@@ -38,7 +38,7 @@ import kotlin.reflect.KProperty
3838/* *
3939 * Groups the rows of this [DataFrame] based on the values in one or more specified [key columns][cols].
4040 * Each unique value in a key column — or a unique tuple of values for multiple columns —
41- * defines a group consisting of all rows where the column(s) contain that value combination.
41+ * defines the group consisting of all rows where the column(s) contain that value combination.
4242 *
4343 * Returns a [GroupBy] — a dataframe-like structure that contains all unique combinations of key values
4444 * along with the corresponding groups of rows (each represented as a [DataFrame]) as rows.
@@ -79,40 +79,40 @@ internal interface GroupByDocs {
7979 *
8080 * ### Create and transform [GroupBy]
8181 *
82- * [**`groupBy`**][groupBy]**`(`**`moveToTop: `[`Boolean`][Boolean]**` = true) { `**`columns: `[`ColumnsSelector`][ColumnsSelector]**` }`**
82+ * [**`groupBy`**][groupBy]**`(`**`moveToTop: `[`Boolean`][Boolean]**` = true) { `**`columns: `[`ColumnsSelector`][ColumnsSelector]**` }`**
8383 *
8484 * {@include [Indent]}
85- * `\[ `__`.`__[**`sortByGroup`**][GroupBy.sortByGroup]**`() `**
85+ * `\[ `__`.`__[**`sortByGroup`**][GroupBy.sortByGroup]**`() `**`]`
8686 *
8787 * {@include [Indent]}
88- * `| `__`.`__[**`sortByGroupDesc`**][GroupBy.sortByGroupDesc]**`() `**
88+ * `\[ `__`.`__[**`sortByGroupDesc`**][GroupBy.sortByGroupDesc]**`() `**`]`
8989 *
9090 * {@include [Indent]}
91- * `| `__`.`__[**`sortByCount`**][GroupBy.sortByCount]**`() `**
91+ * `\[ `__`.`__[**`sortByCount`**][GroupBy.sortByCount]**`() `**`]`
9292 *
9393 * {@include [Indent]}
94- * `| `__`.`__[**`sortByCountAsc`**][GroupBy.sortByCountAsc]**`() `**
94+ * `\[ `__`.`__[**`sortByCountAsc`**][GroupBy.sortByCountAsc]**`() `**`]`
9595 *
9696 * {@include [Indent]}
97- * `| `__`.`__[**`sortByKey`**][GroupBy.sortByKey]**`() `**
97+ * `\[ `__`.`__[**`sortByKey`**][GroupBy.sortByKey]**`() `**`]`
9898 *
9999 * {@include [Indent]}
100- * `| `__`.`__[**`sortByKeyDesc`**][GroupBy.sortByKeyDesc]**`() `**`]`
100+ * `\[ `__`.`__[**`sortByKeyDesc`**][GroupBy.sortByKeyDesc]**`() `**`]`
101101 *
102102 * {@include [Indent]}
103- * `\[ `__`.`__[**`sortBy`**][GroupBy.sortBy]**` { `**`columns: `[`ColumnsSelector`][ColumnsSelector]**` } `**
103+ * `\[ `__`.`__[**`sortBy`**][GroupBy.sortBy]**` { `**`columns: `[`ColumnsSelector`][ColumnsSelector]**` } `**`]`
104104 *
105105 * {@include [Indent]}
106- * `| `__`.`__[**`sortByDesc`**][GroupBy.sortByDesc]**` { `**`columns: `[`ColumnsSelector`][ColumnsSelector]**` } `**`]`
106+ * `\[ `__`.`__[**`sortByDesc`**][GroupBy.sortByDesc]**` { `**`columns: `[`ColumnsSelector`][ColumnsSelector]**` } `**`]`
107107 *
108108 * {@include [Indent]}
109- * `\[ `__`.`__[**`updateGroups`**][GroupBy.updateGroups]**` { `**`frameExpression`**` } `**`]`
109+ * `\[ `__`.`__[**`updateGroups`**][GroupBy.updateGroups]**` { `**`frameExpression`**` } `**`]`
110110 *
111111 * {@include [Indent]}
112- * `\[ `__`.`__[**`filter`**][GroupBy.filter]**` { `**`predicate: `[`GroupedRowFilter`][GroupedRowFilter]**` } `**`]`
112+ * `\[ `__`.`__[**`filter`**][GroupBy.filter]**` { `**`predicate: `[`GroupedRowFilter`][GroupedRowFilter]**` } `**`]`
113113 *
114114 * {@include [Indent]}
115- * `\[ `__`.`__[**`add`**][GroupBy.add]**`(`**`column: `[`DataColumn`][DataColumn]**`) { `**`rowExpression: `[`RowExpression`][RowExpression]**` } `**`]`
115+ * `\[ `__`.`__[**`add`**][GroupBy.add]**`(`**`column: `[`DataColumn`][DataColumn]**`) { `**`rowExpression: `[`RowExpression`][RowExpression]**` } `**`]`
116116 *
117117 * ### Reduce [GroupBy] into [DataFrame]
118118 *
@@ -123,10 +123,10 @@ internal interface GroupByDocs {
123123 * `| `__`.`__[**`maxBy`**][GroupBy.maxBy]**` { `**`column: `[`ColumnSelector`][ColumnSelector]**` }`**
124124 *
125125 * {@include [Indent]}
126- * `| `__`.`__[**`first`**][GroupBy.first]` \[ `**` { `**`rowCondition: `[`RowFilter`][RowFilter]**` } `**`]`
126+ * `| `__`.`__[**`first`**][GroupBy.first]` \[ `**` { `**`rowCondition: `[`RowFilter`][RowFilter]**` } `**`]`
127127 *
128128 * {@include [Indent]}
129- * `| `__`.`__[**`last`**][GroupBy.last]` \[ `**`{ `**`rowCondition: `[`RowFilter`][RowFilter]**` } `**`]`
129+ * `| `__`.`__[**`last`**][GroupBy.last]` \[ `**` { `**`rowCondition: `[`RowFilter`][RowFilter]**` } `**`]`
130130 *
131131 * {@include [Indent]}
132132 * __`.`__[**`concat`**][ReducedGroupBy.concat]**`() `**
@@ -234,7 +234,7 @@ internal interface GroupByDocs {
234234 * * [sortBy][GroupBy.sortBy] / [sortByDesc][GroupBy.sortByDesc] — sorts the **order of rows within each group**
235235 * by one or more column values;
236236 * * [updateGroups][GroupBy.updateGroups] — transforms each group into a new one;
237- * * [filter][GroupBy.filter] — filters group rows by the given predicate (as usual [DataFrame.filter]).
237+ * * [filter][GroupBy.filter] — filters group rows by the given predicate (as usual [DataFrame.filter]);
238238 * * [add][GroupBy.add] — adds a new column to each group.
239239 *
240240 * Each method returns a new [GroupBy] with updated group order or modified group content.
@@ -392,7 +392,7 @@ public fun <T> DataFrame<T>.groupBy(vararg cols: AnyColumnReference, moveToTop:
392392 * @include [PivotGroupByDocs.CommonDescription]
393393 */
394394@ExcludeFromSources
395- internal interface GroupByForPivotDocs
395+ private interface GroupByForPivotDocs
396396
397397/* *
398398 * {@include [GroupByForPivotDocs]}
@@ -508,7 +508,7 @@ public val <T, G> GroupedDataRow<T, G>.group: DataFrame<G>
508508public data class GroupWithKey <T , G >(val key : DataRow <T >, val group : DataFrame <G >)
509509
510510/* *
511- * A dataframe-like structure that contains all unique combinations of key values
511+ * A dataframe-like structure that contains all unique combinations of key- values
512512 * along with the corresponding groups of rows (each represented as a [DataFrame]).
513513 *
514514 * Consists of two main parts:
@@ -571,7 +571,7 @@ public interface GroupBy<out T, out G> : Grouped<G> {
571571 * a row from [keys] and its corresponding group of rows (as [DataFrame]).
572572 *
573573 * If [groupedColumnName] is provided, the groups will be stored
574- * in a [FrameColumn] with that name; otherwise, a default name is used.
574+ * in a [FrameColumn] with that name; otherwise, a default name "group" is used.
575575 *
576576 * @param groupedColumnName The name of the column in which to store grouped data;
577577 * if `null`, a default name will be used.
0 commit comments