Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 6 additions & 4 deletions tree.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@
import operator
import treePlotter
from collections import Counter
from copy import deepcopy


pre_pruning = True
Expand Down Expand Up @@ -55,10 +56,10 @@ def cal_entropy(dataset):
labelCounts = {}
# 给所有可能分类创建字典
for featVec in dataset:
currentlabel = featVec[-1]
currentlabel = featVec[-1]
if currentlabel not in labelCounts.keys():
labelCounts[currentlabel] = 0
labelCounts[currentlabel] += 1
labelCounts[currentlabel] += 1
Ent = 0.0
for key in labelCounts:
p = float(labelCounts[key]) / numEntries
Expand Down Expand Up @@ -184,6 +185,7 @@ def ID3_createTree(dataset, labels, test_dataset):
print(u"此时最优索引为:" + (bestFeatLabel))

ID3Tree = {bestFeatLabel: {}}
labels_for_post_pruning = deepcopy(labels)
del (labels[bestFeat])
# 得到列表包括节点所有的属性值
featValues = [example[bestFeat] for example in dataset]
Expand Down Expand Up @@ -224,8 +226,8 @@ def ID3_createTree(dataset, labels, test_dataset):

if post_pruning:
tree_output = classifytest(ID3Tree,
featLabels=['年龄段', '有工作', '有自己的房子', '信贷情况'],
testDataSet=test_dataset)
featLabels=labels_for_post_pruning,
testDataSet=test_dataset)# 这里传入的数据集的特征集合是变化后的,所以应该传入变化的特征集
ans = []
for vec in test_dataset:
ans.append(vec[-1])
Expand Down