Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion github_dagger_workflow_project/02_model_training.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,7 @@

model_results = {}
xgboost_cr = pu.train_xgboost(X_train, X_test, y_train, y_test, experiment_id)
lr_cr = pu.train_linear_regression(X_train, X_test, y_train, y_test, experiment_id)
lr_cr = pu.train_logistic_regression(X_train, X_test, y_train, y_test, experiment_id)

model_results.update(xgboost_cr)
model_results.update(lr_cr)
Expand Down
64 changes: 36 additions & 28 deletions github_dagger_workflow_project/pipeline_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,10 +28,11 @@
XGBOOST_MODEL_JSON_PATH,
LR_MODEL_PATH,
MODEL_RESULTS_PATH,
BEST_EXPERIMENT_PATH,
BEST_EXPERIMENT_PATH,
BEST_MODEL_PATH,
)


def initialize_dates(max_date_str, min_date_str):
"""
Initialize min and max dates for filtering the data.
Expand Down Expand Up @@ -62,30 +63,41 @@ def save_date_limits(data, file_path):
json.dump(date_limits, f)


def preprocess_data(data):
data = data.drop(
[
"is_active",
"marketing_consent",
"first_booking",
"existing_customer",
"last_seen",
],
axis=1,
)
data = data.drop(
["domain", "country", "visited_learn_more_before_booking", "visited_faq"], axis=1
)
data["lead_indicator"].replace("", np.nan, inplace=True)
data["lead_id"].replace("", np.nan, inplace=True)
data["customer_code"].replace("", np.nan, inplace=True)
data = data.dropna(axis=0, subset=["lead_indicator"])
data = data.dropna(axis=0, subset=["lead_id"])
def preprocess_data(data: pd.DataFrame) -> pd.DataFrame:
"""
Preprocesses data by:
Drops unnecessary columns.
Replaces empty strings with NaN in specific columns.
Removes rows with missing values in critical columns.
Filters rows based on the 'source' column being 'signup'.
"""
columns_to_drop = [
"is_active",
"marketing_consent",
"first_booking",
"existing_customer",
"last_seen",
"domain",
"country",
"visited_learn_more_before_booking",
"visited_faq",
]
data = data.drop(columns=columns_to_drop, axis=1)

columns_to_clean = ["lead_indicator", "lead_id", "customer_code"]
data[columns_to_clean] = data[columns_to_clean].replace("", np.nan)

data = data.dropna(axis=0, subset=["lead_indicator", "lead_id"])

data = data[data.source == "signup"]

return data


def process_and_save_artifacts(data):
def process_and_save_artifacts(data: pd.DataFrame) -> None:
"""
Finds outliers, imputes missing data, and performs min-max data scaling
"""
vars = [
"lead_id",
"lead_indicator",
Expand All @@ -96,20 +108,17 @@ def process_and_save_artifacts(data):
]
for col in vars:
data[col] = data[col].astype("object")

cont_vars = data.loc[:, ((data.dtypes == "float64") | (data.dtypes == "int64"))]
cat_vars = data.loc[:, (data.dtypes == "object")]

cont_vars = cont_vars.apply(
lambda x: x.clip(lower=(x.mean() - 2 * x.std()), upper=(x.mean() + 2 * x.std()))
)

outlier_summary = cont_vars.apply(utils.describe_numeric_col).T
outlier_summary.to_csv(OUTLIER_SUMMARY_PATH)

cat_missing_impute = cat_vars.mode(numeric_only=False, dropna=True)
cat_missing_impute.to_csv(CAT_MISSING_IMPUTE_PATH)

cont_vars = cont_vars.apply(utils.impute_missing_values)
cont_vars.apply(utils.describe_numeric_col).T

Expand All @@ -119,6 +128,7 @@ def process_and_save_artifacts(data):
lambda x: pd.Series([x.count(), x.isnull().sum()], index=["Count", "Missing"])
).T

# scaling data
scaler = MinMaxScaler()
scaler.fit(cont_vars)
joblib.dump(value=scaler, filename=SCALER_PATH)
Expand All @@ -132,15 +142,13 @@ def process_and_save_artifacts(data):
data_columns = list(data.columns)
with open(COLUMNS_DRIFT_PATH, "w+") as f:
json.dump(data_columns, f)

data.to_csv(TRAINING_DATA_PATH, index=False)

data["bin_source"] = data["source"]
values_list = ["li", "organic", "signup", "fb"]
data.loc[~data["source"].isin(values_list), "bin_source"] = "Others"
mapping = {"li": "socials", "fb": "socials", "organic": "group1", "signup": "group1"}
data["bin_source"] = data["source"].map(mapping)

data.to_csv(TRAIN_DATA_GOLD_PATH, index=False)


Expand Down Expand Up @@ -221,7 +229,7 @@ def train_xgboost(X_train, X_test, y_train, y_test, experiment_id):


# mlflow logistic regression experiments
def train_linear_regression(X_train, X_test, y_train, y_test, experiment_id):
def train_logistic_regression(X_train, X_test, y_train, y_test, experiment_id):
with mlflow.start_run(experiment_id=experiment_id):
model = LogisticRegression()

Expand Down Expand Up @@ -303,4 +311,4 @@ def register_and_wait_model(run_id, artifact_path, model_name):
model_uri = f"runs:/{run_id}/{artifact_path}"
model_details = mlflow.register_model(model_uri=model_uri, name=model_name)
utils.wait_until_ready(model_details.name, model_details.version)
return dict(model_details)
return dict(model_details)
Loading