Skip to content

IHI-Code-Club/ML_interpretability

 
 

Repository files navigation

ML-interpretability

Binder

Materials for ML interpretability Code Club workshop

Topic Simple interpretability methods for black-box machine learning systems
Presenter Dr. Adriano Soares Koshiyama
Date Wednesday, 16 September 2020
Length 60 mins
Language python
Libraries pandas, numpy, sklearn, matplotlib, seaborn
Software used Jupyter Notebook

Repository contents

File Description
Interpretability Code Club.pdf Presentation file
NotebookInterpretability.ipynb Notebook file for interactive coding session
mortgage_data_balanced.csv Data for interactive coding session

Recording

via MS Stream

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 100.0%