Skip to content
Alessandro D. Gagliardi edited this page Dec 2, 2016 · 25 revisions
Week Date Topic Lecture Notebook Lecture Slides Lab Notebook Due Dates
1 4/14 Intro and History of Data Science DS_Lec01-Intro DS_Lec01-Intro.slides DS_Lec01-Python-Intro.pdf DS_Lab01-Python-Numpy
4/16 Python DS_Lec02-Python-Libraries.pdf DS_Lec02-Git.pdf DS_Lab02-Git.pdf DS_Lab02-Python-Pandas
2 4/21 SQL and Relational Theory DS_Lec03-RDBMS DS_Lec03-RDBMS.slides DS_Lab03-RDBMS
4/23 APIs, JSON, and Mongo DS_Lec04-API DS_Lec04-API.slides DS_Lab04-API Preliminary Project Proposals
3 4/28 Probability & Statistics DS_Lec05-Stats DS_Lec05-Stats.slides DS_Lab05-Stats Week 2 Homework
4/30 Machine Learning, Multiple Linear Regression, ANOVA DS_Lec06-ML DS_Lec06-ML.slides DS_Lab06-ML
4 5/5 Guest Speaker: Paco Nathan Nine Decades of Machine Learning
5/7 Choice Modeling & Logistic Regression Introduction to Choice Modeling Lab - Choice Modeling Formal Project Proposals
5 5/12 Bayes, Text Mining, and Cross Validation DS_Lec09-Bayes DS_Lec09-Bayes.slides DS_Lab09-TM
5/14 Time Series Analysis & Regularization DS_Lec10-Midterm DS_Lec10-Midterm.slides DS_Lab10-Regularization
6 5/19 Principal Components Analysis DS_Lec11-PCA DS_Lec11-PCA.slides DS_Lab11-PCA DS_HW09-NB-Classifier
5/21 Project Elevator Pitches Projects Live on Github
7 5/26 NO CLASS Midterm Assessment Due
5/28 Clustering: Hierarchical and K-Means Peer Feedback Due
8 6/2 Guest Lecture TBD
6/4 Nonlinear Models & Model Selection Working Model
9 6/9 IPython.parallel & StarCluster
6/11 Hadoop
10 6/16 Guest Lectures & Workshop
6/18 Guest Lectures & Workshop
11 6/23 Final Presentations
6/25 Final Presentations
12 6/30 Future Directions

Clone this wiki locally