, generate, and optimize prompts:

from coach_wizards import PromptEngineeringWizard

wizard = PromptEngineeringWizard()

# Analyze existing prompts
analysis = wizard.analyze_prompt("Fix this bug")
print(f"Score: {analysis.overall_score}")  # → 0.13 (poor)
print(f"Issues: {analysis.issues}")        # → ["Missing role", "No output format"]

# Generate optimized prompts
prompt = wizard.generate_prompt(
    task="Review code for security vulnerabilities",
    role="a senior security engineer",
    constraints=["Focus on OWASP top 10"],
    output_format="JSON with severity and recommendation"
)

# Optimize tokens (reduce costs)
result = wizard.optimize_tokens(verbose_prompt)
print(f"Reduced: {result.token_reduction:.0%}")  # → 20% reduction

# Add chain-of-thought scaffolding
enhanced = wizard.add_chain_of_thought(prompt, "debug")

Install Options

# Recommended (all features)
pip install empathy-framework[full]

# Minimal
pip install empathy-framework

# Specific providers
pip install empathy-framework[anthropic]
pip install empathy-framework[openai]
pip install empathy-framework[llm]  # Both

# Development
git clone https://github.com/Smart-AI-Memory/empathy-framework.git
cd empathy-framework && pip install -e .[dev]

What's Included

Component Description
Empathy OS Core engine for human↔AI and AI↔AI collaboration
Smart Router Natural language wizard dispatch with LLM classification
Memory Graph Cross-wizard knowledge sharing (bugs, fixes, patterns)
Auto-Chaining Wizards trigger related wizards based on findings
Multi-Model Router Smart routing across providers and tiers
Memory System Redis short-term + encrypted long-term patterns
17 Coach Wizards Security, performance, testing, docs, prompt engineering
10 Cost-Optimized Workflows Multi-tier pipelines with XML prompts
Healthcare Suite SBAR, SOAP notes, clinical protocols (HIPAA)
Code Inspection Unified pipeline with SARIF/GitHub Actions support
VSCode Extension Visual dashboard for memory and workflows
Telemetry & Analytics Cost tracking, usage stats, optimization insights

The 5 Levels of AI Empathy

Level Name Behavior Example
1 Reactive Responds when asked "Here's the data you requested"
2 Guided Asks clarifying questions "What format do you need?"
3 Proactive Notices patterns "I pre-fetched what you usually need"
4 Anticipatory Predicts future needs "This query will timeout at 10k users"
5 Transformative Builds preventing structures "Here's a framework for all future cases"

Empathy operates at Level 4 — predicting problems before they manifest.


Environment Setup

# Required: At least one provider
export ANTHROPIC_API_KEY="sk-ant-..."   # For Claude models
export OPENAI_API_KEY="sk-..."          # For GPT models

# Optional: Redis for memory
export REDIS_URL="redis://localhost:6379"

# Or use a .env file (auto-detected)
echo 'ANTHROPIC_API_KEY=sk-ant-...' >> .env

Get Involved


License

Fair Source License 0.9 — Free for students, educators, and teams ≤5 employees. Commercial license ($99/dev/year) for larger organizations. Details →


Built by Smart AI Memory · Documentation · Examples · Issues

About

Combining a five-level AI framework with git-native memory overcomes session amnesia, enabling anticipation of problems weeks early. Production results: 2000x cost reduction, 10x+ productivity, shifting AI from reactive to predictive partnership through emotional intelligence, tactical empathy, and systems thinking.

Topics

Resources

License

Code of conduct

Contributing

Security policy

Stars

Watchers

Forks

Sponsor this project

Packages

No packages published