Skip to content

[ICLR 2026] RefAny3D: 3D Asset-Referenced Diffusion Models for Image Generation

License

Notifications You must be signed in to change notification settings

JudgementH/RefAny3D

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RefAny3D: 3D Asset-Referenced Diffusion Models for Image Generation

    HuggingFace HuggingFace

teaser

TODO List

  • Inference code and pretrained models.
  • Training code.
  • Training dataset.

Quickstart

Create environment

  1. Clone the repository and create a conda environment:
git clone https://github.com/JudgementH/RefAny3D.git
conda create -n r3d python=3.10
conda activate r3d
  1. Install requirements
pip install -r requirements.txt

Inference

python demo.py \
    --prompt "<text-prompt>" \
    --glb_path "<glb-file-path>" \
    --output_dir "<output-dir>"

Alternatively, we provide some example scripts:

bash scripts/demo_chair.sh

bash scripts/demo_traffic_cone.sh

Training

Download Dataset

First, download the training dataset and organize it in the appropriate directory structure.

Configure Training

  1. Edit the training configuration file train/config/train_refany3d.yaml:

    • Update json_file path under train.dataset section (default: "./dataset/meta_data.json")
    • Update data_root_path path under train.dataset section (default: "./dataset")

    Example configuration:

    train:
      dataset:
        json_file: "<path-to-your-meta-data.json>"
        data_root_path: "<path-to-your-dataset-root>"

Run Training

Execute the training script:

bash train/scripts/train_refany3d.sh

Note: The training script uses accelerate with 8 GPU processes by default. You can modify the number of processes in train/scripts/train_refany3d.sh by adjusting the --num_processes parameter.

About

[ICLR 2026] RefAny3D: 3D Asset-Referenced Diffusion Models for Image Generation

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published