Skip to content

CabbageZhi/MSDFNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

29 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Pytorch code for MSDFNet

MSDFNet: Multi-Scale Detail Feature Fusion Encoder-Decoder Network for Self-Supervised Monocular Thermal Image Depth Estimation
image

Requirement

This code was developed and tested with python 3.7, Pytorch 1.5.1, and CUDA 10.2 on Ubuntu 16.04.

Dataset

For ViViD Raw dataset, download the dataset provided on the official website.
For post-processed ViViD++ dataset, please download the dataset provided on the link.
After download our post-processed dataset, unzip the files to form the below structure.

Expected dataset structure for the post-processed ViViD dataset:

KAIST_VIVID/
  calibration/
    cali_ther_to_rgb.yaml, ...
  indoor_aggressive_local/
    RGB/
      data/
        000001.png, 000002.png, ...
      timestamps.txt
    Thermal/
      data/
      timestamps.txt
    Lidar/
      data/
      timestamps.txt
    Warped_Depth/
      data/
      timestamps.txt
    avg_velocity_thermal.txt
    poses_thermal.txt
    ...
  indoor_aggressive_global/
    ...	
  outdoor_robust_day1/
    ...
  outdoor_robust_night1/
    ...

Upon the above dataset structure, you can generate training/testing dataset by running the script.

sh scripts/prepare_vivid_data.sh

Train

sh scripts/trai_indoor.sh
sh scripts/train_outdoor.sh

Evaluation

bash scripts/test_indoor.sh
bash scripts/test_outdoor.sh

References

Lee A J, Cho Y, Shin Y, et al. ViViD++: Vision for visibility dataset[J]. IEEE Robotics and Automation Letters, 2022, 7(3): 6282-6289.

Shin U, Park J, Kweon I S. Deep depth estimation from thermal image[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023: 1043-1053.

Shin U, Lee K, Lee B U, et al. Maximizing self-supervision from thermal image for effective self-supervised learning of depth and ego-motion[J]. IEEE Robotics and Automation Letters, 2022, 7(3): 7771-7778.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published