767767Z = 4x_1 + 3x_2
768768```
769769
770- <br >
770+ <br >< br >
771771
772772### ➢ [ ** Subject to:** ] ( ) :
773773
@@ -793,7 +793,7 @@ x_1 \geq 0, \quad x_2 \geq 0
793793
794794<br >
795795
796- ## ➢ [ Step 1] ( ) : Plot the Constraints:
796+ ## [ Step 1] ( ) ➢ Plot the Constraints:
797797
798798Convert inequalities into equalities to draw the lines:
799799
@@ -839,7 +839,7 @@ x_1 + x_2 = 3
839839 - If x_2 = 0 \Rightarrow x_1 = 3
840840```
841841
842- <br >< br >
842+ <br >
843843
844844### [ 4] ( ) . $x_2 = 2$ → horizontal line
845845
@@ -849,9 +849,9 @@ x_1 + x_2 = 3
849849x_2 = 2 → horizontal line
850850```
851851
852- <br ><br >< br >
852+ <br ><br >
853853
854- ## ➢ [ Step 2] ( ) : Identify the Feasible Region
854+ ## [ Step 2] ( ) ➢ Identify the Feasible Region:
855855
856856- The feasible region is the intersection of all shaded regions that satisfy the constraints.
857857- Must include $x_1 \geq 0$ and $x_2 \geq 0$.
@@ -864,7 +864,7 @@ x_1 \geq 0$ and $x_2 \geq 0
864864
865865<br ><br ><br >
866866
867- ## ➢ [ Step 3] ( ) : Find Intersection Points (Vertices)
867+ ## [ Step 3] ( ) ➢ Find Intersection Points (Vertices):
868868
869869 <br >
870870
@@ -882,7 +882,7 @@ Intersection of x_1 + 3x_2 = 7 and 2x_1 + 2x_2 = 8:
882882 - Point: **(2.5, 1.5)**
883883```
884884
885- <br >< br >
885+ <br >
886886
887887### [ 2] ( ) . Intersection of $x_1 + 3x_2 = 7$ and $x_1 + x_2 = 3$:
888888 - Subtract: $2x_2 = 4 \Rightarrow x_2 = 2$, $x_1 = 1$
@@ -896,21 +896,32 @@ Intersection of x_1 + 3x_2 = 7 and 2x_1 + 2x_2 = 8:
896896 - Point: **(1, 2)**
897897```
898898
899- <br ><br >
899+ <br >
900+
901+ ### [ 3] ( ) . Intersection of $x_1 + x_2 = 3$ and $x_2 = 2$:
902+ - $x_1 = 1$
903+ - Point: ** (1, 2)**
900904
905+ <br >
901906
907+ ### [ 4] ( ) . Intersection of $2x_1 + 2x_2 = 8$ and $x_2 = 2$:
908+ - $x_1 = 2$
909+ - Point: ** (2, 2)**
902910
911+ <br >
903912
913+ ### [ 5] ( ) . $x_1 + x_2 = 3$ and $x_1 = 0 \Rightarrow x_2 = 3$ ❌ (Invalid since $x_2 \leq 2$)
904914
915+ <br >
905916
917+ ### [ 6] ( ) . $x_1 + 3x_2 = 7$ and $x_1 = 0 \Rightarrow x_2 = 7/3 \approx 2.33$ ❌ (Invalid since $x_2 \leq 2$)
906918
907919
920+ <br ><br >
908921
909- ---lll--- LATER-----
922+ ### [ Step 4 ] ( ) ➢ Evaluate Objective Function at Each Vertex:
910923
911- <br ><br ><br >
912924
913- ## ➢ [ Step 4] ( ) : Evaluate Objective Function at Each Vertex
914925
915926
916927
0 commit comments