You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
- :math:`W_{reg}(\cdot,\cdot)` is the entropic regularized Wasserstein distance (see ot.bregman.sinkhorn)
177
+
- :math:`\mathbf{a}_i` are training distributions in the columns of matrix :math:`\mathbf{A}`
178
+
- reg and :math:`\mathbf{M}` are respectively the regularization term and the cost matrix for OT
179
+
180
+
The algorithm used for solving the problem is the Sinkhorn-Knopp matrix scaling algorithm as proposed in [3]_
181
+
182
+
Parameters
183
+
----------
184
+
A : np.ndarray (d,n)
185
+
n training distributions of size d
186
+
M : np.ndarray (ns,nt)
187
+
loss matrix for OT
188
+
reg: float
189
+
Regularization term >0
190
+
numItermax: int, optional
191
+
Max number of iterations
192
+
stopThr: float, optional
193
+
Stop threshol on error (>0)
194
+
verbose : bool, optional
195
+
Print information along iterations
196
+
log : bool, optional
197
+
record log if True
198
+
199
+
200
+
Returns
201
+
-------
202
+
a: (d,) ndarray
203
+
Wasserstein barycenter
204
+
log: dict
205
+
log dictionary return only if log==True in parameters
206
+
207
+
208
+
References
209
+
----------
210
+
211
+
.. [3] Benamou, J. D., Carlier, G., Cuturi, M., Nenna, L., & Peyré, G. (2015). Iterative Bregman projections for regularized transportation problems. SIAM Journal on Scientific Computing, 37(2), A1111-A1138.
0 commit comments