Skip to content
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
50 changes: 50 additions & 0 deletions fast_llm/engine/evaluation/config.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@

if typing.TYPE_CHECKING:
from fast_llm.engine.evaluation.evaluator import Evaluator, EvaluatorLmEval, LossEvaluator
from fast_llm.engine.evaluation.forward_kl.evaluator import ForwardKLEvaluator


@config_class()
Expand Down Expand Up @@ -119,3 +120,52 @@ def get_evaluator(
from fast_llm.engine.evaluation.lm_eval.evaluator import LmEvalEvaluator

return LmEvalEvaluator(name, self, batch_config, data_load_num_proc, train_iters)


@config_class(dynamic_type={EvaluatorConfig: "forward_kl"})
class ForwardKLEvaluatorConfig(EvaluatorConfig):
_abstract: typing.ClassVar[bool] = False

dataset_path: str | None = Field(
default=None,
desc="HuggingFace dataset path containing teacher traces.",
hint=FieldHint.core,
)
split: str = Field(
default="validation",
desc="Dataset split to evaluate on. Use 'train+validation' syntax to combine multiple splits.",
hint=FieldHint.optional,
)
seed: int = Field(
default=42,
desc="Random seed for shuffling traces. Ensures reproducible evaluation across runs.",
hint=FieldHint.optional,
)
num_samples: int | None = Field(
default=None,
desc="Maximum number of traces to evaluate (after shuffling). None for all.",
hint=FieldHint.optional,
valid=skip_valid_if_none(check_field(Assert.gt, 0)),
)
batch_size: int = Field(
default=8,
desc="Batch size for forward passes.",
hint=FieldHint.performance,
valid=check_field(Assert.gt, 0),
)
trust_remote_code: bool = Field(
default=False,
desc="Trust remote code when loading dataset.",
hint=FieldHint.optional,
)

def get_evaluator(
self,
name: str,
batch_config: BatchConfig,
data_load_num_proc: int,
train_iters: int | None = None,
) -> "ForwardKLEvaluator":
from fast_llm.engine.evaluation.forward_kl.evaluator import ForwardKLEvaluator

return ForwardKLEvaluator(name, self, batch_config, data_load_num_proc, train_iters)
Empty file.
Loading