-
Notifications
You must be signed in to change notification settings - Fork 100
Open
Description
Hi, @warmspringwinds ,
I followed the steps from README.md. And start to run the first cell from fully_convolutional_networks.ipynb . However I got the following ValueError, could you suggest me how to fix this error?
(my environment: TF 0.12.1, python 2.7.13)
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-3-4efcd9f3827b> in <module>()
47 pred, fcn_16s_variables_mapping = FCN_8s(image_batch_tensor=image_batch_tensor,
48 number_of_classes=number_of_classes,
---> 49 is_training=False)
50
51 # The op for initializing the variables.
/data/code/Dan_segment/tf-image-segmentation/tf_image_segmentation/utils/inference.pyc in new_network_definition(*args, **kwargs)
51 kwargs['image_batch_tensor'] = resized_images_batch
52
---> 53 all_outputs = network_definition(*args, **kwargs)
54
55 all_outputs = list(all_outputs)
/data/code/Dan_segment/tf-image-segmentation/tf_image_segmentation/models/fcn_8s.pyc in FCN_8s(image_batch_tensor, number_of_classes, is_training)
77 is_training=is_training,
78 spatial_squeeze=False,
---> 79 fc_conv_padding='SAME')
80
81
/data/code/Dan_segment/models/slim/nets/vgg.pyc in vgg_16(inputs, num_classes, is_training, dropout_keep_prob, spatial_squeeze, scope, fc_conv_padding)
164 with slim.arg_scope([slim.conv2d, slim.fully_connected, slim.max_pool2d],
165 outputs_collections=end_points_collection):
--> 166 net = slim.repeat(inputs, 2, slim.conv2d, 64, [3, 3], scope='conv1')
167 net = slim.max_pool2d(net, [2, 2], scope='pool1')
168 net = slim.repeat(net, 2, slim.conv2d, 128, [3, 3], scope='conv2')
/root/anaconda2/envs/python_2.7_tf_0.12/lib/python2.7/site-packages/tensorflow/contrib/layers/python/layers/layers.pyc in repeat(inputs, repetitions, layer, *args, **kwargs)
1668 for i in range(repetitions):
1669 kwargs['scope'] = scope + '_' + str(i+1)
-> 1670 outputs = layer(outputs, *args, **kwargs)
1671 return outputs
1672
/root/anaconda2/envs/python_2.7_tf_0.12/lib/python2.7/site-packages/tensorflow/contrib/framework/python/ops/arg_scope.pyc in func_with_args(*args, **kwargs)
175 current_args = current_scope[key_func].copy()
176 current_args.update(kwargs)
--> 177 return func(*args, **current_args)
178 _add_op(func)
179 setattr(func_with_args, '_key_op', _key_op(func))
/root/anaconda2/envs/python_2.7_tf_0.12/lib/python2.7/site-packages/tensorflow/contrib/layers/python/layers/layers.pyc in convolution(inputs, num_outputs, kernel_size, stride, padding, data_format, rate, activation_fn, normalizer_fn, normalizer_params, weights_initializer, weights_regularizer, biases_initializer, biases_regularizer, reuse, variables_collections, outputs_collections, trainable, scope)
838 regularizer=weights_regularizer,
839 collections=weights_collections,
--> 840 trainable=trainable)
841 outputs = nn.convolution(input=inputs,
842 filter=weights,
/root/anaconda2/envs/python_2.7_tf_0.12/lib/python2.7/site-packages/tensorflow/contrib/framework/python/ops/arg_scope.pyc in func_with_args(*args, **kwargs)
175 current_args = current_scope[key_func].copy()
176 current_args.update(kwargs)
--> 177 return func(*args, **current_args)
178 _add_op(func)
179 setattr(func_with_args, '_key_op', _key_op(func))
/root/anaconda2/envs/python_2.7_tf_0.12/lib/python2.7/site-packages/tensorflow/contrib/framework/python/ops/variables.pyc in model_variable(name, shape, dtype, initializer, regularizer, trainable, collections, caching_device, device)
242 initializer=initializer, regularizer=regularizer,
243 trainable=trainable, collections=collections,
--> 244 caching_device=caching_device, device=device)
245
246
/root/anaconda2/envs/python_2.7_tf_0.12/lib/python2.7/site-packages/tensorflow/contrib/framework/python/ops/arg_scope.pyc in func_with_args(*args, **kwargs)
175 current_args = current_scope[key_func].copy()
176 current_args.update(kwargs)
--> 177 return func(*args, **current_args)
178 _add_op(func)
179 setattr(func_with_args, '_key_op', _key_op(func))
/root/anaconda2/envs/python_2.7_tf_0.12/lib/python2.7/site-packages/tensorflow/contrib/framework/python/ops/variables.pyc in variable(name, shape, dtype, initializer, regularizer, trainable, collections, caching_device, device)
206 trainable=trainable,
207 collections=collections,
--> 208 caching_device=caching_device)
209
210
/root/anaconda2/envs/python_2.7_tf_0.12/lib/python2.7/site-packages/tensorflow/python/ops/variable_scope.pyc in get_variable(name, shape, dtype, initializer, regularizer, trainable, collections, caching_device, partitioner, validate_shape, custom_getter)
1022 collections=collections, caching_device=caching_device,
1023 partitioner=partitioner, validate_shape=validate_shape,
-> 1024 custom_getter=custom_getter)
1025
1026
/root/anaconda2/envs/python_2.7_tf_0.12/lib/python2.7/site-packages/tensorflow/python/ops/variable_scope.pyc in get_variable(self, var_store, name, shape, dtype, initializer, regularizer, trainable, collections, caching_device, partitioner, validate_shape, custom_getter)
848 collections=collections, caching_device=caching_device,
849 partitioner=partitioner, validate_shape=validate_shape,
--> 850 custom_getter=custom_getter)
851
852 def _get_partitioned_variable(self,
/root/anaconda2/envs/python_2.7_tf_0.12/lib/python2.7/site-packages/tensorflow/python/ops/variable_scope.pyc in get_variable(self, name, shape, dtype, initializer, regularizer, reuse, trainable, collections, caching_device, partitioner, validate_shape, custom_getter)
344 reuse=reuse, trainable=trainable, collections=collections,
345 caching_device=caching_device, partitioner=partitioner,
--> 346 validate_shape=validate_shape)
347
348 def _get_partitioned_variable(
/root/anaconda2/envs/python_2.7_tf_0.12/lib/python2.7/site-packages/tensorflow/python/ops/variable_scope.pyc in _true_getter(name, shape, dtype, initializer, regularizer, reuse, trainable, collections, caching_device, partitioner, validate_shape)
329 initializer=initializer, regularizer=regularizer, reuse=reuse,
330 trainable=trainable, collections=collections,
--> 331 caching_device=caching_device, validate_shape=validate_shape)
332
333 if custom_getter is not None:
/root/anaconda2/envs/python_2.7_tf_0.12/lib/python2.7/site-packages/tensorflow/python/ops/variable_scope.pyc in _get_single_variable(self, name, shape, dtype, initializer, regularizer, partition_info, reuse, trainable, collections, caching_device, validate_shape)
630 " Did you mean to set reuse=True in VarScope? "
631 "Originally defined at:\n\n%s" % (
--> 632 name, "".join(traceback.format_list(tb))))
633 found_var = self._vars[name]
634 if not shape.is_compatible_with(found_var.get_shape()):
ValueError: Variable fcn_8s/vgg_16/conv1/conv1_1/weights already exists, disallowed. Did you mean to set reuse=True in VarScope? Originally defined at:
File "/root/anaconda2/envs/python_2.7_tf_0.12/lib/python2.7/site-packages/tensorflow/contrib/framework/python/ops/variables.py", line 208, in variable
caching_device=caching_device)
File "/root/anaconda2/envs/python_2.7_tf_0.12/lib/python2.7/site-packages/tensorflow/contrib/framework/python/ops/arg_scope.py", line 177, in func_with_args
return func(*args, **current_args)
File "/root/anaconda2/envs/python_2.7_tf_0.12/lib/python2.7/site-packages/tensorflow/contrib/framework/python/ops/variables.py", line 244, in model_variable
caching_device=caching_device, device=device)
Metadata
Metadata
Assignees
Labels
No labels