@@ -163,16 +163,16 @@ internal interface GroupByDocs {
163163 * ### Pivot [GroupBy] into [PivotGroupBy] and reduce / aggregate it
164164 *
165165 * {@include [Indent]}
166- * `| `__`.`__ [**`pivot`**][GroupBy.pivot]**` { `**`columns: `[`ColumnsSelector`][ColumnsSelector]**` }`**
166+ * [GroupBy][GroupBy]`.` [**`pivot`**][GroupBy.pivot]**` { `**`columns: `[`ColumnsSelector`][ColumnsSelector]**` }`**
167167 *
168168 * {@include [Indent]}
169169 * ` \[ `__`.`__[**`default`**][PivotGroupBy.default]**`(`**`defaultValue`**`) `**`]`
170170 *
171171 * {@include [Indent]}
172- * `| ` __`.`__[<pivot_reducer >][PivotGroupByDocs.Reducing]
172+ * __`.`__[<pivot_groupBy_reducer >][PivotGroupByDocs.Reducing]
173173 *
174174 * {@include [Indent]}
175- * `| `__`.`__[<pivot_aggregator >][PivotGroupByDocs.Aggregation]
175+ * `| `__`.`__[<pivot_groupBy_groupBy >][PivotGroupByDocs.Aggregation]
176176 *
177177 * Check out [PivotGroupBy Grammar][PivotGroupByDocs.Grammar] for more information.
178178 */
@@ -262,8 +262,8 @@ internal interface GroupByDocs {
262262 * These functions return a [ReducedGroupBy], which can then be transformed into a new [DataFrame]
263263 * containing the reduced rows (either original or transformed) using one of the following methods:
264264 * * [concat][ReducedGroupBy.concat] — simply concatenates all reduced rows;
265- * * [values][ReducedGroupBy.values] — creates a [DataFrame] with new rows by transforming each reduced row
266- * using [ColumnsForAggregateSelectionDsl];
265+ * * [values][ReducedGroupBy.values] — creates a [DataFrame] containing the values
266+ * from the reduced rows in the selected columns.
267267 * * [into][ReducedGroupBy.into] — creates a new column with values computed with [RowExpression] on each row,
268268 * or a new [column group][org.jetbrains.kotlinx.dataframe.columns.ColumnGroup]
269269 * containing each group reduced to a single row;
@@ -289,14 +289,16 @@ internal interface GroupByDocs {
289289 * The following aggregation methods are available:
290290 * * [concat][GroupBy.concat] — concatenates all rows from all groups into a single [DataFrame],
291291 * without preserving grouping keys;
292+ * * [toDataFrame][GroupBy.toDataFrame] — returns this [GroupBy] as [DataFrame] with the grouping keys and
293+ * corresponding groups in [FrameColumn].
292294 * * [concatWithKeys][GroupBy.concatWithKeys] — a variant of [concat][GroupBy.concat] that also includes
293295 * grouping keys that were not present in the original [DataFrame];
294296 * * [into][GroupBy.into] — creates a new column containing a list of values computed with a [RowExpression]
295297 * for each group, or a new [frame column][org.jetbrains.kotlinx.dataframe.columns.FrameColumn]
296298 * containing the groups themselves;
297- * * [values][ReducedGroupBy .values] — creates a [DataFrame] with new rows produced by transforming
298- * each group using [ColumnsForAggregateSelectionDsl];
299- * * [count][Grouped.count] — returns a [DataFrame] containing the grouping key columns and an additional column
299+ * * [values][Grouped .values] — creates a [DataFrame] containing values collected into a single [List]
300+ * from all rows of each group for the selected columns.
301+ * * [count][Grouped.count] — creates a [DataFrame] containing the grouping key columns and an additional column
300302 * with the number of rows in each corresponding group;
301303 * * [aggregate][Grouped.aggregate] — performs a set of custom aggregations using [AggregateDsl],
302304 * allowing you to compute one or more derived values per group;
@@ -375,7 +377,7 @@ public fun <T> DataFrame<T>.groupBy(vararg cols: AnyColumnReference, moveToTop:
375377// endregion
376378
377379/* *
378- * Groups the rows of this [Pivot] into [PivotGroupBy]
380+ * Groups the rows of this [Pivot] groups
379381 * based on the values in one or more specified [key columns][\columns].
380382 *
381383 * Works like regular [DataFrame.groupBy] on pivot groups.
0 commit comments