You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
- :math:`W_{M,reg}(\cdot,\cdot)` is the entropic regularized Wasserstein distance with M loss matrix (see ot.bregman.sinkhorn)
272
+
- :math:`\mathbf{a}` is an observed distribution, :math:`\mathbf{h}_0` is aprior on unmixing
273
+
- reg and :math:`\mathbf{M}` are respectively the regularization term and the cost matrix for OT data fitting
274
+
- reg0 and :math:`\mathbf{M0}` are respectively the regularization term and the cost matrix for regularization
275
+
- :math:`\\alpha`weight data fitting and regularization
276
+
277
+
The optimization problem is solved suing the algorithm described in [4]
278
+
279
+
280
+
distrib : distribution to unmix
262
281
D : Dictionnary
263
282
M : Metric matrix in the space of the distributions to unmix
264
283
M0 : Metric matrix in the space of the 'abundance values' to solve for
265
284
h0 : prior on solution (generally uniform distribution)
266
285
reg,reg0 : transport regularizations
267
286
alpha : how much should we trust the prior ? ([0,1])
287
+
288
+
Parameters
289
+
----------
290
+
a : np.ndarray (d)
291
+
observed distribution
292
+
D : np.ndarray (d,n)
293
+
dictionary matrix
294
+
M : np.ndarray (d,d)
295
+
loss matrix
296
+
M0 : np.ndarray (n,n)
297
+
loss matrix
298
+
h0 : np.ndarray (n,)
299
+
prior on h
300
+
reg: float
301
+
Regularization term >0 (Wasserstein data fitting)
302
+
reg0: float
303
+
Regularization term >0 (Wasserstein reg with h0)
304
+
numItermax: int, optional
305
+
Max number of iterations
306
+
stopThr: float, optional
307
+
Stop threshol on error (>0)
308
+
verbose : bool, optional
309
+
Print information along iterations
310
+
log : bool, optional
311
+
record log if True
312
+
313
+
314
+
Returns
315
+
-------
316
+
a: (d,) ndarray
317
+
Wasserstein barycenter
318
+
log: dict
319
+
log dictionary return only if log==True in parameters
320
+
321
+
References
322
+
----------
323
+
324
+
.. [4] S. Nakhostin, N. Courty, R. Flamary, D. Tuia, T. Corpetti, Supervised planetary unmixing with optimal transport, Whorkshop on Hyperspectral Image and Signal Processing : Evolution in Remote Sensing (WHISPERS), 2016.
0 commit comments