Skip to content

Production-ready boilerplate for AI agent projects using NodeBench MCP. 129 tools, AGENTS.md, quality gates, parallel agents, CI, Docker.

License

Notifications You must be signed in to change notification settings

HomenShum/nodebench-boilerplate

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

nodebench-boilerplate

Production-ready boilerplate for AI agent projects using NodeBench MCP.

Pre-configured with 134 MCP tools, quality gates, parallel agent infrastructure, GitHub Actions CI, and Docker.

What's Included

File Purpose
AGENTS.md Agent instructions — every AI session starts here
.mcp.json NodeBench MCP server configuration
package.json Pre-wired scripts: mcp:start, mcp:meta, mcp:lite, mcp:core, mcp:full
.github/workflows/ci.yml GitHub Actions CI (Node 20 + 22, build, test, lint)
Dockerfile Multi-stage production Docker build
tsconfig.json Strict TypeScript with ESM
src/index.ts Starter entry point
src/index.test.ts Example test (Vitest)

Quick Start

# Clone this template
gh repo create my-project --template HomenShum/nodebench-boilerplate --clone
cd my-project

# Install
npm install

# Start NodeBench MCP (full — 134 tools)
npm run mcp:start

# Or use presets
npm run mcp:meta    #   5 tools — discovery-only front door
npm run mcp:lite    #  36 tools — lightweight
npm run mcp:core    #  84 tools — recommended
npm run mcp:full    # 134 tools — everything

Presets

Preset Tools Use Case
meta 5 Discovery-first / front door — only meta + discovery tools. Agent self-escalates.
lite 36 Solo dev, standard tasks — fast, low token overhead
core 84 Team with methodology needs — full flywheel loop
full 134 Multi-agent / full pipeline — parallel + self-eval + everything

For AI Agents

Once MCP is running, agents should:

  1. discover_tools("what you want to do") — Multi-modal search across 134 tools
  2. getMethodology("mandatory_flywheel") — Get step-by-step methodology
  3. get_workflow_chain("new_feature") — Get pre-built tool sequences
  4. findTools("keyword") — Search loaded tools by keyword

With --preset meta, the agent starts with only these 5 tools and discovers what it needs via discover_tools, then requests the user escalate to a larger preset.

Search Modes

The discover_tools search engine supports 7 modes:

Mode What it does
hybrid (default) Runs all 10 strategies: keyword, fuzzy, n-gram, prefix, semantic, TF-IDF, regex, bigram, domain-boost, dense
fuzzy Tolerates typos (Levenshtein distance)
regex Pattern matching against tool names/descriptions
prefix Matches tool names starting with query
semantic Expands synonyms (e.g., "check" also searches "verify", "validate")
exact Exact name/tag match only
dense TF-IDF cosine similarity for vector-like semantic search

Quality Gates

Every change should pass through:

search_all_knowledge → start_verification_cycle → [phases 1-6] → run_mandatory_flywheel → record_learning

Parallel Agents

For multi-agent work (Anthropic C-Compiler pattern):

bootstrap_parallel_agents → assign_agent_role → claim_agent_task → [work] → release_agent_task

Available Scripts

Script Command
npm run build TypeScript compilation
npm test Run tests (Vitest)
npm run dev Watch mode development
npm run mcp:start Launch NodeBench MCP (full preset)
npm run mcp:meta Launch with meta preset (5 tools — discovery only)
npm run mcp:lite Launch with lite preset (36 tools)
npm run mcp:core Launch with core preset (84 tools)

Agent Contract (Front-Door Pattern)

Every agent session should follow this contract:

# 1. FRONT DOOR — always start here
search_all_knowledge("<task>")
getMethodology("mandatory_flywheel")
discover_tools("<task>", { explain: true })
get_workflow_chain("fix_bug" | "new_feature" | ...)

# 2. BEFORE IMPLEMENTATION
run_recon + assess_risk

# 3. BEFORE SHIP
log_test_result → run_quality_gate → run_mandatory_flywheel → record_learning

Use the agent-contract prompt for the full behavioral specification.

Docker

docker build -t my-project .
docker run my-project

License

MIT

About

Production-ready boilerplate for AI agent projects using NodeBench MCP. 129 tools, AGENTS.md, quality gates, parallel agents, CI, Docker.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •