diff --git a/notebooks/tutorials/01_introduction_to_orcapod.ipynb b/notebooks/tutorials/01_introduction_to_orcapod.ipynb
index ef11dc8..94f24dc 100644
--- a/notebooks/tutorials/01_introduction_to_orcapod.ipynb
+++ b/notebooks/tutorials/01_introduction_to_orcapod.ipynb
@@ -106,6 +106,16 @@
"stream = op.streams.TableStream(table, tag_columns=[\"a\", \"b\"])"
]
},
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "b1e9393d",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "stream = op.sources.DataFrameSource(table, tag_columns=[\"a\", \"b\"])"
+ ]
+ },
{
"cell_type": "markdown",
"id": "93ac78cc",
@@ -124,7 +134,7 @@
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": 7,
"id": "2d4a0812",
"metadata": {},
"outputs": [
@@ -153,7 +163,7 @@
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": 8,
"id": "79e67bfc",
"metadata": {},
"outputs": [
@@ -165,7 +175,7 @@
" ({'a': 3, 'b': 'z'}, {'c': True, 'd': 3.3})]"
]
},
- "execution_count": 7,
+ "execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
@@ -175,17 +185,41 @@
]
},
{
- "cell_type": "markdown",
- "id": "20fa500e",
+ "cell_type": "code",
+ "execution_count": 9,
+ "id": "52baee9c",
"metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "DataFrameSource[DataFrameSource]\n",
+ "
\n",
+ "
shape: (3, 4)| *a | *b | c | d |
|---|
| i64 | str | bool | f64 |
| 1 | "x" | true | 1.1 |
| 2 | "y" | false | 2.2 |
| 3 | "z" | true | 3.3 |
"
+ ],
+ "text/plain": [
+ "DataFrameSource"
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "Every stream can be converted into a Polars dataframe with `as_df()` method"
+ "stream"
]
},
{
"cell_type": "code",
- "execution_count": 8,
- "id": "52baee9c",
+ "execution_count": 10,
+ "id": "f83b5062",
"metadata": {},
"outputs": [
{
@@ -213,7 +247,7 @@
"└─────┴─────┴───────┴─────┘"
]
},
- "execution_count": 8,
+ "execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
@@ -240,7 +274,7 @@
},
{
"cell_type": "code",
- "execution_count": 9,
+ "execution_count": 11,
"id": "4648fbe9",
"metadata": {},
"outputs": [
@@ -254,22 +288,22 @@
" white-space: pre-wrap;\n",
"}\n",
"\n",
- "shape: (3, 6)| a | b | c | d | _source_c | _source_d |
|---|
| i64 | str | bool | f64 | str | str |
| 1 | "x" | true | 1.1 | null | null |
| 2 | "y" | false | 2.2 | null | null |
| 3 | "z" | true | 3.3 | null | null |
"
+ "shape: (3, 6)| a | b | c | d | _source_c | _source_d |
|---|
| i64 | str | bool | f64 | str | str |
| 1 | "x" | true | 1.1 | "data_frame:source_5a4c41dbd055… | "data_frame:source_5a4c41dbd055… |
| 2 | "y" | false | 2.2 | "data_frame:source_5a4c41dbd055… | "data_frame:source_5a4c41dbd055… |
| 3 | "z" | true | 3.3 | "data_frame:source_5a4c41dbd055… | "data_frame:source_5a4c41dbd055… |
"
],
"text/plain": [
"shape: (3, 6)\n",
- "┌─────┬─────┬───────┬─────┬───────────┬───────────┐\n",
- "│ a ┆ b ┆ c ┆ d ┆ _source_c ┆ _source_d │\n",
- "│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │\n",
- "│ i64 ┆ str ┆ bool ┆ f64 ┆ str ┆ str │\n",
- "╞═════╪═════╪═══════╪═════╪═══════════╪═══════════╡\n",
- "│ 1 ┆ x ┆ true ┆ 1.1 ┆ null ┆ null │\n",
- "│ 2 ┆ y ┆ false ┆ 2.2 ┆ null ┆ null │\n",
- "│ 3 ┆ z ┆ true ┆ 3.3 ┆ null ┆ null │\n",
- "└─────┴─────┴───────┴─────┴───────────┴───────────┘"
+ "┌─────┬─────┬───────┬─────┬─────────────────────────────────┬─────────────────────────────────┐\n",
+ "│ a ┆ b ┆ c ┆ d ┆ _source_c ┆ _source_d │\n",
+ "│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │\n",
+ "│ i64 ┆ str ┆ bool ┆ f64 ┆ str ┆ str │\n",
+ "╞═════╪═════╪═══════╪═════╪═════════════════════════════════╪═════════════════════════════════╡\n",
+ "│ 1 ┆ x ┆ true ┆ 1.1 ┆ data_frame:source_5a4c41dbd055… ┆ data_frame:source_5a4c41dbd055… │\n",
+ "│ 2 ┆ y ┆ false ┆ 2.2 ┆ data_frame:source_5a4c41dbd055… ┆ data_frame:source_5a4c41dbd055… │\n",
+ "│ 3 ┆ z ┆ true ┆ 3.3 ┆ data_frame:source_5a4c41dbd055… ┆ data_frame:source_5a4c41dbd055… │\n",
+ "└─────┴─────┴───────┴─────┴─────────────────────────────────┴─────────────────────────────────┘"
]
},
- "execution_count": 9,
+ "execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
@@ -288,7 +322,7 @@
},
{
"cell_type": "code",
- "execution_count": 10,
+ "execution_count": 12,
"id": "001b2a9c",
"metadata": {},
"outputs": [
@@ -317,7 +351,7 @@
"└─────┴─────┴───────┴─────┴─────────────────────────────────┘"
]
},
- "execution_count": 10,
+ "execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
@@ -336,7 +370,7 @@
},
{
"cell_type": "code",
- "execution_count": 11,
+ "execution_count": 13,
"id": "d3b9e394",
"metadata": {},
"outputs": [
@@ -365,7 +399,7 @@
"└─────┴─────┴───────┴─────┴─────────────────────────────────┘"
]
},
- "execution_count": 11,
+ "execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
@@ -384,7 +418,7 @@
},
{
"cell_type": "code",
- "execution_count": 12,
+ "execution_count": 14,
"id": "92cbfa50",
"metadata": {},
"outputs": [
@@ -413,7 +447,7 @@
"└─────┴─────┴───────┴─────┴──────────────────┘"
]
},
- "execution_count": 12,
+ "execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
@@ -432,7 +466,7 @@
},
{
"cell_type": "code",
- "execution_count": 13,
+ "execution_count": 15,
"id": "bf6acd59",
"metadata": {},
"outputs": [
@@ -441,7 +475,7 @@
"text/plain": [
"pyarrow.Table\n",
"a: int64\n",
- "b: string\n",
+ "b: large_string\n",
"c: bool\n",
"d: double\n",
"_context_key: large_string\n",
@@ -453,7 +487,7 @@
"_context_key: [[\"std:v0.1:default\",\"std:v0.1:default\",\"std:v0.1:default\"]]"
]
},
- "execution_count": 13,
+ "execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
@@ -488,13 +522,14 @@
},
{
"cell_type": "code",
- "execution_count": 14,
+ "execution_count": 16,
"id": "68bff9fb",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
+ "DataFrameSource[DataFrameSource]\n",
"\n",
- "
shape: (3, 4)| a | b | c | d |
|---|
| i64 | str | bool | f64 |
| 1 | "x" | true | 1.1 |
| 2 | "y" | false | 2.2 |
| 3 | "z" | true | 3.3 |
"
+ "shape: (3, 4)| *a | *b | c | d |
|---|
| i64 | str | bool | f64 |
| 1 | "x" | true | 1.1 |
| 2 | "y" | false | 2.2 |
| 3 | "z" | true | 3.3 |
"
],
"text/plain": [
- "shape: (3, 4)\n",
- "┌─────┬─────┬───────┬─────┐\n",
- "│ a ┆ b ┆ c ┆ d │\n",
- "│ --- ┆ --- ┆ --- ┆ --- │\n",
- "│ i64 ┆ str ┆ bool ┆ f64 │\n",
- "╞═════╪═════╪═══════╪═════╡\n",
- "│ 1 ┆ x ┆ true ┆ 1.1 │\n",
- "│ 2 ┆ y ┆ false ┆ 2.2 │\n",
- "│ 3 ┆ z ┆ true ┆ 3.3 │\n",
- "└─────┴─────┴───────┴─────┘"
+ "DataFrameSource"
]
},
- "execution_count": 14,
+ "execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
- "stream.as_df()"
+ "stream"
]
},
{
"cell_type": "code",
- "execution_count": 15,
+ "execution_count": 17,
"id": "c78096a7",
"metadata": {},
"outputs": [],
@@ -538,7 +564,7 @@
},
{
"cell_type": "code",
- "execution_count": 16,
+ "execution_count": 18,
"id": "6f8a2f0b",
"metadata": {},
"outputs": [],
@@ -548,7 +574,7 @@
},
{
"cell_type": "code",
- "execution_count": 17,
+ "execution_count": 19,
"id": "e1ac13b1",
"metadata": {},
"outputs": [
@@ -558,7 +584,7 @@
"{'a': 1, 'b': 'x'}"
]
},
- "execution_count": 17,
+ "execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
@@ -569,7 +595,7 @@
},
{
"cell_type": "code",
- "execution_count": 18,
+ "execution_count": 20,
"id": "263fa1c5",
"metadata": {},
"outputs": [
@@ -579,7 +605,7 @@
"{'c': True, 'd': 1.1}"
]
},
- "execution_count": 18,
+ "execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
@@ -598,7 +624,7 @@
},
{
"cell_type": "code",
- "execution_count": 19,
+ "execution_count": 21,
"id": "42158816",
"metadata": {},
"outputs": [
@@ -608,7 +634,7 @@
"1"
]
},
- "execution_count": 19,
+ "execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
@@ -619,7 +645,7 @@
},
{
"cell_type": "code",
- "execution_count": 20,
+ "execution_count": 22,
"id": "6a792175",
"metadata": {},
"outputs": [
@@ -629,7 +655,7 @@
"'x'"
]
},
- "execution_count": 20,
+ "execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
@@ -640,7 +666,7 @@
},
{
"cell_type": "code",
- "execution_count": 21,
+ "execution_count": 23,
"id": "a28f2051",
"metadata": {},
"outputs": [
@@ -650,7 +676,7 @@
"True"
]
},
- "execution_count": 21,
+ "execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
@@ -661,7 +687,7 @@
},
{
"cell_type": "code",
- "execution_count": 22,
+ "execution_count": 24,
"id": "981e6c44",
"metadata": {},
"outputs": [
@@ -671,7 +697,7 @@
"1.1"
]
},
- "execution_count": 22,
+ "execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
@@ -690,7 +716,7 @@
},
{
"cell_type": "code",
- "execution_count": 23,
+ "execution_count": 25,
"id": "56423d2c",
"metadata": {},
"outputs": [
@@ -700,7 +726,7 @@
"{'c': bool, 'd': float}"
]
},
- "execution_count": 23,
+ "execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
@@ -712,7 +738,7 @@
},
{
"cell_type": "code",
- "execution_count": 24,
+ "execution_count": 26,
"id": "d5e02f81",
"metadata": {},
"outputs": [
@@ -722,7 +748,7 @@
"('c', 'd')"
]
},
- "execution_count": 24,
+ "execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
@@ -742,7 +768,7 @@
},
{
"cell_type": "code",
- "execution_count": 25,
+ "execution_count": 27,
"id": "b1b18ee4",
"metadata": {},
"outputs": [
@@ -757,7 +783,7 @@
"d: [[1.1]]"
]
},
- "execution_count": 25,
+ "execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
@@ -766,6 +792,27 @@
"packet.as_table()"
]
},
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "id": "1cef6251",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "{'c': True, 'd': 1.1}"
+ ]
+ },
+ "execution_count": 28,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "packet.as_dict()"
+ ]
+ },
{
"cell_type": "markdown",
"id": "f4e4a38f",
@@ -776,7 +823,7 @@
},
{
"cell_type": "code",
- "execution_count": 26,
+ "execution_count": 29,
"id": "3aa4020e",
"metadata": {},
"outputs": [
@@ -787,7 +834,7 @@
"d: double"
]
},
- "execution_count": 26,
+ "execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
@@ -806,7 +853,7 @@
},
{
"cell_type": "code",
- "execution_count": 27,
+ "execution_count": 30,
"id": "bea6c771",
"metadata": {},
"outputs": [
@@ -816,7 +863,7 @@
"{'a': 1, 'b': 'x'}"
]
},
- "execution_count": 27,
+ "execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
@@ -835,17 +882,18 @@
},
{
"cell_type": "code",
- "execution_count": 28,
+ "execution_count": 31,
"id": "92f00feb",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
- "{'c': None, 'd': None}"
+ "{'c': 'data_frame:source_5a4c41dbd0552e031d5a::row_0::c',\n",
+ " 'd': 'data_frame:source_5a4c41dbd0552e031d5a::row_0::c::d'}"
]
},
- "execution_count": 28,
+ "execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
@@ -864,17 +912,20 @@
},
{
"cell_type": "code",
- "execution_count": 29,
+ "execution_count": 32,
"id": "bba2bc5c",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
- "{'c': True, 'd': 1.1, '_source_c': None, '_source_d': None}"
+ "{'c': True,\n",
+ " 'd': 1.1,\n",
+ " '_source_c': 'data_frame:source_5a4c41dbd0552e031d5a::row_0::c',\n",
+ " '_source_d': 'data_frame:source_5a4c41dbd0552e031d5a::row_0::c::d'}"
]
},
- "execution_count": 29,
+ "execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
@@ -885,7 +936,7 @@
},
{
"cell_type": "code",
- "execution_count": 30,
+ "execution_count": 33,
"id": "bd09d9d1",
"metadata": {},
"outputs": [
@@ -900,11 +951,11 @@
"----\n",
"c: [[true]]\n",
"d: [[1.1]]\n",
- "_source_c: [[null]]\n",
- "_source_d: [[null]]"
+ "_source_c: [[\"data_frame:source_5a4c41dbd0552e031d5a::row_0::c\"]]\n",
+ "_source_d: [[\"data_frame:source_5a4c41dbd0552e031d5a::row_0::c::d\"]]"
]
},
- "execution_count": 30,
+ "execution_count": 33,
"metadata": {},
"output_type": "execute_result"
}
@@ -923,7 +974,7 @@
},
{
"cell_type": "code",
- "execution_count": 31,
+ "execution_count": 34,
"id": "03219fd3",
"metadata": {},
"outputs": [
@@ -933,7 +984,7 @@
"ContentHash(method='arrow_v0.1', digest=b'n\\x11C\\x89ms\\xd3pux\\x11\\xb5,\\xee\\xea\\x8d\\x1dEl\\xd3\\x02\\x06Ao\\xbf\\x81uN\\x1c\\xeaUh')"
]
},
- "execution_count": 31,
+ "execution_count": 34,
"metadata": {},
"output_type": "execute_result"
}
@@ -968,7 +1019,7 @@
},
{
"cell_type": "code",
- "execution_count": 32,
+ "execution_count": 35,
"id": "11ee5130",
"metadata": {},
"outputs": [],
@@ -995,13 +1046,14 @@
},
{
"cell_type": "code",
- "execution_count": 33,
+ "execution_count": 36,
"id": "73b75816",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
+ "TableStream[TableStream]\n",
"\n",
- "
shape: (3, 3)| id | a | b |
|---|
| i64 | i64 | str |
| 0 | 1 | "x" |
| 1 | 2 | "y" |
| 4 | 3 | "z" |
"
+ "shape: (3, 3)| *id | a | b |
|---|
| i64 | i64 | str |
| 0 | 1 | "x" |
| 1 | 2 | "y" |
| 4 | 3 | "z" |
"
],
"text/plain": [
- "shape: (3, 3)\n",
- "┌─────┬─────┬─────┐\n",
- "│ id ┆ a ┆ b │\n",
- "│ --- ┆ --- ┆ --- │\n",
- "│ i64 ┆ i64 ┆ str │\n",
- "╞═════╪═════╪═════╡\n",
- "│ 0 ┆ 1 ┆ x │\n",
- "│ 1 ┆ 2 ┆ y │\n",
- "│ 4 ┆ 3 ┆ z │\n",
- "└─────┴─────┴─────┘"
+ "TableStream(table=['id', 'a', 'b'], tag_columns=('id',))"
]
},
- "execution_count": 33,
+ "execution_count": 36,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
- "stream1.as_df()"
+ "stream1"
]
},
{
"cell_type": "code",
- "execution_count": 34,
+ "execution_count": 37,
"id": "519754a0",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
+ "TableStream[TableStream]\n",
"\n",
- "
shape: (3, 3)| id | c | d |
|---|
| i64 | bool | f64 |
| 0 | true | 1.1 |
| 1 | false | 2.2 |
| 2 | true | 3.3 |
"
+ "shape: (3, 3)| *id | c | d |
|---|
| i64 | bool | f64 |
| 0 | true | 1.1 |
| 1 | false | 2.2 |
| 2 | true | 3.3 |
"
],
"text/plain": [
- "shape: (3, 3)\n",
- "┌─────┬───────┬─────┐\n",
- "│ id ┆ c ┆ d │\n",
- "│ --- ┆ --- ┆ --- │\n",
- "│ i64 ┆ bool ┆ f64 │\n",
- "╞═════╪═══════╪═════╡\n",
- "│ 0 ┆ true ┆ 1.1 │\n",
- "│ 1 ┆ false ┆ 2.2 │\n",
- "│ 2 ┆ true ┆ 3.3 │\n",
- "└─────┴───────┴─────┘"
+ "TableStream(table=['id', 'c', 'd'], tag_columns=('id',))"
]
},
- "execution_count": 34,
+ "execution_count": 37,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
- "stream2.as_df()"
+ "stream2"
]
},
{
@@ -1083,7 +1118,7 @@
},
{
"cell_type": "code",
- "execution_count": 35,
+ "execution_count": 38,
"id": "8299d4b1",
"metadata": {},
"outputs": [],
@@ -1093,7 +1128,7 @@
},
{
"cell_type": "code",
- "execution_count": 36,
+ "execution_count": 39,
"id": "dfc7ee9f",
"metadata": {},
"outputs": [],
@@ -1119,13 +1154,14 @@
},
{
"cell_type": "code",
- "execution_count": 37,
+ "execution_count": 40,
"id": "48ef0a8f",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
+ "KernelStream[Join]\n",
"\n",
- "
shape: (2, 5)| id | a | b | c | d |
|---|
| i64 | i64 | str | bool | f64 |
| 0 | 1 | "x" | true | 1.1 |
| 1 | 2 | "y" | false | 2.2 |
"
+ "shape: (2, 5)| *id | a | b | c | d |
|---|
| i64 | i64 | str | bool | f64 |
| 0 | 1 | "x" | true | 1.1 |
| 1 | 2 | "y" | false | 2.2 |
"
],
"text/plain": [
- "shape: (2, 5)\n",
- "┌─────┬─────┬─────┬───────┬─────┐\n",
- "│ id ┆ a ┆ b ┆ c ┆ d │\n",
- "│ --- ┆ --- ┆ --- ┆ --- ┆ --- │\n",
- "│ i64 ┆ i64 ┆ str ┆ bool ┆ f64 │\n",
- "╞═════╪═════╪═════╪═══════╪═════╡\n",
- "│ 0 ┆ 1 ┆ x ┆ true ┆ 1.1 │\n",
- "│ 1 ┆ 2 ┆ y ┆ false ┆ 2.2 │\n",
- "└─────┴─────┴─────┴───────┴─────┘"
+ "KernelStream(kernel=Join, upstreams=(TableStream(table=['id', 'a', 'b'], tag_columns=('id',)), TableStream(table=['id', 'c', 'd'], tag_columns=('id',))))"
]
},
- "execution_count": 37,
+ "execution_count": 40,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
- "joined_stream.as_df()"
+ "joined_stream"
]
},
{
@@ -1174,13 +1202,14 @@
},
{
"cell_type": "code",
- "execution_count": 38,
+ "execution_count": 41,
"id": "fbc58246",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
+ "KernelStream[Join]\n",
"\n",
- "
shape: (2, 5)| id | a | b | c | d |
|---|
| i64 | i64 | str | bool | f64 |
| 0 | 1 | "x" | true | 1.1 |
| 1 | 2 | "y" | false | 2.2 |
"
+ "shape: (2, 5)| *id | a | b | c | d |
|---|
| i64 | i64 | str | bool | f64 |
| 0 | 1 | "x" | true | 1.1 |
| 1 | 2 | "y" | false | 2.2 |
"
],
"text/plain": [
- "shape: (2, 5)\n",
- "┌─────┬─────┬─────┬───────┬─────┐\n",
- "│ id ┆ a ┆ b ┆ c ┆ d │\n",
- "│ --- ┆ --- ┆ --- ┆ --- ┆ --- │\n",
- "│ i64 ┆ i64 ┆ str ┆ bool ┆ f64 │\n",
- "╞═════╪═════╪═════╪═══════╪═════╡\n",
- "│ 0 ┆ 1 ┆ x ┆ true ┆ 1.1 │\n",
- "│ 1 ┆ 2 ┆ y ┆ false ┆ 2.2 │\n",
- "└─────┴─────┴─────┴───────┴─────┘"
+ "KernelStream(kernel=Join, upstreams=(TableStream(table=['id', 'a', 'b'], tag_columns=('id',)), TableStream(table=['id', 'c', 'd'], tag_columns=('id',))))"
]
},
- "execution_count": 38,
+ "execution_count": 41,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
- "stream1.join(stream2).as_df()"
+ "stream1.join(stream2)"
]
},
{
"cell_type": "code",
- "execution_count": 39,
+ "execution_count": 42,
"id": "c6b0b571",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
+ "KernelStream[SemiJoin]\n",
""
+ "shape: (2, 3)"
],
"text/plain": [
- "shape: (2, 3)\n",
- "┌─────┬─────┬─────┐\n",
- "│ id ┆ a ┆ b │\n",
- "│ --- ┆ --- ┆ --- │\n",
- "│ i64 ┆ i64 ┆ str │\n",
- "╞═════╪═════╪═════╡\n",
- "│ 0 ┆ 1 ┆ x │\n",
- "│ 1 ┆ 2 ┆ y │\n",
- "└─────┴─────┴─────┘"
+ "KernelStream(kernel=SemiJoin, upstreams=(TableStream(table=['id', 'a', 'b'], tag_columns=('id',)), TableStream(table=['id', 'c', 'd'], tag_columns=('id',))))"
]
},
- "execution_count": 39,
+ "execution_count": 42,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
- "stream1.semi_join(stream2).as_df()"
+ "stream1.semi_join(stream2)"
]
},
{
"cell_type": "code",
- "execution_count": 40,
+ "execution_count": 43,
"id": "5be42490",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
+ "KernelStream[MapPackets]\n",
"\n",
- "
shape: (3, 3)| id | a_mapped | b |
|---|
| i64 | i64 | str |
| 0 | 1 | "x" |
| 1 | 2 | "y" |
| 4 | 3 | "z" |
"
+ "shape: (3, 2)"
],
"text/plain": [
- "shape: (3, 3)\n",
- "┌─────┬──────────┬─────┐\n",
- "│ id ┆ a_mapped ┆ b │\n",
- "│ --- ┆ --- ┆ --- │\n",
- "│ i64 ┆ i64 ┆ str │\n",
- "╞═════╪══════════╪═════╡\n",
- "│ 0 ┆ 1 ┆ x │\n",
- "│ 1 ┆ 2 ┆ y │\n",
- "│ 4 ┆ 3 ┆ z │\n",
- "└─────┴──────────┴─────┘"
+ "KernelStream(kernel=MapPackets, upstreams=(TableStream(table=['id', 'a', 'b'], tag_columns=('id',)),))"
]
},
- "execution_count": 40,
+ "execution_count": 43,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
- "stream1.map_packets({\"a\": \"a_mapped\"}).as_df()"
+ "stream1.map_packets({\"a\": \"a_mapped\"})"
]
},
{
"cell_type": "code",
- "execution_count": 41,
+ "execution_count": 44,
"id": "c9c98304",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
+ "KernelStream[MapTags]\n",
"\n",
- "
shape: (3, 3)| name | a | b |
|---|
| i64 | i64 | str |
| 0 | 1 | "x" |
| 1 | 2 | "y" |
| 4 | 3 | "z" |
"
+ "shape: (3, 3)| *name | a | b |
|---|
| i64 | i64 | str |
| 0 | 1 | "x" |
| 1 | 2 | "y" |
| 4 | 3 | "z" |
"
],
"text/plain": [
- "shape: (3, 3)\n",
- "┌──────┬─────┬─────┐\n",
- "│ name ┆ a ┆ b │\n",
- "│ --- ┆ --- ┆ --- │\n",
- "│ i64 ┆ i64 ┆ str │\n",
- "╞══════╪═════╪═════╡\n",
- "│ 0 ┆ 1 ┆ x │\n",
- "│ 1 ┆ 2 ┆ y │\n",
- "│ 4 ┆ 3 ┆ z │\n",
- "└──────┴─────┴─────┘"
+ "KernelStream(kernel=MapTags, upstreams=(TableStream(table=['id', 'a', 'b'], tag_columns=('id',)),))"
]
},
- "execution_count": 41,
+ "execution_count": 44,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
- "stream1.map_tags({\"id\": \"name\"}).as_df()"
+ "stream1.map_tags({\"id\": \"name\"})"
]
},
{
@@ -1348,17 +1346,59 @@
},
{
"cell_type": "code",
- "execution_count": 42,
+ "execution_count": 45,
"id": "35423d9a",
"metadata": {},
"outputs": [],
"source": [
- "@op.function_pod(output_keys=[\"sum\"])\n",
+ "@op.function_pod(\"sum\")\n",
"def add_numbers(a: int, b: int) -> int:\n",
" \"\"\"A simple function pod that adds two numbers.\"\"\"\n",
" return a + b"
]
},
+ {
+ "cell_type": "code",
+ "execution_count": 46,
+ "id": "36c077ef",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "15"
+ ]
+ },
+ "execution_count": 46,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "add_numbers(5, 10)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 47,
+ "id": "caa64a92",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "FunctionPod:add_numbers"
+ ]
+ },
+ "execution_count": 47,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "add_numbers.pod"
+ ]
+ },
{
"cell_type": "markdown",
"id": "f737eeac",
@@ -1377,7 +1417,7 @@
},
{
"cell_type": "code",
- "execution_count": 43,
+ "execution_count": 48,
"id": "119d33a3",
"metadata": {},
"outputs": [],
@@ -1390,18 +1430,19 @@
" }\n",
")\n",
"\n",
- "input_stream = op.streams.TableStream(input_table, tag_columns=[\"id\"])"
+ "input_stream = op.sources.ArrowTableSource(input_table, tag_columns=[\"id\"])"
]
},
{
"cell_type": "code",
- "execution_count": 44,
+ "execution_count": 49,
"id": "e3b60eca",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
+ "ArrowTableSource[ArrowTableSource]\n",
"\n",
- "
shape: (5, 3)| id | a | b |
|---|
| i64 | i64 | i64 |
| 0 | 1 | 10 |
| 1 | 2 | 20 |
| 2 | 3 | 30 |
| 3 | 4 | 40 |
| 4 | 5 | 50 |
"
+ "shape: (5, 3)| *id | a | b |
|---|
| i64 | i64 | i64 |
| 0 | 1 | 10 |
| 1 | 2 | 20 |
| 2 | 3 | 30 |
| 3 | 4 | 40 |
| 4 | 5 | 50 |
"
],
"text/plain": [
- "shape: (5, 3)\n",
- "┌─────┬─────┬─────┐\n",
- "│ id ┆ a ┆ b │\n",
- "│ --- ┆ --- ┆ --- │\n",
- "│ i64 ┆ i64 ┆ i64 │\n",
- "╞═════╪═════╪═════╡\n",
- "│ 0 ┆ 1 ┆ 10 │\n",
- "│ 1 ┆ 2 ┆ 20 │\n",
- "│ 2 ┆ 3 ┆ 30 │\n",
- "│ 3 ┆ 4 ┆ 40 │\n",
- "│ 4 ┆ 5 ┆ 50 │\n",
- "└─────┴─────┴─────┘"
+ "ArrowTableSource"
]
},
- "execution_count": 44,
+ "execution_count": 49,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
- "input_stream.as_df()"
+ "input_stream"
]
},
{
"cell_type": "code",
- "execution_count": 45,
+ "execution_count": 50,
"id": "2b3b42ff",
"metadata": {},
"outputs": [],
"source": [
"# run the stream through the function pod!\n",
- "output_stream = add_numbers(input_stream)"
+ "output_stream = add_numbers.pod(input_stream)"
]
},
{
@@ -1456,34 +1486,14 @@
},
{
"cell_type": "code",
- "execution_count": 46,
+ "execution_count": 51,
"id": "ff05a8fc",
"metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "KernelStream(kernel=FunctionPod:add_numbers(a: int, b: int)-> , upstreams=(TableStream(table=['id', 'a', 'b'], tag_columns=('id',)),))"
- ]
- },
- "execution_count": 46,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "output_stream"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 47,
- "id": "35107c18",
- "metadata": {},
"outputs": [
{
"data": {
"text/html": [
+ "KernelStream[add_numbers]\n",
"\n",
- "
shape: (5, 2)| id | sum |
|---|
| i64 | i64 |
| 0 | 11 |
| 1 | 22 |
| 2 | 33 |
| 3 | 44 |
| 4 | 55 |
"
+ "shape: (5, 2)| *id | sum |
|---|
| i64 | i64 |
| 0 | 11 |
| 1 | 22 |
| 2 | 33 |
| 3 | 44 |
| 4 | 55 |
"
],
"text/plain": [
- "shape: (5, 2)\n",
- "┌─────┬─────┐\n",
- "│ id ┆ sum │\n",
- "│ --- ┆ --- │\n",
- "│ i64 ┆ i64 │\n",
- "╞═════╪═════╡\n",
- "│ 0 ┆ 11 │\n",
- "│ 1 ┆ 22 │\n",
- "│ 2 ┆ 33 │\n",
- "│ 3 ┆ 44 │\n",
- "│ 4 ┆ 55 │\n",
- "└─────┴─────┘"
+ "KernelStream(kernel=FunctionPod:add_numbers(a: int, b: int)-> , upstreams=(ArrowTableSource,))"
]
},
- "execution_count": 47,
+ "execution_count": 51,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
- "output_stream.as_df() # this triggers the computation!"
+ "output_stream"
]
},
{
@@ -1527,7 +1526,7 @@
},
{
"cell_type": "code",
- "execution_count": 48,
+ "execution_count": 52,
"id": "6431180f",
"metadata": {},
"outputs": [],
@@ -1553,7 +1552,7 @@
},
{
"cell_type": "code",
- "execution_count": 49,
+ "execution_count": 53,
"id": "9b7fcbbf",
"metadata": {},
"outputs": [],
@@ -1572,24 +1571,57 @@
},
{
"cell_type": "code",
- "execution_count": 50,
+ "execution_count": 54,
+ "id": "9371bbbf",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "ArrowTableSource[ArrowTableSource]\n",
+ "\n",
+ "
shape: (5, 3)| *id | a | b |
|---|
| i64 | i64 | i64 |
| 0 | 1 | 10 |
| 1 | 2 | 20 |
| 2 | 3 | 30 |
| 3 | 4 | 40 |
| 4 | 5 | 50 |
"
+ ],
+ "text/plain": [
+ "ArrowTableSource"
+ ]
+ },
+ "execution_count": 54,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "input_stream"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 55,
"id": "3e496c59",
"metadata": {},
"outputs": [],
"source": [
- "stats_output = compute_stats(input_stream)\n",
- "messages = build_message(stats_output)"
+ "stats_output = compute_stats.pod(input_stream)\n",
+ "messages = build_message.pod(stats_output)"
]
},
{
"cell_type": "code",
- "execution_count": 51,
- "id": "23c0fa92",
+ "execution_count": 56,
+ "id": "e3d9aad3",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
+ "KernelStream[compute_stats]\n",
"\n",
- "
shape: (5, 2)| id | stats |
|---|
| i64 | list[struct[2]] |
| 0 | [{"sum",11}, {"difference",-9}, {"product",10}] |
| 1 | [{"sum",22}, {"difference",-18}, {"product",40}] |
| 2 | [{"sum",33}, {"difference",-27}, {"product",90}] |
| 3 | [{"sum",44}, {"difference",-36}, {"product",160}] |
| 4 | [{"sum",55}, {"difference",-45}, {"product",250}] |
"
+ "shape: (5, 2)| *id | stats |
|---|
| i64 | list[struct[2]] |
| 0 | [{"sum",11}, {"difference",-9}, {"product",10}] |
| 1 | [{"sum",22}, {"difference",-18}, {"product",40}] |
| 2 | [{"sum",33}, {"difference",-27}, {"product",90}] |
| 3 | [{"sum",44}, {"difference",-36}, {"product",160}] |
| 4 | [{"sum",55}, {"difference",-45}, {"product",250}] |
"
],
"text/plain": [
- "shape: (5, 2)\n",
- "┌─────┬─────────────────────────────────┐\n",
- "│ id ┆ stats │\n",
- "│ --- ┆ --- │\n",
- "│ i64 ┆ list[struct[2]] │\n",
- "╞═════╪═════════════════════════════════╡\n",
- "│ 0 ┆ [{\"sum\",11}, {\"difference\",-9}… │\n",
- "│ 1 ┆ [{\"sum\",22}, {\"difference\",-18… │\n",
- "│ 2 ┆ [{\"sum\",33}, {\"difference\",-27… │\n",
- "│ 3 ┆ [{\"sum\",44}, {\"difference\",-36… │\n",
- "│ 4 ┆ [{\"sum\",55}, {\"difference\",-45… │\n",
- "└─────┴─────────────────────────────────┘"
+ "KernelStream(kernel=FunctionPod:compute_stats(a: int, b: int)-> dict[str, int], upstreams=(ArrowTableSource,))"
]
},
- "execution_count": 51,
+ "execution_count": 56,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
- "stats_output.as_df()"
+ "stats_output"
]
},
{
"cell_type": "code",
- "execution_count": 52,
- "id": "bba7f8d3",
+ "execution_count": 57,
+ "id": "e04b9c62",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
+ "KernelStream[build_message]\n",
"\n",
- "
shape: (5, 2)| id | message |
|---|
| i64 | str |
| 0 | "Hi! The sum was 11, the differ… |
| 1 | "Hi! The sum was 22, the differ… |
| 2 | "Hi! The sum was 33, the differ… |
| 3 | "Hi! The sum was 44, the differ… |
| 4 | "Hi! The sum was 55, the differ… |
"
+ "shape: (5, 2)| *id | message |
|---|
| i64 | str |
| 0 | "Hi! The sum was 11, the differ… |
| 1 | "Hi! The sum was 22, the differ… |
| 2 | "Hi! The sum was 33, the differ… |
| 3 | "Hi! The sum was 44, the differ… |
| 4 | "Hi! The sum was 55, the differ… |
"
],
"text/plain": [
- "shape: (5, 2)\n",
- "┌─────┬─────────────────────────────────┐\n",
- "│ id ┆ message │\n",
- "│ --- ┆ --- │\n",
- "│ i64 ┆ str │\n",
- "╞═════╪═════════════════════════════════╡\n",
- "│ 0 ┆ Hi! The sum was 11, the differ… │\n",
- "│ 1 ┆ Hi! The sum was 22, the differ… │\n",
- "│ 2 ┆ Hi! The sum was 33, the differ… │\n",
- "│ 3 ┆ Hi! The sum was 44, the differ… │\n",
- "│ 4 ┆ Hi! The sum was 55, the differ… │\n",
- "└─────┴─────────────────────────────────┘"
+ "KernelStream(kernel=FunctionPod:build_message(stats: dict[str, int])-> , upstreams=(KernelStream(kernel=FunctionPod:compute_stats(a: int, b: int)-> dict[str, int], upstreams=(ArrowTableSource,)),))"
]
},
- "execution_count": 52,
+ "execution_count": 57,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
- "messages.as_df()"
+ "messages"
]
},
{
@@ -1683,7 +1694,7 @@
},
{
"cell_type": "code",
- "execution_count": 54,
+ "execution_count": 58,
"id": "cb4bc91a",
"metadata": {},
"outputs": [],
@@ -1703,7 +1714,7 @@
},
{
"cell_type": "code",
- "execution_count": 55,
+ "execution_count": 59,
"id": "f371822b",
"metadata": {},
"outputs": [],
@@ -1728,39 +1739,74 @@
},
{
"cell_type": "code",
- "execution_count": 56,
+ "execution_count": 60,
"id": "e132fc93",
"metadata": {},
"outputs": [],
"source": [
"# now defien the pipeline\n",
"with pipeline:\n",
- " sum_results = add_numbers(input_stream)\n",
- " product_results = multiply_numbers(input_stream)\n",
- " final_results = combine_results(sum_results, product_results)"
+ " sum_results = add_numbers.pod(input_stream)\n",
+ " product_results = multiply_numbers.pod(input_stream)\n",
+ " final_results = combine_results.pod(sum_results, product_results)"
]
},
{
- "cell_type": "markdown",
- "id": "dad175c6",
+ "cell_type": "code",
+ "execution_count": 61,
+ "id": "ada3d448",
"metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "ArrowTableSource[ArrowTableSource]\n",
+ "\n",
+ "
shape: (5, 3)| *id | a | b |
|---|
| i64 | i64 | i64 |
| 0 | 1 | 10 |
| 1 | 2 | 20 |
| 2 | 3 | 30 |
| 3 | 4 | 40 |
| 4 | 5 | 50 |
"
+ ],
+ "text/plain": [
+ "ArrowTableSource"
+ ]
+ },
+ "execution_count": 61,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "You can access individual elements of the pipeline as an attribute. By default, the attribute is named after the operator/pod name."
+ "input_stream"
]
},
{
"cell_type": "code",
- "execution_count": 57,
- "id": "cca9e0d0",
+ "execution_count": 62,
+ "id": "1e2d0a2a",
"metadata": {},
"outputs": [
{
"data": {
+ "text/html": [
+ "PodNode[add_numbers]\n",
+ "\n",
+ "
shape: (0, 5)| *id | _tag::source:57778e89cbc0 | sum | _source_sum | _context_key |
|---|
| i64 | str | i64 | str | str |
"
+ ],
"text/plain": [
"PodNode(pod=FunctionPod:add_numbers)"
]
},
- "execution_count": 57,
+ "execution_count": 62,
"metadata": {},
"output_type": "execute_result"
}
@@ -1771,54 +1817,75 @@
},
{
"cell_type": "code",
- "execution_count": 58,
- "id": "08add7d9",
+ "execution_count": 63,
+ "id": "9cc43f6a",
"metadata": {},
"outputs": [
{
"data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7EAAAShCAYAAADlUhxMAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAXEgAAFxIBZ5/SUgABAABJREFUeJzs/Xd4HNd9L/6/Z3tfLMqi90aCIAmCAEESbJIoqhfLlixfK7qOLVuOW5yf843sxMmN49i5cXKjODfXsS3L3bEtS6IqKZGS2AtYQHQQvbcFFlhs7/P7g9wxwApWcMX363nwUFrszpwts5j3nM85RxBFUQQRERERERFRHJAtdgOIiIiIiIiIFoohloiIiIiIiOIGQywRERERERHFDYZYIiIiIiIiihsMsURERERERBQ3GGKJiIiIiIgobjDEEhERERERUdxgiCUiIiIiIqK4wRBLREREREREcYMhloiIiIiIiOIGQywRERERERHFDYZYIiIiIiIiihsMsURERERERBQ3GGKJiIiIiIgobjDEEhERERERUdxgiCUiIiIiIqK4wRBLREREREREcYMhloiIiIiIiOIGQywRERERERHFDYZYIiIiIiIiihsMsURERERERBQ3GGKJiIiIiIgobjDEEhERERERUdxgiCUiIiIiIqK4oVjsBhB92EUiEfT19cHlcsHj8Sx2c4iIiG4pMpkMBQUFMBgMMBgMi90cIooDDLFEN1g4HMaOHTvQ2dmJnp6exW4OERHRLUWtVuPZZ59FSUkJQywRLQhDLNENFo1G0d3djcbGRjQ3Ny92c4iIiG4pGo0Gjz76KDIzMxe7KUQUJxhiiW4wURTh8/ngcrkwOzsLq9UKnU4HvV6/2E0jIiJaFNFoFENDQwgEAggGgwgEAohEIovdLCKKEwyxRDeRTCbD+vXrUVxcjLKyssVuDhER0aLwer340Y9+hJGREXi93sVuDhHFGYZYoptIJpOhqKgI1dXV2LBhw2I3h4iIaFE4nU5s374dMzMzDLFEdMUYYoluMoPBgMTERKSnpy92U4iIiBaFVquFWq2GXC5f7KYQURziOrFEREREREQUNxhiiYiIiIiIKG4wxBIREREREVHcYIglIiIiIiKiuMEQS0RERERERHGDIZaIiIiIiIjiBkMsERERERERxQ2GWCIiIiIiIoobDLFEREREREQUNxhiiYiIiIiIKG4wxBIREREREVHcYIglIiIiIiKiuMEQS0RERERERHGDIZaIiIiIiIjiBkMsERERERERxQ2GWCIiIiIiIoobDLFEREREREQUNxhiiYiIiIiIKG4wxBIREREREVHcYIglIiIiIiKiuMEQS0RERERERHGDIZaIiIiIiIjiBkMsERERERERxQ3FYjeAiIgWjyiKl71dEIRLbuNiv7/Ythey/QvdNvcx5247dv9LPe5ij4n996W2H7vPufebe99zt3epbV3N87/U9s7+ArHfXOzxl3sviYiI4gFDLBHRbUwURXg9HvT29KCrqwtdnZ1wOp1wulwIBgKQyeVQq9Uwmkww6PVITExEbl4eUqxWFBYWQq/XQ6G4+J8SURQxODCAkZERNDU2YmpqCo6ZGbg9HgCAXCaDwWhEYmIirFYrqqqrYbVakZaeft62/D4fJiYm8Iuf/xwDAwPS7UqlEklJSfj4k09iZUXFeY87VV+PxsZGHD18GKFwWLq9pLQUVVVVqK2thVanAwAE/H7U19fjJy+8MG8bSqUSRcXF+Mv/7/9DZ0cHhoaGcOL4cUzb7fB4PPD7/bjr7rtRVV2NoqKieWHRPjWFsbEx1NfXY2pqClOTk3C5XIhGIhABJCQkwGQyITUtDRUVFUhNS0NmZuYlX9NAIIDT7e3o7e3F6MgIhoaH4fN6EQwGIZPJoNPpYDQaUVpaioLCQiwtK4PBYGCIJSKiDwWGWCKi21Q4HIbf70djYyO6u7rQ3d2Nvt5euFwueDweBAIByOVyKFUqGI1G6HQ6JCQkYHp6GqlpaQgEAli2bBlMJtNFt93f14furi4MDQ2hra0N09PTcM7Owuv1AgBkMhkMBgPMZjOSk5MBQUBWVhY8Hg+ysrOhUqmk4BWJRuHz+dDf34/Ojg5pX0qlEunp6VIwPpfb7cb42Bg6OjoQCoWk2zUaDQoLCxGJRqXbotEoZmdn0XH6NEQAscinVKkgiiL6+/rQ1NSE/r4+tLS0wDEzA6/Xi0AggOUrVsDr9UIURUSjUYRCIQwMDGB4aAgDAwNoaW7G9PQ0pu12uD2eMyFWFGEym2E0GjExMYFIOIyCwkKkpKRAoVBAJvvjqB9RFBEOhzE2NgbbxAQaGhowODCA8fFxjI6Owu/3I3Q2xGq0Whj0evj9fszOzsLn86GsrAyGs+8jERFRPGOIJSK6TfnO9mz+3+9/H3a7XQqWc8XCmHdOQDxVXw+j0Yj8/Hz8//7yL+eF2Fipq9/vx8jwMP7r//0/DA4OYnp6+qLtmJ6exvT0NPr6+nD8+HFkZWVhxcqV+PQzz0hhbiGudx/judubnp7Gq6+8giOHD2NsbOzCDzr7/EPBIGZnZ/GrX/wC3V1dGBwcPP+uZ/dhn5rC1NQU+vv6cPzYMVRUVKBi1SoYjUaoVKqzmz0TjL0eD3a98w6O1dWhra3toqXFwWAQztlZjI6O4uiRI9DpdPjzv/gLlJSUIC8//8zzY68sERHFKYZYIqLbVMfp06ivr4fdboff71/QY+b2Tl5MNBrFrnffxckTJ9Dd3X35bYsiMCdQ2SYnUXf0KBIsFixfvhybNm++bLuudyA793mGQyHYp6awf98+OJ3OCz9GFKWfo0eP4vChQ2hoaIDH7b5wmy/y3xfb9uTkJH7x85+jtaUFY6OjlxxzPFc4HIbb7cZ//+Y3WLNmDT76sY8hKTkZSqVyQY8nIiK61TDEEhHdpqanpzE4MIBgMIjo2ZJauVwOs9mMxKQkaDSaM3cURYTCYUTCYYRCIXg8HqjUaigUivPCYzgcxsz0NHq6u9HR0QH3OQEuVjprMpkg4EzgtU9Pw+vxwHO2tzcYCMAeCKCttRU6nQ5V1dV/bMsFCIIwLwRfD/O2dnbCpGAwCLvdDovFIo05lc8p+c3IzIRWq8XMzAz6+vrQerbcOBqJSO1TqVTQarVISkqCSqWCQqlENBJBOBI503vrdEKv1//xeZ3lcrkwMTGBluZmTExMwOP1Sm2Uy+VISUmBTq+HRqOBGI3C5XbDOTsLl8sFURQRiUQw0N+PxMRE9Pb2wmgyMcQSEVHcYoglIrpNORwOjI6OSgEWAPR6PdbX1uLhRx5BXn4+ZDIZIpEIpu12OJ1O2Gw2NDU2YnZ2VhozO5fH7cbhQ4dwur0dY6Oj834nl8tRUVGBNTU12LBxIwRBgN/nw5tvvIHmpiY0NjbOu3/DqVNQyOVYt24dcvPyLvlcbkSQnbNxaR9yuRzr16/HsvJyrKmpgTkhYV7ADvj92Lt3L5qbmtDX1zfv8QCQnJyMktJSfOQjH0FaejqSkpLg8XjgdDoxPj6OgwcOwGw2n3dxoKOj48w2e3shiqIUYAVBgFarxcOPPILy5ctRUFiIQCCA48eO4cD+/Th+7BiCwSAAIBQKobenB6+8/DLy8vOlsExERBRvGGKJiG5TMpkMijkhVBAEKBQKqNVqaLRaKJVKyOVyiKKIFKsVFosFaenpyM/PRzgcRiQaRWpa2rxten0+NDQ0YGZmZt7tKpUKlZWVWF9bi+o1a2A2mwEABr0e9z/wAAxGI+x2O8bGxhCJRKTHORwONDY0wGq1QqVWX/y5CMJ1HxMrOVvubDabsXb9etxx113Iz89HQkICFErlvMAZDIVwqr4e4+Pj8zYhCAJy8/JQs3Yt7rnnHqSmpUGtVkOlUkEul0On18NisSA1LQ1KhQIGg2HeBYLe7m60X2AMbF5eHgqLirB5y5YzPcR6PXQ6HVZXVSEtPR09PT2YttulIDs7O4vOjg5MTU3BbDYzyBIRUVxiiCUiuk2p1Wro9fozIexsUIvNzjs0OIhgMAiVUgm5QgGlUgnF2X/TMzKgUCguOOFSKBjEyMgIfD7fvHGlCqUS+QUFyMnJQdo5wTc3Lw/ZfX2wpqbCZrPNC7E+nw8jIyMIhkKXDLE3rBd2zrZ1Oh2WLVuG3Ly888J7TCQSwcjICFwu17zbZTIZsrKyUFhYiNIlS+b9Ti6XQ3V2+5bExAtud8pux8TExHm3p1itKCwqQmZW1rzyYKvVCr1ej4SEBHjc7nm9sQ6HA7MOBzweD0MsERHFJYZYIqLbVHp6OpYsXYpTp04hIggQRREOhwPv7d6N9997D1qtFgaDARaLBRmZmUhMSkJWVhZWrVqFpKQkJCYlnbfNYCiEoaEh+OaM2QQAlVKJFStXIsVqvWBbkpOTsXz5cnR0dEiBCwC8Xi+Ghobm3XYhN7Sc+CyjyYTaDRuQkJBw0ftEIhEMDQ2dN/mTXC7H+tpaFBcXX9W+pyYnMX6BGZHz8vOxqrJy3lI8sf1pNBrk5OTA7/PNC9WiKGJocBBmsxnWi7wfREREtzKGWCKi21Refj5UKhVampsxNDyMSZtN6pEVRRGBQACRSAQ+nw8zMzNQqVRo0ulw9MgRpKamoqKiAtU1NUic03soRqMI+P3zelMBQJDJoNfrLzqZkEqlgsFggGxOEBXxx7VhxTnjdi/qIrP1RiIRhMPhyz/+3G3NaYtMJoNKpYLJZLrkkj+iKJ55/rH9iSJEQYAgCDCZzdBe5RqtoVAIgQsE+SOHD6O3p+fMRFnnhPhoNIr2trbzeoUBwOPxwOfzXVVbiIiIFhtDLBHRbcpisUClUqFs2TIoz47NDPj9Z8a7np0xNxKJwO12nxeErFYrIpEICoqKoNfroVKpIAgCRJwJT+LZGX2lCYhwpndQdpHeUkEmg1yhmBccBQA4uz5qLJ4KZ8e+xrYdu/1SITcSiSAUCi14SZqzO5rXfplMBrlcDrVafdnlfGLPP7YdqaR6zkzGVyoajV7wOQ4ODmJozhq00ut0me0FgsHL9m4TERHdqhhiiYhuUzKZDEajEZ/7/OcxMzODqclJnKqvx+TkJGw2GyZtNjidTkxPT8Pj8cwLgTabDTvefht5BQUIhUJYunSptE2tTgef1zuv9zMajcLpdF6wNxE4s6yOc3b2vKAml8uh0+kgk8kuuK6qgDO9n6FwGNGLhNRYT/IVhVjMD4KCTAaZXH7ZACsIAjRaLYLBIEKhkHS7KIqYmZ6GJzX1itoQo1KrodZo4PN6L9rGC/3/xQSDQYSutHeaiIjoFsEQS0R0m4oFMrlcDqPRCKVSCZVKBZ/fD7/PB5/Ph1AwCL/fj8bGRvT396O5qUl6vCiKGB8bw3hamhRiFQoFrFYrxsfG5oXYcDiM3p4eJCcnIyMj47y2OBwO9Pb0zAt+AKDRaJCamgqlUglBJjvz7wXKZj1uN0Jn17sVzpbvRqNR+P1+2Gw2jAwPz1tK6HLm9sJe7HW7EJlMhtTUVETCYTgcjnltbGluhsFgQElJyYLbEZOQkICkpCQMnxNiK1evRumSJcjOzr5oL/cFngDy8vORdIExzURERPGAIZaI6Dbl9/sRPBv8FAoF1CoVsnNyIAjCmZ7Ps2NjI5EIItEogsHgvBALnFmyZXZOWFOeDbGOmRl4PB7p9nA4jIH+fhQUFsLr9UJ9dqZhURTh9/lgt9sxMjJy3lhatVoNq9UKhUIBQRCgVKkgnFOSGz07btbj8Ugz7sbGwdpsNkxOTsJut19RT+zVThEll8thtVox63CcF2J7e3uRlZ0Nh8MBrVYLuVwOuUyGqChKr7Pf74dMJvtj7/PZYJpgNiMxMRHDQ0Pz9peWloZl5eWorq6WluuRyWRnyrljpdhntx0KhRCNRhGNRGAymy85tpeIiOhWxr9gRES3qRPHj+NUfT0cDgeysrORm5uLrKws6PV66A0G6HQ6hEIheNxujI6MYNpuP6+HMhqJzOvh1BsMWL9+Pabtdtjtdul2v9+PvXv3IhyJwOl0Yt26dRAEAX6/Hzt37EBjYyN6e3vPC5pJSUlYu24dDAYDVCoVUlJSoI6Nvz17X1EU4fP5cOjgQbjcbtx3333wejyYnJzEz3/6U/T391/5xE5XSaVSYX1trbQ0UEw0GsXp9na43W709fbioYcfRmpqKpKSkuDxeuFyuTAxPo69e/bAbDLhiU98QuodB4AlS5ciGAqhualp3mu0f98+tLW2wuf1Ii8vD2np6TAajQiFQvD7/Zh1ODA7Owu73Y6W5mbY7XZMT0/jG3/zN8jMzLwprwkREdH1xhBLRHSbCgaDcDqdOH36NIYGB9Ha0iIFp9hPJBpFKBhEd3c3pu3283ook5KS5s1OrNVqsWz5cjQ2NmJychLT09PS70KhEDo7OuB0OtHW0gIIAsLhMPp6ezE5OXlegC0oKEBhcTHS09OhVCohO1tObE1NhdVqPW/d1K6uLjgcDgwNDiIcCsHr9aKvr++Cs/PeKEqlEmVlZejr7cVAfz8mJibmhe3p6Wm0t7UhGAxCr9dDq9EgFA4jGAzC4/FgaHAQ+QUF570WuXl5CIVCSE1NhcPhgN/vB3Dm4sDU1BR2vfsuzGazNMlWNBpFOBJBwO9HIBCAz+fD1NQUwmfLtSMcD0tERHGMIZaI6DYViUTgDwQwPDR0xT2VgiBAoVAgOSUFycnJ0u1qtRoFBQXIzc3F2OgonE4nIpGIVN46PDyM4eFhnLjEtmNhtbikBIWFhfPWo5XL5UhPT8fExMR5IXZ0ZASjIyNobGiYd39BEKBUKs8bb3sjyOVy5OblIb+gAL29vXA4HFLJNgB43G543G4MnVMWPJfZbAaAeUE2LS0N0UgEuXl5iPb2IhQKSSXTbrcbx48dW1D71Go1EhISLjoJFhERUTy4urn+iYjow+cKgo05IQFramqwpqYGS8vK5v1OoVDg0Y98BF/40pdQWloqhbKFSk1NxYaNG/H0pz6FrVu3nvf7rXffjXvuvRdqtfqSS9bIFQrk5OZi+YoVqKqqumljQAVBwJYtW/DVv/gLrKmpueBEVlezzdS0NPzVc8/hnnvvRUlp6WVnSiYiIvqwYk8sEdFtKjcvD+vDYSgVCszMzGDW4cDMzAyCZ9cQDQQCEEURgiBArVZDo9HAaDIhMzMT6RkZWLFiBVKSkyGXy6VtxoKV3mBAZlYWHnrkEfT29GB0dBRDQ0Nwu1zwer0IBAIAzvS6ajQa6PR6mEwm5OXlISsrCyWlpUhKSoLq7ARQcyUlJ6O4pAQPPvwwOjs6MHV24qZIJAJBEKA3GJCSkgKr1YrqNWtgt9sxPjZ2U17T2PNXazRISkrC3du2YWBgAIMDAxgYGIDL6YTL5YLf7z/TGyqK0Ol00Op0MJvNyMnJQUlpqTTx09ztyuVyJFgsWFNTA2tqKrKzs2Gz2TAzM4Pp6WmEzi7rI4oiFAoFlEol1BoNNBoN9Ho9UlJSYElMRHpaGkwm0015PYiIiG4EhlgiottUXl4e0tLSkJiYiKGhIQwPDWGgvx9utxsejwcul0tassZkMsGckID09HSsrqpCTk4OypcvB3DhJWfUajWSk5PxwIMPoquzE/39/ag7ehQT4+OYnp6WxqnKZDKYExKkpXc2btqEzMxMZOfkXLDNgiDAbDZDpVLh4UcewQfvvYeuri5ERRGhUAgyQUCK1YolS5agqLgY2+65BydPnIDP64XBYJhXUqzVai+4ZI9CoYBer593m0qthlarXfBrq1AooDAYcOddd2FsbAxDg4M4cvgwxsbGMD42Bsfs7JmZmEURSUlJsCQmIisrC2vXrUNmZiZ0Ot1524wF/lWVlVhaVobMzEycPn0aA/396O3rg9fths/vRzQSgVqjgU6rhfHs+5acnIylS5ciPT0duXl5DLFERBTXGGKJiG5TSqUSCoUClatXY2VFBaKRyLzxq3PHTcoEAYJMJo1XlV+ijHcuQRBQWFSEvPx81G7YcGbJl2hU2rYASNuVyWRQKZWQzemBvBiNRoO8vDw89fTTZ5YAOhsIgTNhT65QQC6XQ61Wo2btWlSuXo0//cxn5m1D6q2c09ur1emwafNmVFVXn7fPqy1HtlqtSE5ORnl5OSLRqLTsTay9c5+/Uqmc1wN7qedfuXo1VqxcKT3/2DZFQForN/Yjk8mgUCjOvDZnxwkTERHFK4ZYIqLb1NyAE1vK5XpvHzjbK6lQzAuL12Pbse1ejkqlgkqlOq939ULbBM70Il/Ptsrlcsjl8uv2GsfaGZtBmoiI6HbDiZ2IiIiIiIgobjDEEhERERERUdxgiCUiIiIiIqK4wRBLREREREREcYMhloiIiIiIiOIGQywRERERERHFDYZYIiIiIiIiihsMsURERERERBQ3GGKJiIiIiIgobjDEEhERERERUdxgiCUiIiIiIqK4wRBLREREREREcYMhloiIiIiIiOIGQywRERERERHFDYZYIiIiIiIiihsMsURERERERBQ3GGKJiIiIiIgobjDEEhERERERUdxgiCUiIiIiIqK4wRBLREREREREcYMhloiIiIiIiOIGQywRERERERHFDYZYIiIiIiIiihuKxW4AERHRQkQiEQSDQXg8HoTDYQCAwWCAWq2GQqGAIAjXbV+iKCIcDiMYDMLlcgEAFAoF9Ho9VCoV5HL5ddsXERERXRn2xBIRUVyw2Wx4/fXXce+996KkpAQlJSX40Y9+hObm5huyv8bGRvzoRz+S9rVt2za8/fbbmJiYuCH7IyIiooVhTywRXZAoihBFETt37kRra6vUGyWXy5GTk4OqqiqsWLFikVtJCxEIBDAxMYEXX3wR0Wj0hu5LqVQiJSUFd999N4qKiq7rtkVRRCgUgsfjkT6PwWDwhj2naDQ6ryfW7XYjFApBFMUbsr+rEXtNenp6MDY2BpvNBpvNBr/fj0AggEgkAoVCAZVKBa1WC7VaDZ1Oh7S0NJjNZqSkpMBqtUKtVkMmk13X3mwiIqIbhSGWiC4odnK8Y8cOvPLKK1Lvk0qlQnV1NVQqFcrLyyEIAk98b3GBQADDw8P47ne/K5Xh3ig6nQ5LlixBQUHBdQ+x9EeiKCIajcLv98PpdOLUqVNoampCe3s72tvb4XQ6pdAdC64WiwUGgwGJiYkoLy9HVlYWSktLIZfLYbFYoNfrF/tpERERLQhDLBFdkNfrxbFjx9DV1QWbzSbdHgwGcezYMWzevBmjo6NIT0/n+ECimywcDmNoaAi//vWvsWvXLrS0tCAYDCISiSASiSAajUo9xqFQCG63G1NTU9JFpwMHDkAmk0GhUOCTn/wkamtr8YlPfGKRnxUREdHCMMQS0QX5fD7U19djamoKoihCJpNJJcahUAgjIyNobW2F1WpliCW6iQKBAKampvDb3/4WBw8eRHd3N5xO50XLnGO3RyIR6bZQKCT9t8fjgd/vv7GNJiIiuo4YYonoPKIowuPx4OjRo1LvjVqtRjgcRjgchiiKGBgYwPHjx7Fx40YolUqWFN/CBEGATCaDTqdbUDlxrDdv7n1VKhVkMhlkskvPB6jVaqHRaHhh4wZyu90YHBzEj370I0xNTcHn8wGA9P7I5XKpx1UQBCnEzv031lMbjUY5JICIiOIOQywRncfj8WBsbAwffPAB3G43dDod7r33XkxMTMBms6Grqwutra3w+Xz44he/CK1Wu9hNpkvQ6/VYtWoVWltbF3T/Q4cO4c0338Rrr70Gj8cDmUyGv//7v0dFRQWWL19+yccKggCFQgGz2Xw9mk4XsGvXLuzZswfj4+PShQa5XI5Vq1ahoqICW7duRWpqKlJSUqDT6RAKheD3+zEzMwO3242ZmRm0tLRgdHQUnZ2dSExMhFKpXORnRUREtHAMsUR0nuHhYfT09EjrcRqNRqxatQpjY2MYGhpCT08P3G43JiYmMDw8DEEQkJCQsNjNpouQyWRQq9XIyspa0P1TUlJgMBik3jlBEGCxWGC1Whe8DbpxBgYG0NbWJlVFqNVqbN68GdXV1aioqEB5eTkSEhJgMpmgUqkQiUSkWZ19Ph88Hg+Sk5MxPT2NlStXIj8/n+8rERHFFYZYIjpPR0cHGhsbpeVEtFot1q1bh4mJCfT09OCdd96Bz+eD3W7H6dOnoVarryrExkoaY2P1BEGQSiGBPy7zM/cnRi6XS+N0o9GotMzKhbYxd5Kb2L+x+80tj73Q/ubuc26oi5Xozr39YiKRiNSO2P0VCsUlHyuKotTLNrfNsZLRSz0u9prGHjf3MTeybPRCr9u5/8aeR+zfK3kdLyf2+sbe73P3eb33dzkXKt+de/vcNiykbbHH9ff3o7W1Vfp/vV6PP/3TP0VlZSVKSkrOe5xCoYBarYbBYJBuW7Zs2TU/txtxrMSO5Ss5Vs5tVyzcxx4TK7G+1D6v9nsoNjnWhdoxd9sLee/n/izkec5tW+z1Wsh7MPd3RETxiiGWiM5TV1eHDz74AKIoIikpCXl5eaisrEQgEEBhYSH+9V//FeFwGMFgEG+//TYUCsUFT54v5+jRozh58iT+7//9vwCArKwsfOc730FRURGMRiMaGhpw7NgxtLW1obOzE06nEz6fD0ajEU8//TQ+97nP4f3338cHH3yA7du3AwBqa2vx+c9/HsuXL4ff78fp06exe/du9Pf3o7e3F7Ozs4hEIjAYDPjud7+LO+64Q2pPIBDAiRMn0NDQgNOnT6OtrQ1utxs+nw8KhQJ6vR5msxkrV65EeXk51qxZg5ycHKhUqks+z5/85Cc4evQoDh06BI1Gg+LiYvz2t7+9ZAmn1+vFn/3Zn6Gvr09a3mjp0qW488478fTTT8NisVzwcS6XCx0dHfje976HxsZGAJBmn73zzjtv6Mnr+Pg4Jicn0djYiM7OToyPj2NsbAwulwterxder1da7iU/Px+FhYUoKSnB/fffD71ef80lre3t7eju7sZbb72F0dFRTE9Pw+VywWAwwGw2Y/Xq1aiurkZ1dfVNmVU7Go1iYmICzc3NOHXqFOrr6zEzMwOHwyF9pnQ6HQoKCpCbm4vKykps2rQJiYmJF2xbNBqF1+uF0+mE0+kEAFgsFuTn5+POO++8qdUQwWAQJ06cQHNzM9ra2tDa2gq32w2v1wu5XC4dKytWrMDSpUtRW1uL7OxsqNXqS273zTffRF1dHV555RWIooiMjAy8/PLLUq/y5YTDYTzzzDPo7OyE3W5HeXk5amtr8bWvfe2ijzl58iROnTqFf/u3f0M0GkVycjK+973voaioCImJiTh16hQaGhrQ2NiIjo4OuFwueDweGI1GPProo/j6179+3jYDgQCmp6fx/vvvo6enB21tbbDZbPB4PPB4PNDr9dDpdEhOTkZeXh5ycnKwceNGZGdnIyUl5fJvAICJiQn09vbi4MGDaGpqgt1ux9TUFPx+PwRBgF6vR05ODjIzM7F+/XpUV1cjKyvrsuPaiYjiAUMsEUlCoRCcTidGRkYwOjoKAEhPT0dhYSF0Oh00Gg1SUlKQnZ2N4eFhuN1unD59GmvWrEEwGLziCZ68Xi/sdju6uroAnDkB9Xq96O3tRTAYxLvvvov29nb09/djcHAQXq8XwWAQFosF09PTACCVNce2kZubC5/Ph7a2NoyPj+Pw4cM4fvy4FKjcbjcAwGw2w+PxSD0wXV1d6O/vx/79+9HV1YXBwUH09/fD5/MhEAhALpdDo9HAYDDA4/FI26utrUVGRgZycnIu+jxFUYTf70dXV5d0Im6325GQkHDB8cThcBg+nw8tLS3o7+/HzMwMgDO9PmlpaQgEAhfdl9/vR19fH7q7u6XXJBgMQqPRLPh9uVKRSATBYBAHDx5Ee3s7enp6MDQ0hOnpadjtdni9XgQCAQQCASiVSqjVakxPT2N8fByDg4OIRqMoKSnBkiVLYDAYrvgk2+v14uTJkzhy5Aja29tx/PhxTE1NSeFZq9VCr9cjEAjA4XBgfHwcd911F1JSUi56MeBajY+PY3x8HEeOHEFnZyc6OjrQ1dUFl8sFt9s97zM1MzODkZERTE1Nwev1oqCgABUVFRecIOvcygO5XA6lUgm9Xr+gkHctYsdKT08P+vv7sW/fPnR3d2NgYAD9/f3S+yyXy6WeX4/Hg9HRUUxOTmLdunXIzMxEXl7eRffhcrmk41kURQQCgXlVBQsxMjKC3t5e2Gw2mEwmLFmy5JL39/l8mJmZQVdXF6LRKJxOJ7xeL/r7+9HX14edO3eis7MT3d3dGBoagtfrhc/ng8ViweTk5LzXBwB6enowMjKCpqYmnDhxAqOjo+jv75cuXvj9fmg0Gmg0GphMJoyPj6O3txczMzPYsmULqqqqoNfrL/pdOjMzg+HhYdTV1aGvrw+NjY3o6emB0+nE7OwsgsEgBEGARqOB3W7H0NAQ3G437HY7iouLsWbNGqjVao6DJqK4xhBLRJJAIIC+vj709/djfHwcALBkyRKsWbMGMpkMKpUKZrMZq1atQjgcxunTp9HQ0ICNGzfC7XYjISHhmnr6YqVxR44cQWtrK372s5/NWxYEwLzZVi8mGo1ix44dOHXqFF577bXzfq9QKOaV+/l8Prz99tvYuXMn9u7dKwWEuWKT4zgcDgwPD2P//v1QKBR49tlnsXnzZmRlZV20FDA3NxcFBQUAzgRKl8uF3t5eFBcXXzDEBoNBOJ1ODA0NweFwSLdPT0+jtbUVgUAAoihecF9er1fqFYvJyspCUVHRDeuFjUQimJ2dxY9+9CO8//77l7xvLKA7HA60t7dDEAS8//77eOyxx/C5z30OhYWFV3QxRBRFTE9P45VXXsE777yDzs7O8+7jcrngcrkwPj6OQ4cOwWg0QqlUYvXq1VLv5fV6bWKf4dbWVuzZswf/8R//AY/Hc8HPVDgcRiAQwOzsLE6fPo29e/diz549WL9+Pb71rW/BarVCo9HMKwudW+Y6d3+x/75R73FsPz6fD7t27cIbb7yBPXv2nHd8An88VmZnZzEyMiK1+5lnnsHGjRuRk5Nzy8+ILIoiTp48idbWVrz44osIBoMXvM+5IpEI9uzZgwMHDuC3v/3tRQN4rEfWbrejr68PAPDaa68hGAwiNzcXWq32ghcwRFFEf38/3nrrLfzgBz/A5OTkBd8D4I/fI11dXThy5Ah27dqF8vJyfP/734fVar2iMm0iolsNQywRSaanp/Haa69hbGwMwJmTm1WrVuHOO++Uesc0Gg0eeOABOBwOnD59GsFgEJ2dndi9ezceeugh6HS6q96/0+nEa6+9huPHj6O7u/uiJ2dzxxeea2hoCNu3b8e7774rleFeSKxHa2xsDN/+9rdx9OhR9Pb2XjBsXOzx4XAYv/vd79DR0YHp6Wk89thjSE5OPu++paWlmJ6elgK4z+fD8ePHkZCQAKvVet79R0dH541JjnE4HGhra4PD4UBqauoFe1edTieOHz8Oh8MBlUqFtLQ0pKenIykpaUHP62YTRRFjY2N4/fXX0dnZiR/84AdIT09fcK/ikSNH0NbWhl27dkkltpcSDofhdDrxj//4j3j44YfxzDPPoLS09LJlrgvl8Xjwi1/8Art378aRI0cuGmAvZnBwEB6PB5OTk/i7v/s7rFy5Emq1Wgp9Wq0WycnJSE1NxcTEBBwOBwYGBrB//34sW7bskhUB10IURUxOTuLv//7vcezYMXR2dl70+LzQY8PhMP7whz+gvb0dbrcbDz/8MNLS0m5IW6+V1+vF66+/jqamJpw+fXremrpznTs+tr29HW+++SZ+85vfYHh4eEHLWV2JSCSCX/ziFzh06BB27tyJqampBb8HwJnvFbfbjS9/+cv4/Oc/j7vvvvuGVmgQEd1IDLFEBOBMMHS73WhubobL5YJcLkdiYiLS0tJgtVqlq/UKhQLFxcWwWq1Qq9UIBAKw2WxoaWnBfffdd01t8Pv9aG5uxuDgINxuN4qLi5GQkACj0QiNRiNNUGQwGC46BndmZgZNTU1ST3JJSQlSUlKk8r3YRDF6vR4ymQy9vb04fvy4VHIHAAkJCUhISEBWVhY0Gg1UKpUUPj0eD/r7++HxeOD1ejE1NYWuri4cOHAAGzduhF6vP693NSEhAcnJydBqtQgEAgiFQujv75/XW3rucxgcHEQkEpFKYWNjeT0eD6amppCenj7vBDQWyn0+H4aGhuD3+6FUKpGRkSH1PN5oOp0OiYmJSEpKgtFohFarhUqlglKplHqVwuEwQqEQZmZmMD09jenpaXi9XthsNkSjUfT29krtXoj+/n6o1WpMTU0hNTUVFosFqampUKvVkMvliEQicLvdUu937PUfGhpCW1sb6urqkJeXB5VKdc09Um63G2NjYzh06BDa29ths9kgl8thsVjmtUulUkGhUCAajSIUCsHhcMDpdGJsbEwqsY8FqMTERBQVFQH44wQ96enpyMvLg81mk57f3r174XA4MDU1hZSUFGi1WunnevR6xnoMT5w4gYGBgXll+bFjJfZ+x8rnY8dKbKys3W5HT08P9u/fj5qaGphMpmu66HWjBINBtLS0YHBwEE6nE4WFhTCbzTCZTNBqtdIkaQaDAcuWLYMoitJzO3jwIAYGBqQLKkajEUajEenp6TAajdLxEFuHORAISL2yNpvtoqEyVvJ89OhRNDY2Ynx8HHK5HEajEcnJydJ7HvtsxZ5HrAoh9p0wOzuL5uZmtLe3o6ioCEuWLGFPLBHFJYZYIpJ6Sqanp7F//3643W5otVqsWLECOTk583rxlEolKioqUFBQgMTERIyPj6Ovrw979uzBl7/8ZRiNxqs+KfJ6vVKZblJSEh5//HHU1NRg6dKlyMrKglKpnDcT6IV6Omw2G2w2G5RKJUpLS/HYY49h69atyM7ORnp6OpRKpdSrvHv3bnzwwQdobGyc11tWWlqKqqoqPPXUU8jMzERycjJCoRBGRkbQ3d2N//zP/0RXV5dUBjgwMIDh4WE89thjMBgMyM7OntemuRcDbDYb/H4/mpqacM8998ybRTVmYmICra2tCIfDSEtLQ1FREU6ePAmPxyON371QL24oFMLs7Cw6OzsRCoWQnJyMlStX3pQJfwRBgNVqRVlZGTZt2oTly5cjKysLVqsVZrMZOp0OgiDA5XJhZmYGhw8fxqFDh3D48GFpOadAIIC9e/ciHA4vOMS2tLQAOHNxZe3ataipqcEjjzwiLRPkcrnQ2dmJtrY2PP/88xgfH8fMzAyi0SgaGhowMzODe++9F0aj8Zpfg+HhYTQ2NmL79u3w+/0AzlQulJWVoaamBg8++CCsViuSkpJgMpkQCAQwMzOD+vp6nDp1Ctu3b5fGYQ8PD+O9995DMBiUQmzMihUr4HA4cOLECSnE/uu//ivKy8uxfPlybN26Fbm5ucjNzUV2dva88vlzLfRYbWlpweHDh9HQ0DDvuCsqKkJ1dTX+5E/+BJmZmbBarQiFQhgfH0dXVxd+8IMfSONJY6/R7373O9x///1ISEiQSotvJYFAAAcOHIBCoYDJZMJHP/pRVFVVYcWKFcjKypoXFIEzFwBbWlpw4MABvPXWW/O2lZubi7KyMjz++OMoKytDSkqKNB4/Nra+s7MTPT092LlzJywWywUvOkxOTqK1tRVvvPEGbDYbAECtViMvLw933HEH7rnnHmRmZiI1NRUGgwHRaBR2ux0tLS1ob2/HL37xCwwPD8PpdGJ4eFh6fsXFxZzoiYjiEkMsEQEAGhsbceLECbjdbkQiERiNRtx///3IzMw8776CIKC0tBR33XUX/vCHP2B6ehodHR3SieqFSmQXShAEfPzjH8eWLVuwdetWqfcjVlK5EDKZDH/xF3+B1atXY+3atUhISJB6QOZuI1aWFwuwRqMRTz75JLZu3YqqqiqkpKRIj1MqlcjNzUVqaipycnKwZ88e/OY3v0Fzc7M0+czu3bsRCATw5JNPntcmvV6PyspK1NXVYXx8HC0tLZicnEQoFDqvl3R0dBSnTp1COBxGeno6ampqEA6HpcmmWlpakJycjNWrV897XHd3N7q7u6UyZJ1Oh9WrV9+wyYtiFAoFLBYLvv71r8Pn88FkMkkTDcV6YWM9sbFx1UlJSaitrcXo6Ci++tWvSifYBw8eRGJiIu6+++4F7z8tLQ1f+MIXsGnTJhQWFiIxMVHab0JCApYvX46CggIUFxfj5ZdfxksvvQS73Y7Z2Vn09vZKwSw/P/+aXoejR4/irbfekt5Ti8WC73znOygpKUFOTg4sFot0IUYul0OlUkGr1UozJz/44IP4h3/4BzQ3N2NkZASHDx+GIAh45pln5u1n3bp1SEtLQ0NDA9ra2jAyMoJoNIru7m6Mjo6irq4OarVaWvoqMTERqampKC4uRmZmJoqKilBSUnLB8dgXc+zYMbz11ltS+apOp8MnPvEJ3HHHHVi7di1SUlKkyYKUSiWys7ORnJyM7OxsHDp0CD/96U/R2toKn88njRuNRCJ46qmnruk1v1EEQcBDDz2Ebdu2Ydu2bfM+0+eGvmg0iu3bt+Po0aPSbampqVi3bh0+/elPo7i4GMnJydDpdNLn0mg0QqfTISEhAbm5udi4cSMeffRRJCcnS0F2rra2NvzqV7+C2+2GQqGAVqvFt771LSxbtkyqWJl7vImiKB1rFRUV2LRpE/7f//t/OHDgAAYGBtDY2IhwOIwvfvGLnOCJiOISQywRAThTltnT04NwOAyZTAa9Xo+ysrLzevFiJ1fp6elYtmwZXn31VQQCAbjdbvT29l50nOdCyOVyJCUloby8HDU1NcjJybniXgKNRoOEhARUVVVh1apVFxwjGI1GEQwGMTIygsHBQQBnwpXFYsGGDRuwcuVKaSKmmNh6kFqtFiaTCQ6HA11dXeju7pYmWurp6bnozKsqlQp5eXlobm5GJBKBw+GAw+HA7OysNI5WFEUEg0E4HA5MTEwgGo3CbDajoKBAmg26r68Pw8PDUm/MXLEZcWO9biqVCrm5udDr9Vf0Gl6p2KRf5/YYXkgsvMVKj61WK/Lz8+HxeDA7O4uhoSFMTk5esIf6QgwGAzIyMlBbW4slS5YgNTX1vLYplUoYDAbodDp0dXWhqakJdXV1CAaD8Hg8GBgYQFpa2lWH2Fglw/DwME6fPg1RFKVwUlNTg6ysrIteSFAoFNJnNj09HUuWLJFmK56cnJRKjOfOVGyxWCCKIjZv3gytVguj0YjR0VH4/X5MTU1hampK2r5Wq5WOyfHxcaSnp2N4eBh2ux0pKSnIyMiA2Wy+aJCJHSujo6MYGBiQwlFCQgJqa2tRUVGBwsLC817z2PMymUzwer2oqamRepkBoLe394aN371WMpkMycnJKCsrw9q1a5Gbm3vR5ZgikQgCgQA6OzsxMjICANJY9I0bN6KiogKZmZnn9a7GXqO56/eeW8EB/PGzFavOCIVC0Ov1yMrKQlVVFUpLSy/6fTv3sxWrkhgaGsLg4CCmp6cxMjICj8cjzXBNRBRPGGKJCMCZnpZYT4JGo0FycjI2bNhw0TFaJSUlUCqV+N//+38DOFPau2fPHqjVapSVlV1VG/R6PdavX4+amhqUl5dfVZlhSkoK1qxZg+rqauTm5l7wPqFQCDabDSMjI9LY2eTkZJSWluKJJ5645CQ/sZlWV61ahfT0dLz77ruYnZ2VZqS92Im5TqfDqlWrcPDgQakNQ0ND6OrqktYFjUaj0tIzsRNiq9WKyspKaVzniRMn0NbWdsExwV1dXdKyOsCZ17OiogJms3lhL95NFlsaZv369dLSQAMDA9L42IVcwIiVs27ZsuWS95fJZDCZTFi3bh1kMhmampoQDAYRjUbR3NwMq9WK6urqq3oesfHkfX19aGtrgyiKWLJkCbZs2YLCwsIF9XjK5XLIZDJs3rwZwJm1ml0uF6ampjAyMoKMjAwp7AiCgKSkJPz1X/81Tp48iYaGBvzkJz9Bf3//eZOZ+Xw++Hw+jI2NSesGA2fKXFevXo1PfepTqK2tRWJi4gXbFQ6HpWMlNuFbbJzu448/fskLJLFjpby8HF/96lexd+9eTE9PIxqN4vTp00hPT7/s67IYNBoN1q1bh7Vr12LlypWX/B6KlYTPDbFJSUlYtWoVvvSlL0GhUFzTmGRRFOHxeDAyMoLm5maIoojs7Gzcd999KC0tXdCasrGLTGvWrEE4HMbBgwelMcojIyOQyWQ3vFqDiOh6Y4glus3FTsLa29ul5UnKy8tRXV0tTY5zISaTCVlZWSgrK0NPTw+mpqZw6NAh5OXlIRQKSSdvV0Kr1aK6uhrJyclXfdKXlJSE6upqaQzmhQQCAfT29sLj8Ui3FRcXo6qq6qLPdy5BEKDT6ZCWlobCwkJ4vV6MjY1hamoKdrsdPp8PKpVq3rZ0Ot15gXJwcBBtbW1Ys2YNgDOBYe6kVCaTCampqcjLy4PD4UBvby8ASOv4zszMwGg0SuPzYuXEwJlyxuzs7Ev2st0IPp9PKnkeGhpCb28vZmdn4fF44Pf7z5tZOhqNYmBgQFr3N7Y8i8vlgtFovOz7sXTpUlRUVCyobYIgIDMzU/psA2dCQqz392qFQiF0dnZiZmZGem4tLS0YGxvD0aNHpedwoXGp595ms9mk1wI485mw2+3zZr2e+7kuLi5GWloali9fjomJCUxOTuL06dPS2PDh4WFpvd656wtPTEzg4MGD6Ovrw//8n/8Tq1atwsaNG887ZkKhEPr6+uZNQlZQUIA1a9bMGxd6MbH1StPS0lBQUACHw4GRkRHY7XZMTk7C7/efd6wsNrVajaqqKqSmpl72e8jpdEol/DGx8bPXGmCBM8dHT08PbDab9Fnp7+/Hyy+/jJMnT0qzeC/ks2W32+FwOKSS8NhFs1gJMxFRPGGIJbrN+f1+6SQ+NqNmbm4uiouLz1uTci6VSgWDwYCioiLMzs7CZrNhdHQU4+PjmJ6eRlJS0oJOcudSKpXIzMy8phlLdTodMjMzLxncYuW8c088ExMTkZGRseCTzlhpcWySnrGxMQQCAfh8Pmlm4HOfW2pqKkwmE1QqFYLBIKampjA8PCydbEYiEQwMDGBmZgYymQxJSUmwWCwwGo3IzMxEUlIS5HI5vF4vZmdnMTU1Jc2WGo1GpRADnAnzVqt13kRWN0psqZGJiQnYbDapd7C/vx/d3d2YmZmB2+2Gz+e75PJIsW3Fgmys5/FSUlJSkJaWtuCgYDAYkJqaKgUnURQxOzsLr9e74Od7rkgkgunpaWkyJ+DMDNNzLzwACwsa54rNOH2xpVTMZjPMZjOysrIwOzuLmZkZpKWlSaXlg4ODsNvtmJiYkN6H2dlZOJ1OKejGJvepqqo678JVJBLBzMzMvHVSExMTkZmZKc3SezkKhQI6nQ5JSUkwm80YGRmZd6zExgjfKuRy+bye70uJXQSc+/5kZGQgNTX1uhx3sXWQ515wc7vdUhn83Ptd6LGX27bP57vuSwEREd0MDLFEt7mpqSm89dZb83qiqqqqsGnTpsueoKpUKtxzzz3weDxoa2uDy+VCT08PDhw4gHvvvXdBJ4FzKRQKWK3Wa1q7UKPRwGq1XjJAh8NhzM7OzguxFovlisIQAGm5k7mlmKFQCE6nE1qtdl4bFAoFkpOTkZmZiYyMDPT396O/vx9ms1maWCoUCqG+vh5jY2OQy+VYuXIlsrOzIZPJUFhYiOzsbJhMJszOzmJ6ehonTpyQgm2snDU2xrekpARlZWU3ZeZXURQRiUTw3//939i7dy/efvvty55AX0o4HIbX613Q+qqJiYkLKqmMiQWqhIQEOBwOeDweuFyuaw6xMzMz83o6gfPXEb0a0WgUXq93QeuBmkwmmEym88roo9EoIpEI6uvrUV9fjx07dmD//v1wuVwAgD/84Q8YGhrC5s2bkZ+fP2+m5kgkAqfTOS/ExsbvXulnKy0tbV6PcmzbGo3mlhqTKZfLYbVaF3QxLRZiY59VQRCQlpZ2RZ/JSxFFEQ6H47zP5/X4bDHEElE8Y4gluk3FToLsdjv27NmDmZkZ6Xe/+tWv8O677152LGU0GpVKW2OGh4exZ88ebNq06YpDLHAmZFxLD0ZswpTLuR4ngbHtzHWxE/vY7bm5uSgpKZHGfvb19cHr9UImkyEcDqOtrQ0TExOQy+UoKyuTxg0KgoDExEQsW7YMJ0+ehMPhQHNzszSGsq2tDW63W2pPXl7egiZauh5sNht27NiBnTt3orW19Ya8rtfLjQr1kUjkhrT5Sj6nF3tusR7TkpISWK1WrFy5EhqNBq2trdJEVHa7He+//z4ee+yx85Ybul7P63odcwvZz7W61u+h6ykajS7ogs7VuFnvCRHR9cYQS3Qb8/l8mJ6eRnd397wr/bG1N6+G3W5HW1ub1Ht0JWWCgiAsuETxUi63jdiEM3PvE4lE5vXMLlQoFJrXkyEIwiXHA6ekpEjLFnk8HszMzGB2dhYymQx+vx9jY2NwuVyQyWTIyclBYmKitC2j0Yjc3Fw0NTVJPa+BQADRaBT9/f3zyllTU1Nv+MQ5sRNgh8OBAwcOoKOjA+Pj4xAEAQaDAVqtFjqdTgoEc1/z2L/RaFQqc5077nKhJ9bhcPiK3jdRFBGNRhEOh6VgEJtU6Vqc+5kzGo1Sz+i1bDvWM3qlpflzxUrkExMTkZiYiLy8PLz//vtwuVw4ffo0gDOfxY6Ojgv2SJ97rFzpax6z0GPl3P+/XAn6uSKRyIJ6ri9loe9Z7LtkrnOf57WSyWTz2hOrJDCZTNdUhm2xWKThDURE8YYhlug21tLSgoaGBmnW0ethYmJCmrzFZDJddNbTxSSXy2GxWOadvMVmBb6Sk2VRFKUxwDEKhQImk+mioaOoqAh2ux2CIEjjHU+dOoXMzExEIhGMj4/D4/HAaDRi9erV82Y7tlqtWLNmDXbv3g273Y5jx47B6/VCFEUcO3ZMCoEymQzFxcVYunTplb40Vyy2VNFLL72EQCAAQRCgVCpx1113obKyErW1tUhNTZXGbsbGP8ZOygOBAH74wx/ivffewzvvvHPF+49NELRQoVBIGlPs8/kgCIK0ZufVin2e5s5qvXXrVjz00EOXne36cmIB9Hr2IAuCgLvuugvhcBi7du0CAHi9XnR2ds4bewlAWmt37rHicDgwNjZ2xb2DExMTsNvt87Z97rESu9gRI4oi/H7/gkOhKIrS+OubQa1Ww2KxzJu8a2xs7IJLYF0NQRCQkJAwb4briooKPP300/joRz963hJoV+p6XDQkIloMDLFEt7GGhgY0Nzdf123G1jU8fvw45HI51q5de123fz2o1WpkZ2fPOzEcGBhAc3Pzgk/M/X4/ZmZmMDAwIIUoi8UCi8UCjUZz0RPDrKwsTE5OSr8PhUJoa2uDw+GAIAiIRCLQ6XRITk5GSkrKvJJsi8WCpUuXQqVSYXp6GpOTk5icnEQgEEBrays8Hg80Gg0yMzORkJBwTeFpoaampmCz2RAIBBCJRJCQkICtW7fi0UcfxfLly2G1WqHVaqFSqaRJpub2xoZCIYyPj2N2dvaq9t/T04PU1FSIorigk/Hx8XG0t7cjGAxCFEXIZDJkZGRc08UWhUKBvLy8eWW4IyMjaGpqwhNPPHFNvag30tzXKzau+VxKpRLZ2dnzltIZHBxEY2PjFR0rTqcTg4OD0hJACQkJSExMhEajmdfLqFKp5n1uI5EIJicnYTAYLjs8wel0Ynx8HE6n87zxyTeK0WhEXl7evDG9zc3NSE1NRTgcvuTkeAshk8mQnZ097/Npt9tx6tQpPPLII7fsZ4uI6Ebjtx/RbShWUtnZ2Ymenh4AZ05o1Wq1NLnRlZx4xcozx8bGEIlEEI1G0dbWhvT0dNTU1Ejbv1UoFAqkpKRAr9dDoVAgHA5jYmICfX19cDgcMJvNFw2AsZ5ap9MpBdjYBDmJiYmwWCyXnKQmMTERaWlpUKvV8Pv90hImsRmNo9EojEYjUlJSYDQa57XDYDAgJycHGo1GWpt0YmICHo8Hg4ODCAQCUKvVyMrKgsFguCmT5bhcLjidTikA6XQ6rFy5EhUVFVi2bNklHxvrFR0ZGYHD4biq/Q8PD6O3txdutxtarfaizzn2mR8fH0dLS8u8ctjU1NRrWmIk9nmaO/O0zWZDZ2cnHA4H5HL5NU1Wdj3FSsBdLte8XtcLlcUCFz5Wpqam0NvbK114udhzix0rHo8H/f39sNls0gzoFosFiYmJ55UTq9XqeduLRCIYGxuD1Wq96GRJsec0MzODjo4OeDyeay4nXiitVitNAqVUKqX1n/v7+zE5OYnExESpF/tqvgMFQUBycrJ0USoQCMDhcOD06dOw2+0wmUzXVEVARBSvGGKJbkOhUAhutxtHjx7FqVOnAJw5GVuzZg1effXVS64PeyFOpxNjY2O45557MDExgWg0it27d8NsNuOJJ564UU/jqimVSqSnpyM3NxfZ2dno6+vDxMQEwuEwfvWrX+Guu+665Nqj4XAYx44dw3/9139hcnJSOllftWoVysrKLrnv2FIjpaWl6O/vh9vtxrFjx5CamgqtVotIJILs7GxUVVWdF8iMRqO05qbdbsfMzIw0y2xPTw9EUURKSgrWrVt3zWWGCxUKhc4bH7nQiyBDQ0NoaWnBe++9N6/M9Eq0t7fD5/PhnXfewdq1a+eVX88VCzl79+7Ff/3Xf0kBTiaTYfXq1SguLr6q/ce2kZycjOLiYpSXl6OhoQEDAwOYmprCb3/7W2zcuFG6mLPYotEogsEgtm/fjmPHjkm3q9VqZGZmnhdIFQqFdKzk5OSgr69P6nn/9a9/jS1btqC6uvqi+wuHwzh16hT+/d//HaOjo9KxsnLlSixfvvy8+6ekpEhLXYmiCI/Hg1dffRU6nQ55eXkX3U8wGMSxY8fw/e9/f155/42mVquRlJSE8vJyBINBdHd3Y2JiAkePHsV3v/tdfOUrX0FhYeFVX8QTBAFJSUnIz8/HypUr0dDQIJVlv/TSS6itrcW2bduu87MiIrr1McQS3YZmZmbQ2NgIh8MhjTWLLcliMBiueKIbs9kMURRRXFwsrRc6NTWFkZERdHd3Iycn56aUti5U7IRy+fLlsNls6O/vl8bSvfrqq7Db7ejp6UFVVRXMZjP0ej0ikQhmZ2cxOTmJffv24fjx42hpaZHKFuVyOaqrqy94Yn7uvtVqNUpLS+FwODA7O4vR0VG43W6oVCpEo1EkJyejpKTkvAsJsYmv8vPzMT09jZmZGdTV1UmlscCZkFxaWjqv/PNGSkhImBeYnU4n3n33XZhMJjgcDpSUlEiTOwUCAbjdbjidTtTX16OlpQXNzc1wuVxXPfuqKIqYmprCz3/+cwwPD2P58uVYsWIFDAaD1Ns9OTmJsbEx7Ny5E0eOHMHU1BSi0ahUtl1SUoK0tLSrfg3mfp6mpqbQ3NwsrXW7fft29Pb2oqmpCRUVFUhKSkJiYqL0/sSW0AkGg/D5fLDZbJiZmcHQ0BBUKhVSU1Oxbdu2eSHo5ZdfRltbGzIzM6VeuvT0dKjVaqjVaqlXMPZ5CgQC8Hq9GBoawuDgIFpbW1FXV4fh4WFpmwaDAStXrjyvZDe237KyMqxbt046VrxeL7Zv3w6bzYaBgQHpWDEYDNLSOVNTU9i3bx/q6+vR3NwsTTwmk8lQWVmJlStXnvdapqWlITc3V1rDNxAIoK6uDsnJyfB6vaiqqoLRaIRWq0UwGMT09DRsNhv27NmDEydOoLu7+6omnbpasWNy06ZNiEaj6O7uBnCm5Hfv3r3S8bhq1SqkpaXBYDBAp9MhEAggGAzC5XLBZrNhamoKbW1tqKysRHl5OSwWy7zS+4KCAtx3333o6OhAMBhEJBLBjh070Nvbi97eXixfvhzJyclSr7BcLkckEoHP50MwGITX64XdbofD4UB/f780dv+hhx5iSTIRxSV+cxHdhmZnZ3Hq1Kl54aGgoAAlJSWXnFn3YlQqFUwmE4qKijA7O4uJiQmp1LW7uxupqam3VIiNKS0txczMDF5//XUEg0EEAgEcPnwYwWAQk5OT0Gq1SEtLg8ViQTgcxvj4OPr7+/Hyyy+jt7dXWpNVqVTCYDBg2bJlKCwsvOx+VSoVCgsL0dbWhmg0CrvdDrfbDYVCgWg0isTEROTn51+0NzwnJwdDQ0Noa2tDe3v7vMmotFotCgoKblqJodFohNlshkajQTAYhMfjwfHjx5Geno5AIACZTCaVZ7vdbil0vP3222hqakJ7ezsUCoVUqnqlYuW7u3btkpaKUavVSE5Ohk6ng8fjQW9vLzo6OvD73/8eNptNmgDLbDajoKDgvDGHV6uoqAh+vx8/+9nPpHWIDx8+jNHRUfT29iIQCCA7OxvZ2dmwWCwQBAHhcFhaBzTWoz4yMoLm5maYzWaUlZWd19O2b98+vPXWWygrK0Nubi4yMjJQWloKg8EAvV4Pk8kErVYr9ex7vV44HA40NTWhubkZe/bskWa2Bs58fi0Wi3QR62LPzW63Y/v27VIZ/JEjR6QZzmMVAklJSQiHw9LFoVdffRU9PT3SsaJQKKDX61FWVoaSkpLz9pOUlIT09HTo9Xp4PB6EQiF0dHQgISEBfr8fBoMBycnJMJlMUil6T08PXnrpJYyMjEhLhclkshu2LM25BEHA6tWrMTk5iR07dsDv98Plckll6yUlJYhEIigpKUFSUpLUdq/Xi8nJSfT09GBgYAAffPCBNCv5ueXtmZmZ2LBhA375y1/C7/cjEAjgxIkTGBwclGY0z83NRWFhIRISEqBQKKQ1q30+HxwOh3TfkydPQq/XIysrC/fffz9DLBHFJX5zEd2GRkZG8PLLL88ru9u8eTPuuOOOq96mXC7Hgw8+iGg0iqamJgBnJkt65ZVXUF5eDpPJdM3tvt7Wr1+P9PR07Nq1C62trRgfHwcA1NfXo7GxEb/5zW/mlcbGxlWGQqF5J8ilpaX4yEc+IvW2XI5Wq0VNTQ3q6uqk2wKBgBQqsrKyUF1dfcGTS5lMhoqKCkxOTmLv3r3zlkSJhZHVq1fflIsGsZlTc3NzsXHjRpw6dQpTU1Pw+/149dVX8frrr583sU1s/GIoFIJMJoNGo8GWLVswNDSExsbGK25DdXU1tFot3nvvPezevRsffPAB/v3f/33ePmPrbM7tsZbL5aitrcWXvvSl6zaDdmFhIZKSkvCFL3wB7777rvT+DgwMYGhoCHv37pV61859TWL/xpaTiUQiFy2Pdjgc0jZjy6/EKifmbjtWkhvbdmy8euzfmBUrVmDTpk3Ytm3bRSsw1qxZg8zMTOzcuRNtbW0YGRkBADQ1NaG1tRW//e1vF3SsFBQU4OMf/zhWr16N9PT08y6YGQwGZGZm4sEHH8Thw4fR29sLADh+/Djq6+vx85///Lz3VhRFBINBpKWlYe3atdIY66stUb9SgiCguroagiDAZrPhD3/4A6ampgAAXV1d6Onpwe7du+e997HjYO57Hg6HpQsW586SnpGRgeTkZDz77LPYt28fdu7cCQDS98DBgwcv+9mK7SsSiWDFihWXXQeciOhWxhBLdBuJlV6OjIxIEwGpVCpYLBbk5ORc07qiMpkMZWVlaGxshFarlWbvbWhogNPpRDAYvOXWI5TL5UhOTsbTTz+Nt956C/X19ejt7ZVCz+XKEmUyGWpqalBTU4N77rlnwWuCqlQqFBUVwWw2zwsaMpkMSUlJUm/NxbaVn59/wfcqtjasWq2+5nVPF0oQBKSkpODxxx+H2+1GMBiE0+lEOBy+ZM+qUqnEsmXLsGLFCiQkJEiTY12ppUuXIiMjAx6PB52dnbDb7QgGgxe9v0wmg0qlwgMPPIA777wTRUVFUCqV12XiMZlMBr1ej23btkGlUiExMRH79u2D3++/qrVLL7bcUyyQXOt6qGazGfn5+Xj88cdRWVl5yZl0Y8sI/cmf/AneeecdHDt2DD09PQs+VmJBr6qqCvfccw8SExMv+BkVBAEmkwkPP/wwXC4XXC4XJicnL7kfQRCQlpaG6upq3HvvvfjJT34iTSB1M8QmxcrNzcWjjz6K2dlZtLa2SrOdxya+W4iLvecymQxKpRJ33HGHtG7wwYMHpUnVrvRzcKVr7xIR3WoYYoluM2NjYxgeHpbWMTQajcjMzJSu9F8tmUwmlWaazWYEg0HMzs6io6MD09PT8Pv9t1yIFQQBZrMZH/3oR+FyuRAMBjE1NYVgMIhwOIxIJCIFhtj9ZTKZVP6q0WiwceNGbNiwAbW1tQver1KpRE5ODsxmM5RKpRS6ZDIZ0tPTkZSUdNExrYIgICsrC6mpqeeVTKalpSEtLe2al/W4UomJiXjggQdw/PhxzMzMIBQKSa9frH2xHiK5XA6FQoGEhARUVVXhgQceQGdnpzSW8EoVFBRg2bJlCAQC8Pv98Pv90pjB2HsX23fsPbNYLHj00UdRUVGBzMzM6/lSQK1Wo7a2Fmq1GgkJCejs7MTMzAx8Ph/C4bAUauYGiFiYi/WoyuVyyOVy6PX6ectAxej1epjNZun1jYWkub17AOZ9bgFInwu5XA6VSoWsrCysXbsWDz/8MAoKCi75vARBgMFgwGOPPSa9zlNTUwgEAhc9VmKveex137BhA9avX3/ZY8VgMGDr1q1obW3F6OioVFYc60WMbT/2WsUuCq1btw6PPvoofv/73y/KbOipqanYunUrRkdHYTAYMDw8DJ/Ph0gkIr33574+sfcjdnEltuTQhdovl8uxZs0aaabiwcFBaTz9Qj9bse+v2NhcIqJ4xRBLdBsRRRG7du3CkSNHpNtSU1PxsY99DFar9Zq3r1QqUVhYiAcffBAvvfQSnE4nvF4v9u3bh1AohDvvvPOa93G9CYIAnU6HT3/60/jYxz6G/fv348SJE1JPSuw5KBQKGI1GKXytXLkStbW1WLp06RWfDMb2mZeXh6VLl6KpqQmiKEKpVKK6uvqywSo2g2teXh6Gh4elELxs2bLLLmtzI8QmIPr2t7+NoaEh/P73v0d9fT0GBgYwMjIihRmr1Yri4mKUlpbiiSeeQFZWFiwWCwYGBq5p/6mpqfjmN7+Je++9F62trXj11VcxPDwsjTU2GAwwm81Yu3Yt1q1bh9raWpSUlNzQkuuVK1eirKwM9913HxobG3HixAnU1dVhYmICExMTUk+hUqlEQkICdDodTCYTSkpKkJmZieXLl6OiouKC5enf/OY38bnPfQ6tra0YGBjA6OgoOjo6MDs7C7fbDYfDAZ/PB5/PB7lcLk32lJ2djbS0NBQVFeHOO+9ETk4O8vPzodVqF3ThI/a5feqpp/Doo49i3759OHXqlDTW1ul0wuPxSONeY6Xt5eXl2Lx5M5YsWXLZtV4BSOOo//zP/xxPPvkkfvOb36ChoQFdXV0YGhqSPk9ZWVkoKytDZWUlPv7xjyMpKemmViFciCAIePLJJ3H//ffjc5/7HHbs2IGOjg40NTXBZrPB4/HA7/dLS+OkpKSgsLAQeXl5uOuuu1BaWoqsrKxLvhexi4V33XUXuru7pe+s8fFxjIyMSHMdKJVKaT8JCQnIy8tDRkYGVq9ejaVLlyI7O/umLMNFRHQjMMQS3WZWr16NpKQkLF26FMCZQFRTU3PNS7LETrry8vLw4IMPIjMzE36/H4IgoKamBllZWec9JrZkxnPPPQfgTI9ebm7ugmfWFQQBpaWliEaj0sl+cXExcnJyFnxyFmt37ER+5cqVsFgsKC8vx6ZNm6SePZlMJoWBnJwcZGRkoKCgQCrtuxKxfW7YsAEJCQnS0iMqlQqrVq265HIvsd6bkpIS/Nmf/dm8Gaarq6uRn59/RW25kNzcXNxzzz1ITU2VJme6WKCKtSlWbiqXy7Ft2zYsXboUMzMz0lqiMpkMBoMBVqsVVqsVhYWFMBqNUKlUqKqqgslkQnl5OYAzs/zGZmedy2AwoLy8HJ/97GelSoK1a9ciMzMTer0eRUVFMBqN0Ol0mJmZgcfjkdbO1Wq1yMvLQ35+PnJzc6HVai8bdtLT07F27Vrp85mcnHzJyY/mUiqVUCgUSEtLQzQahdlsRlFRkVQiO3em3thswlqtFikpKUhISEBGRgbS09MveIEkKSkJOp0OGo0G+fn5mJ2dRVVVlTThj8/nk5Y+ivW8xcZLm0wmaUbmhIQEGI3Gyz6XmLnHilKpxMqVK5GYmIilS5di48aN5x0rWq0W2dnZyMjIQFFREUwm04KOy9hn3Gg0Qi6X484770RpaSkmJycxMzMjfZ4SEhKQlpaG7OzseZPHfeITn8D4+DjcbjcyMzMvu3xSdnY2otEo/uqv/gqiKMJoNCIvL++Kx/HHXp9Yb6pcLseWLVtQVlaGNWvWwO12Sz3XGo0GKpVKmqgqMTERJSUlSExMvOzyZgqFAnK5HKmpqVJPd3FxMZxOJxwOBwKBAKLRqLQ+sUqlglarRVJSEsxmM7Kzs6V1jW+l9buJiK6EIHJQBNEN5fV68ed//uc4fvw4Wltb8c1vfhMbNmzAXXfdtdhNIyIiWhQOhwNPPfUUWltbMTExgeeffx5r1qzBqlWrFrtpRBQHFq/mhoiIiIiIiOgKMcQSERERERFR3GCIJSIiIiIiorjBEEtERERERERxgyGWiIiIiIiI4gZDLBEREREREcUNhlgiIiIiIiKKGwyxREREREREFDcYYomIiIiIiChuMMQSERERERFR3GCIJSIiIiIiorjBEEtERERERERxgyGWiIiIiIiI4gZDLBEREREREcUNhlgiIiIiIiKKGwyxREREREREFDcYYomIiIiIiChuMMQSERERERFR3GCIJSIiIiIiorjBEEtERERERERxgyGWiIiIiIiI4gZDLBEREREREcUNhlgiIiIiIiKKGwyxREREREREFDcUi90AotuN3++Hy+XC9PT0YjeFiIhoUTidToRCIUSj0cVuChHFIYZYoptIFEU4HA5MTExgYGBgsZtDRES0KFwuF3w+H8Lh8GI3hYjiEEMs0U0UiUTws5/9DAqFAgoFDz8iIro9iaIIr9eLSCQCjUaz2M0hojjDs2iiG0wQBMjlcim4RiIRRCIRBAKBxW4akSQajUIURYiiCEEQIAgCZDJOmxCvYu9lrFQz9n4KgrDILSOaL/b3US6X8/NJRAvGEEt0E+j1ephMJlgslsVuCtE8oigiGAxKP6IoQqlUQqPRQKVS8aQyTkWjUUQiEbhcLkSjUQiCAJVKBaVSCbVavdjNI5pHo9FArVZDLpcvdlOIKE4IoiiKi90Iog8zURSlCSxCodBiN4doHo/Hg+effx5HjhzBqVOnoFar8eCDD+JTn/oUli9fDpVKtdhNpKvg8XgwOTmJZ599FoODg3A6nVi5ciW2bduGL3zhC1AqlbxAQbcMQRBgMpmgVCqhVCoXuzlEFAfYE0t0gwmCALPZvNjNIDrP8PAwRkdH0d3djenpaSiVStxxxx2ora3FsmXLkJmZybHbccrv98NsNuPBBx/E0aNHcfjwYczMzGBwcBAtLS3YsGEDTCYTgywREcUlnp0QEd1mYmMlT58+jX379mHfvn0Ih8MwGo34xCc+gVWrViE/P3+xm0nXIFYO/qlPfQp6vR7Nzc0YHh7GkSNHEI1GUVpaCp1Ox14vIiKKSywnJiK6zfh8Phw9ehS/+MUv8Oabb2JmZgYbN27E3XffjWeffRZms5llxB8CoigiHA6jp6cHJ0+exNe//nVMTk5CqVTis5/9LDZs2IDHHntssZtJRER0xTj1JBHRbcTlcmF0dBTvvPMOWlpa4HK5UFhYiMrKSqxfv54B9kNEEAQolUqkpqZi5cqVqK2tRWFhITweD44fP46jR4+ira0NXq93sZtKRER0RVhOTER0G4gV3UxOTqKlpQU//vGP4Xa7oVKpsHnzZmzduhV33nnnIreSbgSLxQKTyYQ/+ZM/wc6dO3H69GkcPHgQDocDGRkZeOKJJ6DVajk+loiI4gZDLBHRbSAcDmNiYgIvvPACduzYAZfLhby8PCxduhR/9Vd/hdTU1MVuIt1AMpkMmzZtgtFohFwux29+8xt0d3fjX/7lX6DRaFBdXY3KykoGWSIiigsMsUREH3KhUAgOhwN79+5FQ0MDBgYGYDQaUV5ejo0bNyI7O5trh37ICYIAo9GIvLw8bNy4ESdPnkRPTw/GxsZw+PBhiKKIvLw8GI1GlpMTEdEtjyGWiOhDKlZC7PP5MDAwgH/6p3/CyMgIfD4fli1bhkceeQQf//jHodFo2AN3m8jJyUFWVha6urpw8OBB7NixAy+99BJ6enqwYsUKLFu2jGvIEhHRLY+zExMRfUhFo1GEQiG88MIL2LNnD3bu3AmtVovMzEw8//zzKCkpQUZGBmQyGUPLbUQURYyOjuLo0aP4z//8T5w6dQqCIKC0tBR/8zd/g6qqKqSlpfEzQUREtyz2xBIRfQiJogifz4fTp0+jvr4ezc3NCIVCWLp0KSorK1FeXg6z2Qy5XL7YTaVFkJ6ejqVLl2LTpk0YHx/H2NgY2tracOzYMSiVSiQmJkKhUPDzQUREtyT2xBIRfQiJooi+vj78r//1v7B//34MDw/DYDDgueeew2OPPYaSkhLIZFxl7XYWiUQQCATwla98BYcPH0Z7ezvS0tJQVVWFF154AQkJCVCr1eyRJSKiWw5DLBHRh9COHTtQV1eHH/3oR3C5XEhISMDXvvY1bN68GUuWLIFOp2M4uc2JoohoNIpTp07h6NGj+Od//mfMzs7CZDJh27Zt+NznPodVq1ZBpVLxs0JERLcUXoYnIvoQCQaDGB8fx8mTJ3Hs2DFMTEzAYrFg6dKlqK2tRU5ODvR6PUMJQRAEyGQyLFmyBJWVlaiqqoLBYMDs7CwOHz6MhoYG9PT0QBRF8Ho3ERHdStgTS0T0ITI2Noa3334b3//+99HS0gIA+OIXv4i7774bDz30EARBYICleWLjp0dHR/HVr34Vhw8fxszMDFavXo01a9bg+eefh1KpZPk5ERHdMvgXiYjoQ0AURXR0dGDPnj34wQ9+gMHBQSQmJuKTn/wk7r//ftTU1DDA0gUJggC1Wo309HR8+tOfxjPPPAONRoPe3l4cOHAAP/zhD9HR0bHYzSQiIpIwxBIRxblIJAKfz4eWlhacOHECTU1NAICsrCxpDCyXTKFLkcvl0Ov1qKysxPr161FYWIhwOIzBwUHs27cPnZ2dmJqaYlkxERHdErjEDhFRnHO73ejt7cXzzz+PU6dOIRKJoKamBrW1tfj0pz/NMlBasNzcXJhMJnz3u9/FP//zP+Po0aPYvn07FAoFxsbG8Mwzz0Ch4KkDEREtLv4lIiKKU6Iowul0orGxET/60Y/Q09MDuVyOsrIyfPSjH8XatWshk8nYA0sLJggCDAYDVq9ejY9+9KNIS0vD9u3bcfToUdjtdpSUlGDJkiXIyMhY7KYSEdFtjCGWiCgOxZZHGRoaQnNzM95//324XC5YLBZUVFSgqqoKZWVli91MikMqlQqZmZlYs2YNAGDfvn2YmJiA1+tFXV0d9Ho9EhISoNVqeYGEiIgWBUMsEVEcCofD8Hg8+Pa3v42TJ09iYmICeXl5WL9+Pb7//e/DZDKx7JOuyfr165Gfn4/x8XHs2LEDbW1t+Id/+AfYbDYEg0GsW7eOnzEiIloU/OtDRBRHYj2wnZ2dePvtt9Hc3Izp6WmYzWZ8/OMfx9q1a2E0GqFQKNhLRtdEJpPBYrHgscceg9/vh1KpRHNzM/bt24fZ2VlkZGQgJSUFJpNpsZtKRES3GYZYIqI4EZsZdmZmBqdPn8abb76JoaEhyGQy5OXl4c4770RlZSVUKhUDLF0XWq0WNTU16OnpgcvlQmdnJzo6OjA1NYWPfOQjWLZsGXQ6HeRyOT9zRER00wgi58snIooLoigiEongW9/6Fo4cOYI9e/ZAo9Fg/fr1+Md//EcsXboURqORYYKum9gpQiAQwPDwML74xS+itbUV4+PjyMrKwrPPPounn34aaWlpkMvli9xaIiK6XXDdBSKiODEyMoLdu3fj0KFD6OzsBADcd999uO+++5Cfnw+NRsMAS9eVIAgQBAEqlQopKSl4+umnUVNTg+TkZNjtduzbtw+//OUvMTs7i1AotNjNJSKi2wRDLBHRLU4URQQCAQwMDOD9999HQ0MDxsfHYTKZsHXrVmzZsgVWqxUqlWqxm0ofUjKZDEajEQ8//DBqamqQm5uLQCCA+vp6vPrqqxgdHYXb7YYoimCBFxER3WgsJyYiusWFw2G8++672LlzJ1588UUEAgFUVFTgqaeewpNPPgmr1cpZYumGi50u2Gw29Pb24umnn4bNZkMgEMCmTZvw8Y9/HE899RTHZBMR0Q3HnlgiolvY7Ows+vr68MYbb6Curg6BQACVlZXYsGEDNm7cCLPZzABLN0WstNhsNiM3NxdPPvkkVqxYAZlMho6ODhw8eBBvvfUWfD4fe2OJiOiG4pkPEdEtKLaUjt1uR2trK9566y1MTk5CpVKhtrYWmzdvRnV19WI3k25DGo0GKSkp+OQnPwmv14uuri4MDw/jyJEj0vqxSqUSSqVysZtKREQfUiwnJiK6BUUiEfT19eGll17Cj3/8Y4yMjCAzMxOrV6/GP/3TPyE7OxtarXaxm0m3qdhM2e3t7WhoaMBXv/pVeDweqFQqfOELX8CWLVtw7733LnYziYjoQ4o9sUREt5hgMAi3240333wTR48exeTkJJKTk7Fy5Uo89NBDsFqt0Gg0i91Muo0JggCFQoH09HREo1HcfffdaGxsRFdXFw4dOgSVSoX09HQsWbIEarV6sZtLREQfMgyxRES3iFhhjNfrxdjYGH72s59haGgIgUAAhYWF2LBhAz7xiU9AqVRy4hy6JSQnJ8NkMuHJJ5+EUqlET08PDh48iGg0iqSkJGRlZUGpVEIm4xQcRER0/TDEEhHdQvx+P15//XX89re/RXd3N9RqNQoLC/Gd73wHxcXFXEaHbjlKpRJ33303NBoNEhMT8dOf/hT19fXo7e1FQkICVq1ahRUrVix2M4mI6EOEIZaI6BYQWwv2wIEDOHbsGDo6OgAARUVFqK2tRUFBARITE9kDS7ccQRCg1+tRVFSETZs2oa6uDgMDA5iamsKePXsQDAaRlpYGi8XCyZ6IiOi6YIglIroFRCIROJ1OvPjii2hoaMDAwACSk5NRW1uLL3/5y0hLS2MAoFtaUVERsrOz0dDQgIMHD2Lfvn343e9+B7vdjqVLl6KiogIKhYIXYoiI6JpxdmIiolvArl27sGfPHvz4xz+G3++HWq3Gv/zLv2DVqlUoLy/nOFiKC9FoFDabDbt27cLPfvYzHDt2DBqNBnl5efg//+f/YOnSpUhNTV3sZhIRUZzjTAtERIsoFAqho6MDJ0+eRF1dHZxOJ1JTU7Fu3TpUVFQgOzsbKpWKAZbigiAIsFqtWLZsGbZu3SrNXtzd3Y39+/fj1KlT8Pv9iEaji91UIiKKYywnJiJaJKIowuPx4K233sKOHTtw8OBByGQyrF27Fv/jf/wPlJeXc3kSiiuCIEAQBKxYsQJFRUU4deoUGhsb0d3djRdeeAG9vb2oqKhAYmIiqwuIiOiqsZyYiGiRtLW1obm5GX/9138Nm82GaDSKz3zmM9i6dSs2bdoEk8nEpUkoLomiiEgkgubmZuzevRv/+Z//ienpaaSkpGDdunX4xje+gZKSElYZEBHRVeHZERHRTRaJROBwONDc3IxDhw5haGgIKpUKhYWFqK2tRUlJCRISEhhgKW4JggC5XI6ioiKsWrUKtbW10Ol0cDgcOHnyJE6ePInOzk4Af1wfmYiIaKFYTkxEdBOJoohgMIjOzk784Q9/wNtvv41QKITy8nJs3rwZjzzyCDQazWI3k+iaCYIAo9GItWvXIi8vD4ODg2htbUVnZydeeOEFdHZ24h/+4R8gl8sXu6lERBRnGGKJiG6imZkZ9PT04K//+q/R3t4OQRBQU1ODxx9/HPfffz9UKtViN5HoutJqtcjMzMTXvvY17N+/Hz/84Q/R2toKn8+HxMREfOxjH0NeXt5iN5OIiOIIQywR0U0giiLC4TC6u7tRX1+PhoYGhEIhJCQkYN26dVi+fDlyc3M5PpA+dBQKBeRyOSoqKuD1elFWVobOzk4MDQ3hwIEDWLlyJbRaLaxWKz//RES0IAyxREQ3QSQSgdPpxE9/+lO88847sNvtyM3NxfLly/G3f/u3MBqNHANLH1qCICA/Px86nQ4mkwnf+MY3cPr0abzxxhtISUnB+Pg4nnrqqcVuJhERxQmGWCKiGywUCmFwcBD/8R//gYMHD2J6ehqpqal48skncffdd8NgMEAul7MXij7UBEGAxWJBTU0Nnn76aRw5cgSvv/46du3ahZGREWRkZGD58uWwWq2L3VQiIrrFMcQSEd0gsVlXx8fHcfr0aezbtw+jo6MQBAHLly9HdXU1KisruV4m3TbUajWsVivWrFmDcDiMI0eOYGJiAqIo4vDhw7BYLNDpdNDr9TwmiIjoohhiiYhusP/+7//G3r170djYCIPBgJKSEjz//PPIysqC2Wxe7OYR3VSCIGDLli3IysrC9PQ0XnnlFQwODuIf//EfEY1GsW3bNqxdu3axm0lERLcwhlgiohtkYmICu3fvxu7du9HW1gaFQoEHH3wQGzZsQFZWFnQ6HXub6LYkCALS0tLw1FNPwel04sSJE2hqasIbb7yBwcFBpKWlISUlBQaDYbGbSkREtyCGWCKi60wURbjdbgwPD2PPnj04ffo07HY7MjIyUFNTgw0bNsBsNjPA0m3NYDCgoqICa9asQSAQQGdnJzo6OuD1etHS0oIVK1ZAo9FwvDgREZ1HEGODtoiI6LoQRRFvvfUW9u/fj3/7t3+DKIrIy8vD3/7t32LLli3Smpg8MafbWez0IxgMor29HV/72tfQ3NwMh8OBtLQ0/M3f/A0efvhhpKWl8VghIqJ5uJ4DEdF15HQ60dzcjFdffRW7du1CNBrF+vXr8dBDD6G2thbJyckQBIEn5XTbix0HSqUSWVlZ+MIXvoDq6mokJSXBbrfjzTffxIsvvgiXy4VQKLTYzSUiolsIQywR0XUgiiJCoRDsdjtOnTqFo0ePor29HQaDAatXr8bGjRtRXFwMo9G42E0luqXIZDJYLBbcfffdqKysRF5eHoLBIOrr67Fr1y4MDQ3B7XZDFEWweIyIiACWExMRXReiKKKjowMffPAB/vZv/xZOpxPJycm455578NWvfhXl5eUc20d0EbFTkYmJCbS0tODTn/40pqenIYoiamtr8bnPfQ4PPfQQVCoVjyEiImJPLBHRtQoGg3A4HHj55Zexc+dOuFwuZGZmoqqqCk8++SQyMzOhUCh48k10EbHSYrPZjKKiInz2s5/FsmXLAADt7e1477338NprryEUCrE3loiIODsxEdHVipU3ejweDA0N4d1330VbWxui0SiKiopQVVWFrVu3Qibj9UKihdBqtUhPT8fHPvYxDAwMYHh4GCMjIzhy5AgCgQDuvPNOmEwmqNXqxW4qEREtIpYTExFdpViAfe+99/BP//RPaG1thUwmQ1ZWFr7//e+jsrISiYmJADgTMdFCiaKIaDSKpqYm1NfX4ytf+QpCoRD0ej2+9KUvYdu2bdi4ceNiN5OIiBYRe2KJiK5CNBpFJBLB22+/jQMHDqC/vx9yuRyFhYV44oknUFhYKE3ixABLtHCCIEAulyMrKwvRaBSPPPIITpw4gYGBAXzwwQfQarXQ6XRYsWIFlErlYjeXiIgWAUMsEdEViBWvhMNhuN1uvP7662hoaMDk5CSysrKwfPlyPPXUU0hJSYFKpVrk1hLFr5SUFGi1Wjz22GPweDwYHBzE4cOHYTQaYTQaUVxcDJlMBrlcvthNJSKim4whlojoKtTV1eG3v/0tdu/eDZfLBYPBgG9961uoqqpCeno6x8ESXQd6vR4PPvigVKb/wgsvYO/evWhubkZqaipWrlyJ0tLSxW4mERHdZAyxRERXIBqNor6+HkeOHMGxY8fg8XiQkZGB9evXY/ny5cjMzGTPENF1IggCNBoNysrKIIqiVFY8PT2Nt956Cz6fDyaTCVarlccdEdFthCGWiGiBotEogsEg3n//fezduxcnT56EVqvFkiVL8Kd/+qcoLS2VxsES0fWzZMkSZGRkoK6uDvv378eJEyfw8ssvQxAEFBQUICEhARqNhuPPiYhuE5ydmIhogbq6unDq1Cl8/etfx/j4OAKBAL761a+itrYW9913H9RqNcuIiW6QaDSK6elpvPTSS/jDH/4gjY/Nzs7Gj3/8Y+Tn5yM5OXmxm0lERDcBz7aIiC4jGo1ifHwcDQ0NeOedd2Cz2aDX61FZWYl169Zh6dKl0Gq1DLBEN5AgCEhMTERFRQXuvfdepKenIxqNYmBgAO+88w5OnToFn8+HaDS62E0lIqIbjOXERESXIIoiwuEwOjo68P777+PXv/41IpEIysrK8NBDD+GOO+5AUlLSYjeT6ENPEAQIgoCqqioUFRVh3759aGtrw9DQEH7yk5/A4XCgvLwcKSkp0n2JiOjDieXERESXYLfbMTQ0hD/7sz9DX18fpqamsHnzZtx///14+umnkZiYyAlliG6i2IWl06dP4w9/+AN+/vOfS0tcVVRU4Hvf+x4yMzO5xBUR0YcYa9+IiC5AFEX4fD6cPn0a77//Pnp6euD3+5GamootW7agoqICycnJLCEmuskEQYBCoUBeXh4qKytx1113QavVYnp6Gk1NTTh8+DA6OjoQjUbB6/RERB9OLCcmIjqHKIqIRqOYmZnB7t278eKLL8JutyMzMxNLly7Fn/7pnyI1NZXlikSLRBAEGI1GbN68GUVFRTh+/DgGBwfR1dWFF198Effddx+WLFkChYKnOUREH0b8diciOkcoFILdbsdf/dVfoaGhAZOTk8jOzsZHPvIRPP3000hJSeHJMdEtwGg0Ij8/H9/+9rexc+dO/OpXv8KJEyfg8/kQCoXwmc98BqmpqYvdTCIius5YB0dEdJYoihBFEYODgzhx4gROnTqF8fFxKBQKrF27FqtXr0ZxcTGUSiV7YYluAQqFAlqtFitWrEBlZSUqKioQCoUwODiIQ4cOoaOjA+Pj44vdTCIius7YlUBENEckEsEHH3yAV155BR0dHVCr1UhLS8Nf/uVfIi8vDwaDYbGbSERzyGQyFBYWAgDMZjP+8i//EmNjYxgbG0NpaSk2btyIRx99FAB48YmI6EOCIZaI6Cyn04mf//zn2LlzJ44fPw6FQoH77rsPjzzyCIqKiqDX6xe7iUR0ERkZGbjzzjvx2c9+FkeOHMGuXbvw0ksvobe3FzqdDmvWrIHFYlnsZhIR0XXAEEtEhDNL6QwODuLgwYPo7u6G2+1GWVkZKisrUV1dDYPBwHGwRLcwrVYLtVqNmpoa+P1+tLa2wmazob29HQcPHkRmZiYUCgUMBgN7ZImI4hzPyIiIANTV1WHfvn147bXXEIlEYLFY8Nxzz2HVqlUoLS3lSS9RHJDJZLj33nthtVrh9/vx3//93+jq6sL3vvc9pKSkYMOGDVi1atViN5OIiK4RQywR3dY8Hg/q6+vxyiuvYO/evYhEIli/fj3Wr1+PDRs2IDExkQGWKI4IgoCioiJ89rOfhc1mQ2NjI9rb2/Hzn/8cbW1teO6555CamgqdTrfYTSUioqvEEEtEty2fz4epqSkcOXIETU1NGBwcREpKClasWIHa2lqkpaVBqVQudjOJ6AqZTCYsWbIEa9asQTgcltaQlcvlqK+vR01NDZRKJRQKBS9SERHFIUEURXGxG0FEtBja29tx8uRJfP7zn4ff74der8enPvUpfPSjH8XGjRsBcDZTongUO7UJBAI4fPgw/u7v/g5NTU0IBoNISUnB888/j40bN8JqtfIYJyKKQ1wnlohuO6FQCOPj43jppZfw05/+FH6/H9nZ2Vi3bh0++clPYsmSJRAEgSe3RHEqduwqlUosWbIEzz33HCoqKmA2m2G32/GrX/0KP/3pT+H1ehEOhxe5tUREdKUYYokoroiiiHA4DJ/PB6fTiWg0ekWPj0QicLvdaG9vR11dHU6dOgWlUomioiJUVVVh5cqVSE5OvkGtJ6KbRRAEyOVypKSkYOPGjaioqEBubi6CwSDq6+tx4MAB9Pb2wu12QxRFXElhmiiKcLlc8Pl8V/xYIiK6diwnJqK4Eo1GYbfbMTAwgIGBAdx3331XNEHL7OwsGhsb8eyzz2JkZAThcBhlZWV47rnncP/990vbYi8s0YdD7DRndHQUhw8fxpe//GU4HA6o1WqsWbMG3/jGN7Bx48YrGh8bDofxzjvvwGq1oqKiAkqlkt8ZREQ3ESd2IqK4Eg6HUVdXhyNHjuDYsWPw+XxYvnw5Vq5cecnHRaNRhMNhbN++HYcPH8bo6CiUSiVyc3Px53/+56ioqIBarQbAAEv0YSIIAkRRhMViwfLly/EXf/EX+NWvfoX+/n60tLTgtddeg81mw+OPPw6ZTHbZ47+/vx9tbW144YUXUFpaimg0ipUrV0Kr1d6kZ0RERAyxRBQ3RFFEJBJBc3Mzjh49igMHDiA3NxeiKCIrKwtmsxlyuXzeSWisFyYYDMJms+HAgQM4fPgw3G43ioqKUFZWhm3btsFsNkOh4Fci0YeRIAjQ6XTIysrCAw88gOPHj2NmZgajo6M4evQowuEwtm7dCqPRKF3MmitWMuxwONDV1YWDBw9i3759mJmZQUlJCZYsWcIQS0R0E7GcmIjihiiKmJ2dxX333Yeenh5MTk5CLpdj2bJluOOOO/Dcc8/BarVCLpfPe4woimhtbcV3vvMd7N+/H1NTUzAajfjWt76Fbdu2oaioiBM5Ed0GYt8HdXV1OHz4ML7+9a9DFEUkJyfjC1/4Ah5++GFUVFSc97hoNAqPx4Nvf/vbOHLkiBR8MzIysGzZMrz44ovIzs6++U+IiOg2xW4HIoobdrsd/f39GB0dhcvlAnBmoqbh4WHs3bsXaWlpqKysxObNm6FUKiGTnZm77sCBA6irq8OJEyfgcrlgtVrx5JNPYvXq1UhNTWWAJbpNxI71goICRCIRPPHEEzhw4ACmpqbw9ttvw2AwIBQKYfXq1ZDJZBBFEaFQCPX19airq8OePXswNDQkzWg8OzuLzs5OjI6Owmg0IiEhYXGfIBHRbYIhlojixtTUFLq7uzEzMwO/3y/dPj09jZmZGWi1WrjdbpSWliI1NRVyuRzBYBCHDx/GoUOH0NPTA7PZjNzcXDz66KMoLi6G2WxexGdERIshNTUVCoUCDzzwAIaHhzE1NYVjx44hOzsbWq0WZWVlUKlUAACbzYZjx45h+/btaGxsRCgUkrbj8XgQCAQwMjICq9XKEEtEdJMwxBJR3GhqasL27dsRCATO+50oijh+/Dh6e3vxwQcf4F/+5V+g1WrR0NCAX/7yl+ju7gYAfPrTn8amTZuwdu1aqaeWiG4/FosFH/vYxxCJRFBcXIyf/vSnePPNN3Hy5Emkp6ejsLAQarUaX/nKV9DR0YGhoSFEIpHzthONRrFjxw74/X7k5+cvwjMhIrr9MMQS0S0vGo3C7/djaGgILS0tFzyRBM6UFs/OzqKnpwe/+MUvoFAoMDg4iImJCZhMJlRVVaG2thbLly8/bwIoIrq9yGQyqFQqVFZWQqVSoaGhAQMDA5iamsLvf/97pKamQq1Wo729HdPT0xf93hFFEU1NTcjOzkYwGORyO0RENwFDLBHd8mKzgg4PD6O7u/uiJ5MAEAgEYLPZ8Lvf/Q6iKMLj8UAul6OoqAj3338/qqqqkJubexNbT0S3srKyMlgsFhw6dAh+vx8dHR147bXXoNPpoFKpMDExgUvNgSmKItrb27FkyRJ4vV4YjcZ5k8sREdH1x1o6Irrl+f1+vP7662htbUUwGFzQY9xuNzweDwBgxYoVuPfee/HZz34WWVlZN7KpRBSHUlNT8a1vfQuPPPIIlixZgnA4DIfDAZvNdskAG+PxeNDT04OdO3didnb2JrSYiOj2xhBLRLe82OygY2NjC35MbCkNURQxNTWFoaEhdHZ2SsGWiAg4M2NxOBzGxMQE7HY7ZmdnEY1GpZ+FiH3PHDt2DF6v9wa3mIiIWE5MRLe02HjYkydPYnR09Kq2MTw8DJ1Oh/3798NoNEKr1UKhOPP1x7FrRLe3SCQCt9uNxsZG9PT0YGJiYsHhda6pqSkcOXIELpcL0WiUE8cREd1AgriQOhkiokXS29uL1tZWfPKTn4TH47mqk0sAUCgUMBgMeOSRR7B+/Xo888wzXB+WiPDBBx+grq4O//7v/w6n0zlv+a4rIZPJoFQq8etf/xpVVVXIy8u7vg0lIiIJe2KJ6JY2PDyMlpYWBIPBqw6wAKQxbg0NDQiFQsjNzcWKFStgtVohk8kYZoluI7FJ39rb27Fnzx4cP34cU1NT1/QdE41GEQwG0dHRgaSkJIZYIqIbiCGWiG5JsSKR7u5uHD169JIzEl+JxsZGDA4OIhAI4Etf+hJMJhN0Oh1EUWSQJfqQi32vRCIRTE1N4Y033sArr7yC9vb267b9+vp6mM1mbNmyBQCHLBAR3QgMsUR0S4pGo3A6nWhsbMT+/fsRDoev27ZnZ2fx7rvvYnp6GqtXr8bf/M3fSMtpENGHlyiKCIVC+MlPfoLDhw/jnXfegcvluq772L9/PzQaDT71qU9Bq9VyuR0iohuAsw4Q0S0pFApJk6y43e7ruu1oNAq3242uri4cP34c7777LoaGhhAOhxe0nAYRxRdRFBEOhzE5OYn3338fhw8fRmNjI6anpxEKha7rvpxOJ2w2G3p7e696fC0REV0ae2KJ6JYjiiL8fj8OHjwohcsbYXh4GFNTU7Db7fjmN7+JtLQ06HS6G7IvIlpcgUAAXV1d+Od//mc0NzdjZmbmhuwnGAxifHwchw4dQkpKCvR6/Q3ZDxHR7Yw9sUR0S/J4PHjttdfQ29t7w/ZRUFCAzZs341vf+hZqamqg1Wpv2L6IaHFpNBrk5OTg4x//OMrLy5GSknLD9jU2NoaXX34ZU1NTN2wfRES3M/bEEtEtx+12Y3JyEoODg9d9vJpKpYJer0deXh4qKiqwdOlSrFixAomJiVzXkehDTCaTwWQyYcWKFZiYmEBmZiZaWlowOjoKp9N5XSs+vF4vent7YbPZ4HK5YDAYOMETEdF1xBBLRLeckZERtLe3Y3h4+LqPVzObzSgqKsKzzz6LzZs3Izc3FwBnECX6MIsd3wkJCdiwYQPWrl2LiYkJvPzyy3jppZfQ3Nx8XS+Y+Xw+9Pf3o6urC2lpaSgrK7tu2yYiIoZYIroFnTp1Cu+99941rdk4l0qlQnp6Ou666y7ce++9KCwsRFZWFkwm03XZPhHFF7lcjuTkZDz++ONYt24dBgcH8cYbb6Curg69vb3XrVf24MGDkMlkDLFERNcZQywR3TJiM4gODg6is7PzmkOsWq2GxWJBfn4+CgoKsGnTJqxZswYZGRlQKBTsfSW6TQmCALVajYyMDFgsFmRkZMDhcEAul8NisaC/vx9OpxM+n++a9tPT04OMjAyEw2HI5XIOWSAiuk4YYonolhGJROB0OtHS0oJjx45d03I3giAgNTUVmzdvxhe+8AWUlJTAYrHM+z0RkUajQWZmJj7zmc/ggQcewMDAAP7jP/4DJ06cQFdX1zVtu76+HlqtFk6nE0ajkWtRExFdJwyxRHTLcLvd2L17N4aGhq56LGxCQgJyc3Px+OOPo6SkBEuXLkV2djZ0Oh2DKxGdZ+73QmJiInQ6Hb7xjW+gvb0d7e3t+N3vfoeJiYmrWpInFArBZrPhvffew6ZNm5Cenn49m05EdNtiiCWiW4bf70dTUxPsdvsV9cLKZDIolUqkpqYiOzsbK1aswJYtW5CXl4fMzMwb2GIi+jBRq9VQq9VYvnw5zGYzUlNTMTAwgJ6eHgwODmJsbAyhUGjBQx1EUYTL5UJjYyMqKiqQlpYGgJUgRETXShCvpV6PiOg66urqwmOPPYahoSHMzs4u+HEGgwHJycn48pe/jOrqamzYsEH6HU8WiehqxE6PotEoGhsbcezYMfzrv/6rtGzOQul0OuTk5OCHP/whNm3aBIDfS0RE14o9sUR0SxgaGsLp06cxNDQEr9d72fvL5XJoNBrcddddWLFiBdasWYMlS5bAYrHwBJGIrpkgCBBFETKZDAUFBUhISEBmZiba29vR0NCAd955By6X67IzGQcCAQwPD6OzsxNZWVkoKCi4Sc+AiOjDiyGWiG4Jo6Oj6Ovrg8vlumSpniAIMBqNSExMhNVqxYYNG1BVVYX169dDpVIxwBLRdTN3fVmz2Yz09HRkZmbCbDZjeHgYY2NjsNvtcDqdiEQiF9xGJBKB2+3GwMAABgYGGGKJiK4DhlgiuiXU1dXhvffeu+RY2NiyGPfccw/uuece3H///UhOToZcLmd4JaIbTqPRYNWqVVi5ciUefPBBHD9+HG+++Sa2b98Oh8Nxye+vgwcPQhRFbNmyhd9XRETXiCGWiBZVJBKBz+dDe3s7mpubL3gSqFAoUFRUJJ08VldXIzs7GwkJCVzvlYhuirnfMzKZDImJiVi9ejVSUlKwdOlStLW14dChQxgYGEAgEDjv8V1dXTCZTHA6ndDr9VAqlTez+UREHyoMsRS3otHogmewvZKZJBe6zdh9L3Z/QRCkn4WQyWQLut+V3Hfu/m/VoBcOh2G32zE8PIyRkZF5v1MoFNDr9TCbzaioqMBdd92FjRs3orCwEHK5fJFaTES3O0EQoNVqkZ2djaysLKSkpCArKwterxeRSATT09NwuVyIRCLS34iJiQkMDQ3BZrMhPT19UUNs7G/ilc7teSV/Iy+0v6vd1+UqdK7kb+1cV/J399z9Xc3jrmZ/RHRhDLEUt7xeL8Lh8GX/oIqiCLfbjWg0etk/pJFIBIFAAKFQ6LLbDYVCCIfDCAQC59039scqtlzD5QiCAIPBsKBgJpfLYTAYFvSHVKlUQq1WQ6G4dQ/1mZkZvPHGG+etDatQKJCbm4tHHnkEW7ZswdatW6FUKiGTyW7ZQE5Et6eioiIUFhbisccew549e1BXV4df/vKXGBkZgd/vB3Dm78vk5CS2b9+ORx55BEuWLFm09gaDQQSDwYuO470Yj8eDSCRyRY8TRVF63JUE4FAohEAg8P9n77+jJEmu+1D4l+W97+quat89PdPjzY5drN+FWTjCg6QoiZRAgk4SRR4duU9P4hMl8tOjKOlJJChK/B6JRwOQEABCwAJYYN3M7M7ujnc9Mz3T3pT33mTl90dW5ET5qu6q7qru/J0z01mZkeEybty4N+69UZfPEz6o0WhaUgoQHk14aSvvyWQy6HS6pt8h7ymVSqjV6pbeEyFCRG1078pWxJYhn8+DZVlks1nk83nk83mk02nhmghr5D4RBGkGSM7NY1lWEBaz2SwAnoGl02lBq0rSkvQsywrRHfP5vPBeoVAoSUt+E2bW7Fl9pMxmNMgcxwltaJSWbkM1MAwDqVTalGDKMAzkcnlTzJRhGCgUCuG6HiQSieAvSoQ/hUIhaIOVSqVwLZfLIZVKhXfI2askH5VKVVI+yVMmkwntJAyevCeVSoV2kfxIOUTAXl1dxRtvvAGfzycw+iNHjmBqagovvPAC9u7di5GRkZK6ihAhQkQnQPMvmj8RPkh+k3uEB9A8LhgMQqPR4Ny5c3j48CF8Ph9WVlaQz+cRjUbxwx/+EBzHYXJyUuB9HMcJ+RO+Vs4fAZ7v0WloPkl4VjabLfldKBQqlK35fL4laya6fI7jWt5ZbZYH0yB92+g9wnda4Q+EdxJe2sp7NA9uBVKptEKhrFKpShTSUqm0hL+X82xaQU7/JnwY4Pk14bckX5pPkzSkPnQacp+kUalUQn4KhUJIQ/g84eckL1JXkVeL2AqIQmwXgjafIcyCNl2t9Y9+p9F9+l42m0Uul0MqlRK0s7FYDNlsFplMBul0WtCIxuNxQWijd0KJAEwYLPFzJGXE43GhLel0umIhQATXbDaLVCoFAMLCgGbkmUxmQ2ZJNFrVuraavlUm3Sw2e6QzYXYajUZgMFqtVhA+yY4t/Y8IrhKJBHq9XshHrVYLjIswMsIwFQqF8J5cLheYIGFwKpVKuK/VarG6uorr168jHA4LwvzIyAiOHTuG559/HkqlElKpFH6/v8JsrPw3zeirpaGFedq0a6PmYSJEiGgP6vGwRjyt2vsbvSb8hvA3wp8ymYxgpUP4IeFPuVyuZKeRCJaDg4OCFdD6+jpYlkUikcCVK1cgl8vx8OFDZLPZEuGTCMsAKvgjUQjTgi2xHqJ3K1OplCCkkjSJRGLTPKQWNmpau9H3gI3xw2ZMk+u91wnodLoSniSTyaDRaACU7jKXC59arVbIQyaTlVhcEd5Mdn0JX66mYKYj+tNrAJIvWSNIpVJoNJqSfNRqNRQKhZAP4e9E0K3Fj+l75b8J6Her5VHO96tdi3x954PhOkmdIjYEIhSmUikkEglEIhEkk0nhOp1OI5lMIpVKIZfLIZ1OI5VKIZPJIJFICEJnKpVCOp0WhFLCgEnaTCZTcZxJtUm+metmfm/0vXYPUcIQGmkKieaR1oLWAq2JJIuceqCF+2YE2U4tQugJvtpk3+h5tfut/CZCf/kuAWGkBoMBSqUSCoUCGo0GKpUKKpVKYKbEPIv8rXdfqVRCq9XCYDBArVbDZDJBp9MJ+YnMToSI7QPZ/Uwmk0in00gkEsJ1PB5HOp0W7hNBk5zRSoTKbDYr8D9yTQQ8kjdJTyttiRKWzMft5H+0JRENwoPqzenVnm3mXrtRLnQ1i1ZcbeiyiEAHQBDmW2kn/a1bAbFMa9X0eiNoxIdbvbfZPBrx73rXer1e4OVE4CWCskKhEIKbEYU5eSaXy6HVaisEZLVaLeSn1+uF/PR6vbA20Ov1At9Xq9XijvAOhyjEtgFEe0t2ComwSJguuabv09dkYqWZKnmPpKGva5k2EUZN71ySNJlMRrhP75aWR1Ckd9aIUEauyYRCNGzkH9HaEaEPeGweS6ejTVlobR+5T5u9EhOXclMaYhJTPjGR+80IIs36VdLmwM2kJe2kTb1qgda8N0OC5abU9UC+fXlaMm5IfmQM0DsHdL0Iwybpys26CYi/FzGHo9PRvlO0yTqpI9kxKH+PgDZVIsyOHpON7pePZ8L0iCkzYZoqlapEk0zGOmG8hIEShlrtmjBOWtstQsROAR0DoJlrWrgkvKn8Ph2DgKQpvybzBn1NBE0yT5G5hp5Lyn+TeYukp+chkr7aHEt4EOE7hNeUm1USfkHTfrlJJ+F/ZO4DgP7+/hIeQ7t0kHvlPIsun6A8DeHHNO8i7agGmn83C9pNpNX3qpnWNvMeKYveaW4WNC9rBfQYahaN3JiqjTeizKUVIGQXns6T8FTamo7+TQvc1fh7OW8u/03aTPqqnG7IM3pNWa2dtGkxzZvJ+KafEx5Op6fNm8tdk4iFFhGIyfvkPuHPhD5p4Zncr3VN1gj0DjfJj6wn6PtA9wbO3OkQhdgimjXhpe/T10R4jcfjiMViSKVSiEajiEajwjV9P5FIIJVKIRKJCBrnUCgk7LAmk0mhbrXMJcv/Nnuv3jOlUinsTNGLdPKXLNLJ5CGVSgWfDtrERSKRCCantCkpIXhaC0tPCCQt7SdCzFkACKYq1fxKyAS32ycTslgsZ7hEUUKULmRhSBgTWVQCvKk4YUy0rzRtKg7w9EJ282lTN3oBSRQlxOSOlJtOpxEOh4UdFFoZU8vUr969ZtOXmyEC/BjU6XRQq9UwGo3QaDTQaDQwmUzQarXQaDQl98k1iZysVquh1+thNBoFYbaWCXOte+VmUCJEbAatmOfW+wdAcAMhPI5Y+dA7pOSaWBCR+8QKKJlMIh6PC9eJREKwHiLzDa0cq2dGWC1Nvb+tpC3/S4L/0C4W9IKWKL7IwpmOHUDS03EHAH4uDoVCAIDp6ekS4ZL2NST50LyU5FMesK/cwojwY7oPiKVKOcj8U55exMZRKBSQSqVq7hYTPk0LjuWWAPl8HolEQnjOcZxAK+Q3MX0n79C8nfym3bsAlCiKSBpCf2TdQCucyEYKyYcooUg+yWRSEPLr8Wb6L7muZt3Q7Lt0HtXSEJokvJpYY+l0OuGattIi12QtUO1apVJBrVaXXJfz9mb+AahYAwAi728VohBbBNFeRSIRRKNR+Hw+QQj1+/2IxWKIRCIIBAIV16FQCKlUqmnf1XqLavoZ0UAR80eyeCaCJhEuaaGTEBu5pk0q6d2lWvcb+SHQfwlaMS9pJm0r6VpJs1tQbTIvf1btdyvXtZ4386wW8wEgCNTlvtlEACdmguX3yXU8HhcWB3R6smCOxWKIxWLC4preca7GTJplRHR6ouAxm83QarWw2WyCMNzX1wej0QidToe+vj4YDAbh2mKxwGAwCAocESI2A7K7EgwGBeUq4VXxeByRSASpVAqxWAzhcBjJZLKm4jUSidSl3Y08q/YceLxLRxRGKpVKWHQS3keEPCK4kYjt5YImvVtCeCTZXaH9/2ilLdmNoQXHjQjLtX4TkDaX74zWW8y2Wk6zdWlUrojWUY8Pl6ep9buZNLV+t5p3M3y8kfK4UCggkUiUWFuUW2MQ60Pym7bGonk2SUOOrCICPR1klFagER91EreFVuLX4uv1frfyTKfTQaPRQKfTwWQyCUIuUXAbDAbhvsFggF6vFxTmZG1gsVhKgnOJaA47WojlOE7w/yS7n0STTPvaJJNJYYFL3yfv0gRCNMxkt5T4p5LdI7KbSRglbZ5AhEX6Ps2QifBJtLm0lpfcp80Vy80l6YA81cwpqgXiKb8vMrDdCTJ2t7tMolkm/+idXdqEnjBFonWmzeMJwyNmh+SaMD6asZJ86N1gwmTLtc20KT/td0czaOJrRYJqEA1vtWuiySXXGo1G2NGl/XvKrzUaTYliS7Q+2Nkg45rwKWKtQxaAZEzTsQ7oa8L3CN8i47r8miwwy11gyH0CoqShzfiIaWAtk75qZn/kPs2/6Oty875y/kabIxK+W83kl9wrNwmmn5EyadcW2nRRhAige/hkN5ZJBFnaxL+W6XH5b9qcn35GPycRtmnXgHKXBcKT6Wt6PUDyo6+ruS/Q98uvaYsxAtpFqdy9iKzn6Wuypler1cIagCjs6Hge5dd0zA+i2CPrgN06T/WsEFuu0a22C1ooFBAMBhEOh7G2tgaPx4NIJAK32w2fz4dIJAKXy4VAIIBIJAKv1yvkU29Hhr5X/pzeOdXr9YLGhb4mOzG06WK5GaPFYhG0zjsV2zE5ixBBg2h8o9GooLiKRCKCcosEVSP3k8mkcD+RSCAejws7V0TBRc9FQHO7VOQ3wzAwm80wm80wmUxwOp0wmUwwm83Ctc1mw8jICMxmM2w2W8lim56L6N8kbxHbj2q7F/Usc3K5HCKRiGAd5PP5hN3VQCCAcDiMWCwm8DFyHY/HEY/HhXKbsa6px+PIX8KXaEVMeUAV+postsrTEPO+clM/ssATwUPkkyJEtAYiqJINKMKfq7ky0K4RRFFIXByqpaGVhrV2pKtd1/pLi2DEpNlmswk7tjabDXq9HgaDAX19fcIOb39/P4xGIywWS8k6oJbcQoTccmvLXkfPCrEkZL3X68Xa2hqWl5cRDAbh8XiwsrKCcDgMt9uNeDxe4qBOn2VKdn3ogDJEG2y326HT6QQTQGJHb7PZoNVqhcFFrs1mc4V9fL1FZSMfufIFqAgRItqPakJDLb/3ckVZtd+0b3wwGEQymUQ4HEYoFEIikSi5DoVCgsAcCASE3TBC+/R5vURBRgdJI3OVw+GA2WyGw+GA0+kUBN7R0VH09fVhdHS05TMURXQOZIG1srKCYDAIr9cLt9uNaDQq/I7FYvD5fPD5fILFDx2Ejf5H3yu/5jhOsPih/bfJQogIlmSXnyyWiNkbEVKJmTvZYWjG1H6z/0SIECFiI6jG1+v9A9CyOyAdAZ1WZEejUUHgDYfDgusSUZITlybaZYNYv5Sv/wm/r3VN/hEFoMVigd1uF+QTIgz39/fD4XDAZDJhaGhIcCPcCehqIZYsCD0eD2KxGBKJBILBoLADQnZWQ6GQoHmORCJCmkgkglwuJwQZojW/5CPSW/jkPmHatPaYpCGa5PI0JFT4Vg2MVrWz3arN3Yp6daKMduTZrd9ExMbAcVyJv0655pe4HlTTAhNGRr9HhGHCKIlmmDBCwnSJTw3ZsdVoNMIurcFggN1uh8FgEJicTqcT/HCJkALsHM3sdoKYrhEeRPhQKpUSFi1ksUN4VjQaFRY79M5+LBZDNBoVzOOIyRoJPlJ+TiO5LvfxJCZo5XEUyq9pszcSyI82e6Mj1vfKWBH55PaWIfJJEeXYCTRJlIXlx3XRrhmE99NuGuSauHIQBSU5/ouYNJM8yk8woa8TiYRgSk3cJXQ6naCEpK+JTy69BiD3aTcmsnFnsVgEF4tuR1cIsbU0IURAvXz5MpaXl7G2toZ79+5hfX0d6+vriMViNU1/yTXxTSOaCKPRiIGBgRINhc1mE+4Tk14RInYjenWxtBNAGJ3L5UIoFEIoFILL5RJ2b8m13+/HysqKINTWM2Uic+Dw8DDsdjump6cxMjICp9OJEydOYHBwEDabrcIKBBCF2nqopZ0nC5f79+9jbW0Nbrcb8/Pz8Hq98Pl8WFxcFPgaQSPzXvLXbDZDp9MJfIpYCREFRX9/v7AIIdc6nQ5ms7nhMWEiTYoQ0TxEPiminWBZVggqm0gkBNcRYqVFdmzpwLIul0vY7SVWOs2aLRsMBhgMBoyNjaG/vx9WqxVjY2MYHByEw+HAgQMHBEG3npVMN4zPrhBiiU/alStXMDs7i9XVVdy6dQtutxuhUEhw2qaDp7AsC5lMBpPJBLvdjtHRUZjNZvT19Qm+Y3a7Hf39/YJjNB3UgT6bij6Hityvhm6eVLqlbu2ux05tVzuxEzSbBLu5LbSLAx0Yg5iHlp9/SY7lIsKt1+sVBGCXy4Xl5WXBd7dW8B1yLNCRI0cwOjqKsbExPPXUUzCZTDAYDB3snd7G6uoqvF4vbt++jZWVFXi9Xjx69EiwDiJBwMoDm9BBSgwGA4xGI+x2u7BbTvyb9Ho9LBaLoDW3Wq0lQZRos3KigCA7pPR9mp9tlE52M032Sj12arvaid08jndSW3qlHq3kV81NpNz9sfwf4Su5XE6IkRAKheDz+QThl1j7eL1eeDwewWWFln/oQHZ0AD6TyQSr1Yq9e/eiv78fTqcThw8fxsDAAIaHh0uitm8ntk2IDYVCiEajWF1dhcvlgt/vx927d7G2tgafz4f5+XnBDIsEQqJ9eojJnMFggNlsFjTPpOO1Wq0QHIWOYEhjM4O2mXe7hTi3A73Y9l6qc7vH7na0vd312G00SUySCaMKh8MlAX+IbyUxbaXPqE4mkwgGg8I5z+Pj4+jv78fAwAAOHToEu90uMCuz2Qyr1dpwN2+ngWiv0+k0AoEAfD4fYrEY/H4/VldXEQgEsLCwAK/XKwQPJMG/aPcUOvgRHVGS8DWTyQSTySREnSYmXiSwB3Fdoc8A7WSbRZrcOvRi23upziKfbC6/jaTZqeilthPhl7ig0Een0cellcfiINHrybqAPrWFnLxCTIyHhoaENcD4+DhsNhucTif6+/uh1+thtVrR399fcW71VmHLhFi6mEKhgFu3bmF2dhbf//73cenSJaytrSGRSJSYTxE77/3792N0dBTDw8OYnp6G0+mE0+nExMSEoD0QIUKECBGlyGazcLvdWFpagsfjwezsLJaWlrC+vo5r164Jvjm02RHDMBgeHsbevXvxyU9+EocOHcKpU6eEc6R7hcFvBDSf4jj+uAifz4fLly/j/fffx9zcHN599134/X7h2Jly01+pVIr+/n4MDg5iYGAA4+Pj6Ovrg91ux9jYGGw2m2AGLPIuESJEiBCxFWBZFqlUCm63G8FgUFgX+P1+LC4uCi4wKysrVU9ZACBEpT937hwmJydx4sQJPPPMM7DZbMKRf8DWmRpvqRDrdrsxMzODr371q7h9+zb8fr9wNivDMOjr68P09DSGh4dx8OBBjI6Oor+/X9hNpc9SJVvexEabNGMnL7A2g17SLu0W9NI32UhdRZqsj634/nTwCXIeLjn3Lh6Pw+12w+124+7du1hcXMTS0hLu3bsHAFAoFNDr9TCZTHA4HPjSl76EAwcO4OjRox2t83aCBOdaXFzEW2+9hVdeeQWrq6vweDxC4I1UKgWJRAKtVov9+/djaGgIdrsd4+PjcDgcsFqtwpEH5Wd409ebVQiINNl+9NKcvFvQS99EpMn2o5e+f7eDDkhFTJGJywtZF+RyOYTDYfh8Png8HszNzcHr9WJ9fR137txBIpFANpsVAgaq1WpYrVYMDw/jmWeewSc+8QkMDw+XCLSdxJbs/ZJonZcuXcK1a9dw+fJlrK6uIp/Pw263Y2JiAiaTCRMTE8JCYHJyUjguQqVSNewMMQJeb0IMkLA12GwfbORdkSa3H8SapTxqOmFmdrsdg4ODMBqNGBsbw9raGpxOpxBYan19XfCpeeONNxCNRmEwGOB0OqFUKrepVZ0B8T+6evUqZmZm8NZbb+HatWsIBoPI5XKwWq2wWCyCaZXJZMLk5CQGBgZgsVgwNDSEvr4+GI1G6PX6pkz2NgORJncPRD65NRD5pIhm0Ys0SQI91rMA4jgOqVRKOPWlv79fOPpteHgYoVAIwWBQcFMi6fx+PyQSCXQ6Haanp3H27FkoFIqOWxttyU5sPB7H2toavvSlL+HGjRuIx+NQKpXo7+/Hhz/8YTz99NOYmprC4cOHRWIUAWDjGk1x/IgQsXEUCgW4XC7cu3cPV69exTe/+U243W74/X4AwIkTJ/DzP//z+OxnPwubzbaj6I0cefDLv/zLuHr1Kh48eACAN5+y2Wx46qmnMDU1hdOnT2P//v0lB8yLELEdEPmkCBHdhZ1Kk0TxTWIWXbp0CbOzs7h8+TKWlpYE9xqHw4GTJ0/i93//92Gz2aBWqztary0RYu/fv4+//uu/xh//8R8jFAphZGQEP/uzP4uDBw9iZGQEer0earVaCOcsonPYqQS2XRD7RsRm0U00yXGccE5dIpGA1+vFnTt38MYbb+B73/seZDIZJicn8dWvfhXT09M7auwvLy/j6tWr+Bf/4l9gbW0NUqkUn//853HgwAGcPHkSRqNRCM6kVquFaMA7qQ9E8OgmmtwJEPtGxGYh0mR7sZEI1wCEs2nJ2fbxeBw3b97E3bt38a1vfQvhcBgOhwNf/vKX8alPfQqTk5OdagKALTInjkajuHPnjnCuq1KpxOTkJA4cOACr1SoOsi0AGbAbiXK33d+nXh23e5JqpuxaddzuuovYXnQjTTIMI5gfGwwG2Gw2ZDIZzMzMQCaTIR6PY2FhAclkEoVCYUcFJgqHw5iZmUEwGEQ6nYZOp8PQ0BD27t2Lo0eP7vigViK6kyabhcgnRexEiDTZGbRKk+QviU+k1+uFNJlMBtFoFHK5HPl8HuFwGLdu3cILL7zQuQYU0dl4/UUEg0G8++67iMfjQgPz+bzwnI6AVQvNbBh3clN5o3mXR7vcLtQasNtN5M2gXh27pf71vm2jvu+WMdIqRJrcHLqVJsvnYxIIAoBwJl0qlUI2m92uKnYEbrcb58+fFwT0TCZTEZmR9E0zPGs7INLk5tCtNNkMRD7ZnRBpcnMQabKzaIUmy6MVl68TEokEWJZFNBrFhQsXEAwGO1NpCluyE6tUKjEwMIBAIIBUKoX19XX89m//NkZHR3Hu3DkcOXIEg4ODGB8f39SA7eSgqJd3PY0KfX+jeYjoPDod0GEnjhGRJnceCoUCQqEQlpeXMTs7i7feegtLS0t49OgRYrHYdlevo9BqtRgeHoZMJgPLskin0/jTP/1TfO9738PIyIjAp6anpzEyMgKDwSCYFHcLRJoU0UmIfLJ1iDQpopPYKpokQmskEoHL5cLdu3extraG+/fv49GjR8J56fl8HjqdDgMDA1sS/HFLhFiZTAatViuYnnEcJ3QAy7KIx+MYGRlBNBqFVqsV/I5UKhUUCkVDM67tJqJ2lL2bJoHt/F61yu50fVr1PdiOOjZCK99NpMnuBtGgZrNZZLNZxONxpFIppFIpLC8vY2FhAffv38f58+cRDocFKxoaO61/CJ+SSCSQyWRQq9XCuXmLi4uIRCJCdEa32w2r1Sr4ycrlcqjV6pIj4Laif0Sa3LkQ+WR9iHxy8xBpsjXsBpokAZzI2oBYXRGTYb/fj9XVVdy+fRsrKyuYmZmB1+tFoVCAWq0Gy7KQSCTQaDRb4m60JUKsVCqFSqWCRCKBUqnE4OAg1tbW4PF48J3vfAff+c53oFAoMDw8jGPHjmFychInT57E1NQUnE4ntFpt3fy7hYgaDfDNEMB2T3Y06LpspF69Nmlvtr2t5A80X8dOjolqebdSVjeO1Y0830zeW4mNjFGWZeFyubC2toYrV65gdnYWDx48wLVr15DNZgVBl5wD5/P5wLJsR9uxnZBIJEK0YaPRiH379mF5eRmxWAw+nw8//vGPhbQqlQoGgwHHjx8XjoPbv38/RkZGYLfbYbVa214/kSY3n/dWQuSTIp9shG4cqxt5vpm8txIiTTbOg+M4JBIJuN1urK6uYmZmBmtra1haWsL777+PaDSKRCJR8o5arUZfXx+mp6dx7do1cBwnbEB2GlsixNKw2+349Kc/DaVSiXg8juvXr2N2dhahUAgulwvJZBI3b97E66+/Dr1eD51Oh7GxMdjtdthsNgwNDcFiscBisaC/vx8ymazj0n6zA6HRAOnklv9WopyR0OYG9LONTl7dEOChmkN7+XW7sNE8y/u8Xf3TTUynFkSaLEUtmqQPLg+Hw1hbW4PX60UwGMSjR48QiUQQj8eF3Vay42q1WuF0OnHy5EmMjIxgbGwM//yf/3O4XK5tbOXWQafTYWpqCj/3cz8HhmFw//59PHz4EB6PB7Ozs0gmkwiHw7h+/ToePHgAlUpVEmWfCLKETxkMBhiNRvT390Ov18NoNEKj0TTN5EWabA7d1Ecin2wvRD7ZOkSaLMVup0kS6yEcDgvK2VAohFgsBq/Xi0AgIMhixDKLRCFOJpMIhUIAAL1ej71792JgYADj4+PC8airq6uYm5tDOBzekrYC2yDEajQa7NmzByMjI8hms1AqlVCr1XC5XEJUSL/fj+XlZRQKBUgkEkxMTMDpdAod1tfXB7vdjuHhYahUKiiVSigUCshkMshkMsGci/zdbFTJTk/OvY5qBFPtd6v5NXu/E9jq77zRSa4TY7MXxrhIk48DLuVyObAsi1wuJ1wTU6B0Og2v1wuXy4VAIIDFxUW4XC54vV7MzMwgl8sJZkAKhUIQwJxOJ8bHx/HMM89gbGwMo6Oj0Gg0293kLYNcLofZbMaTTz4JrVYLh8MBu92O1dVVqNVq+Hw+JBIJgckHg0FkMhnk83lwHAer1Qq73Y6+vj4MDQ3BbDbDYrHA6XTCZDLBYrHAaDSW8CqpVCrwMGLSTF8D3T3WRZqsD5FPbh4in2wNIk3WR6/TJLGWyufzYFkWLMsK1/l8Hvl8HoVCAblcTlgrxONx+P1+wbeVCK7r6+vwer3w+/1wuVxgGAZSqVRwkVEoFHA4HNBqtTAajThy5AiGh4exb98+nDhxAslkEhcvXoRCoehIW2thy4VYgqmpKQwMDOCFF14QNAPvvPMO7t27h6WlJVy5cgUejweRSAT379/H/fv3KwhSoVDAarXC4XBgz549sNlsGBgYwPDwMKxWKwYHB+FwOKBSqbouAIcIETTEsSmiVaTTaQSDQSwvLyMYDMLlcmF5eRmBQEDwaw2Hw4hGowBKI+wSaDQaGAwGPPHEE5iYmMDk5CReeOEFQcgCeLPjRCKxK8eoTCaDzWbDs88+i2eeeQYA33/Ly8twuVy4fv26oBi4d++ewLN8Ph98Ph+A6gtJhmFgMplgNpsxMDAAp9MJo9EIu90u7Nz29fWhr68PBoMBdrtdMHUWIWK3Qhz/IkQ8BsdxYFkWPp8P0WgUgUAAbrcb0WgUXq8XXq8X0WgULpcL6+vriEQi8Hq9Je9XuwYAo9EIm82GAwcOwOl0YmRkBMeOHcPg4CBGR0chlUrBMI+PPtouK61tE2IBCB2gUChgNptx+vRp7Nu3D/F4HJ/61KcQDAYRDoexsLCAYDCIUCiEtbU1hMNhhMNhZLNZIeKxz+cTdnU1Gg2USiU0Gg20Wi3UajXMZjNMJpOgRSCmXyaTCTqdDhqNBiaTSQjO0Qi9YEqyGez09nUC22UyIoJHr/cJ2UkNh8NIJBJIJBIIhUJIJBKIx+OIRCJIJBKIxWIIBAJIJpNCukwmg1QqJVwnk0nEYjHkcjkwDAOLxQK9Xg+HwwGr1QqTyYSxsTHYbDZYLBbYbDbodDro9Xr09/eX+LPsZD/YZlBNW9/X1we9Xg+r1SrsyEYiEcRiMcTjcayvryMUCgmLhlgshlgsBr/fj2QyKXyfTCaDSCSC5eVlKBQKqFQqIVAUbWVEgh0SnqXRaAS/XMKzjEYjlEolVCpVybVOp9sS36Rq6HWabISd3r5OQOST24ud3ie92L5CoYBUKoVkMolMJoNYLCaY89JBF8k1cWchPD+ZTCKXywnrgFwuh3Q6jXQ6LQRnIgGaiOWVSqUSlKQ6nQ42m02QkwYHBwV3TuL6otVqYTabodFohE3BbujnbRViCaRSKaRSKYaHhzE8PCzcj8ViiEajuH37tmACR0I5e71eRCIRYcs8FoshHA5XbKeTYFI2mw12u13QcJvNZuj1euHDkftEuKXNkKtdSyQSQRMhlUqF5xKJpCeJqBy16t+Kc3iv9UGnQ5W3is34sOxG1OuTrRiP9E5noVAAy7IoFApNXbMsi0wmI5j/RiIRQQAi10TbGgwGsb6+LjAoEheAmKOSvyaTSYiy29/fD6vVivHxcTidTvT19eHgwYOw2+0wm81dw5C6HWQc6XQ6gfHTIN9wfn4eHo8Hfr8fKysrCIVCCAaDWFtbQzQaRTQaFRYU+XxeUE4QvkXGBMuywtEGRqMRWq1WWHhoNBpYLBbodDpotVpYrVZoNBpoNBrYbDZh4UHGAeFbhE8R/kXfL+dl9D96jDQ7VrabJjsNkU+2DpFPbi9EmqyPZtLRvJ7w+0KhIOyM0vfof7XuExkmHo8jkUgIPqtEkU3iVRCldjQaFVxaotEoCoWCMH+TOZy+lslk0Ol0wtqACK5DQ0OCUntwcFBwgZmamhIE3W5HVwixNOgBRBYKDodDGCxk8BQKBayursLj8WBtbQ2Li4sIBAJwuVxYWVkRzOuI1nt5eRkrKysAKjXr9F9i+z0wMAC9Xg+9Xg+73V5yrdPpBBMvnU4nmIWRneByAmjHxNAsYTVbzmZ8S6q9u9HIgc2iUZmttmejUQXb/R22q5yNjpV29HM70rZax62iSaINjcfjCAQCiMfjCAaDwjURZogfJQmqQBhSJpOpMPutZgZMypbL5XA4HLBYLBgcHMTg4CAsFguGhoYwNjaGvr4+jI2NQS6XVxVEen3BspVoZswoFAooFAocPXpUeKf8+5ExQky/PR4P3G43IpEI/H4/PB6PsEjxer2Cdp4oM2izrWpCZfk1Of5Hr9cLu7gk0JRarYbBYBCEYqPRKNwnFkvkvlqtFnx4W+2v7aTJjaTZbJ1EPinySZFPNp9HL9Ikx3GC0jIcDiOZTAoWUyRWQigUQiqVQjQaFe4TJSYJlBSNRpFOp0t4P8m/3jV9Ty6XC4pMerPObrfDaDRiYGAADocDZrMZw8PD0Gg0gntKNTmol9YFXSfEVhtM1TqU4zhBuBwYGMDU1JQQQYuYaSUSCUQiEWHrPRqNCoOIRNwiJnpkq54ERVlfX4dCoYBcLsfS0pIg3BJGTq7JooV2fqbNwegzBMm5t/R7Go1GuCb3iSk0CexRqw/q9V070zbzbqcHfaMyWy1/o/Vt93fYaB6NJvJGzzc6VjrZz5sdk6TNrXwjYrVBTG2I6U0mkxFMc7LZLHK5HJLJZMXZadlsFolEQhBM0um0EECBmPWQ+8TEJ5PJCOeuketUKiXswBGXCGI6qlarodVqBUFDp9PBYrEIwoher4dKpYJWq4VOp4NSqRQUbSqVCmq1etPB7US0RpO1eBbRlsvlcgwPD6Ovrw+jo6NIJBIVZl/EbCybzQpa+nQ6jVgshmQyKfA7+pq8T/IjwabI2ItEIgKfIsEQy6+VSmXV+2SXn/A6uVze1DWJSVGed61rEuSqmX5u9Rs1m2YjaZt5V+STm8+7lTxEPln57kb4ZCN0G00SKxYy/5G5kLjskPuEB5Nr+nk2m616n74mljP0PEveo+dfslYov6bLKRQKwpxL3CAJLyeyBOHvRPlIrw2IDEEHaSTyBbHKIfltxakuW4WuEGI3ollhGKZkd7RWvkTT4Xa7BXM8n8+HQCAgXAeDQcEpmjblInbqiUSiwgyg/Depk1wuFwYd2UkmvkvEp4lot4nvElmwkvtE8038oegdlFq7KeX/aj1r5p2NYieYohB0Q1s2wxi2QnvaCZRrGQltVbPEKDfpKf9X6xl5l+M4QUAlpjvpdFo4By2ZTAqKL6L8IoIC0Z4SBVk6nRbeJ3UuN8ssv6bdEQwGg2ACRHbDiAbVYDDAZDIJAX/IrqvRaITVahXyqdWf2z2OdxLaQZNkDFgslqbKzOfzAn8i/tDEb5rwN3JMElHQkufJZLLCvI0stGg6oHlaNToh9MQwjLCgUigUwqJKpVIJPI0oVGifXDpNtdgV9GKLCLQ0b6KVMDS/on19a/G5Zp/R36hdPLEadhJNdkNbdiOf3AzqKdg2s8tJ8innva1e13oGPF4PlKcv5+9kM4pWDtLXxLqFKAHJphdRMtPXhOdXu0+3v9oavdo1fY9WMkskEkEWIO6OOp0OVqtVkCUsFgu0Wi30er3gVmI2m2E2m4U5sxfH5GbQFUJseYdv5CPUeoc4Kg8PD9dd5BLmHolEBOGWXJPFQyQSEa7D4TCCwaBgIkhMAbLZLILBYNNMsRYDBSDYrxNTLhKUijB+esdXp9NV7PISrQxJT7Tc5F2lUgmtVivc36z9e6cIp9546BTB9uok0K7+6CRNNkKhUBAYRTwer9j9JIEP6PtEM0p8DendT5JPOp1GPB4XgiYQawza75DUezN/CaMiQeOIz4lOpxMYj1arFcx+dDod7HY7TCaTsNtaS9FUvnjv9CJNxOaxWZqUSqUCH2u00KOvyS4B8akifIuYvZHAIOQ+baVUbvZGDrfnOE5Q6jAMA6/XW8HP6L/V7jVKT3y5iNKXDmpFW0PJZDJotVphV0Gr1Qq7vzQPJBZNhBeSI42ISZ1MJhN4Kb2DrNVqOxIQS+ST24+dwCfbmW87yydnjbMsKwQcIspiYtFEW4eQ3UoSGyCbzYJl2RLrJTr2DW09RYIXEeGSWFSSNNVMbxvx72bT06DnKbPZLGxKkd1Sooim3TTIfRLrwGKxCPNRM8q2ejLFbkJXCLHl2IwmqNq9ZvIjgqxCoRB2O2iTwnLzQkIw5JoQGiFKmkDJNSFk2kSxVhoSVVQikQjBWwiTpc8VJIKuQqEoCexCrkk68lcikQiEQt8n14Th0/mV3y8PckUHA5HL5QAgBNQi/V8eEIu8A0BYNJD3yHPSfvpoCaVSWaF9p/39dhI2qxEt97EgAQTonZlcLiekIbszAITzQ+l/uVyuat7ZbLZkp4cOSEPOLyXl02eZEkZGTGzKzzcj2tRq559Vu0/Mh+j7pM0kfbmJDznXUyKRlChzyCKYviaLZ+IeQLsVyGQyYbeJmEeShTHZXaJ3mqpdk3c7eZTKbtPSthvt4k0beb/VfMhOKjnzljZ3J3yLviaLzWqmduUmcDTdkmv6fjXzOtqMr5p5HW3VJJFIkMlkSvgOzbMIL6l2TfMX+jl5n6Qpf0b/JfMBnTfJlz7Pt9pvwp/KeRmAkvzJN1UqlSXflpRF3yMKZjofwjPJfYVCUaLkIvUmIPUsF8zpvulFbAdNtpIv4UflUd4Jr8zn88I92hIQ4OdrwosJCP+klVaEB5PfhIfS/D+dTpf8pnkzeZcui+b7dBvo34T3knVEoVAooWWSHx3AkF5b0PUsf5fm3+Re+XPyj8w7ZD4hcx/DPHbfoNfOtVwpyFq31n2i5CKKL0L3tDsE4fu0Uoy+T3g+eY/8pndkRTSPrhRitwNksBPTJrPZ3PS7ZFFPdnzonR6y20P7NBFzRdonl5guEtMFYpZIa97JIoCU2Yw2vpnnBIRxkx1aQnBkwU7MxAiDJYRLR0QlzFYikUCv1wt9SwieFowJgyVlADyjpRcshNAJYRN7frrOzfr80ZqrRmiFydXTfjeLZtPW0waWIx6PlzA/etFJmABt/ppIJATmSWs/CcNKpVJC2bFYTKgDMVmkmRxhqkRpQ8onCh+itCEKHWLSQ+pIoxWzv2avyRgkv4mwSbSjZB6gr4lFBLkm9EC0reX3uxGiALt7QM+ZmwGhc6LMjUajAr8jfIzeDSHXRGiOx+MV17QZH7kmC9Hy3Wbi1kPqUr5L0qyFRLPpy/uQmPkRnkX4YrkPMM0Pgce8jFZK0XyQ5K/RaEr4F1Fm0XOWXq8v+U0WvXQ9ST4AhDJo4ZdevNMgfs7NBuwi+dF/W0En3mmF17bjnVbeJUIWERgJCK+kFcJECUsrfmlrIQBC/ATCqwuFApLJZImLDaFPup7RaLSk/jRvJkJkKpUS8iVCKrF0omM9kHUEUUAR3k2vNwhqWWK04y99Ta9fyTMiwNJuDYSfl7sy0NYetE+qVqut8ElVqVTQ6/UC3ddz6RHRWYhCbAuot4tBtCkk0FS56XK5EEkz6PL7HMcJiwHaLy+ZTCISiQj3aXNJWhgg9+ngM2TxUB6ghpiJkbqQneFoNFp30qDvN/O7kdlDM+9WS1frXjUQ7VozGmdiptYob1pYp0HM7ogGsh6IcEczqlogwmUzZ3dWy6v8XiMTmlrX9fJp5f1qyhUCoighC0HCTGjFCr2jSfxLygOlkffINe2nTsx6yk14Sfnl/5q9L2J3YyfueBOTOYPBAKA9/m/0daFQKLF8IgEXq/mrkQU2EX7pBTXhf2RHmFbIkSBs9M4xEQrIcxpk1ycWiwn36vGyVnhis2k6mXej+7VQTUBvBmQ3qtldXzKf1jPtJqanzfBPGmSN1SyIZREpqxXUq1ctXlnr3kZ4+Ebzpu81Ug5VAwlQWs3cn7ZoIub+9E4o/Zu2cCKKIuJCR/vmE7c7ck1vcGxW8V3vWsT2QRRiW0AjBtCuAc1xXIlpBGHKNMMtN8uk09MmHrT5JX2fNtcsT1+eptz8k94ZJpNXNfPTcrNV0jaySwc8Np8pPzMLgGA+QvdJI4GwHsrNmOuBNpuuByJolYOubyPGSpu+NgLp541okQloLT9t3kab1gGPd+aBx5p8WsNJm5GT38BjszWiHS0306PNAsmChjbNKzcdLN+9Lzenp+/R6WlTRHKfMD2inaV3U0SGJKJd2EljqZESsV0gcz/hN0TIpKOM0uaC1UwdaesROj/aHJF+Vm7eWG6uWJ43ua5mGlnO1wjvo9tGz9202wWAEp5K51MunJXvsNE7d3Q+tIKc5qvtAD3ntzImyk2umy2L5lnloPu2FZA1TrOotu5pB2heCaCEXxKUu0yRPiHXJB96N72830gZ9IkXhK/T5u3la4BaJvY0zya/65nsE4s62iy/3M2t/N1q55/T+ZH7hKfT1gaE9++kuVhEJbpaiO1WbXan60UmFqKpMhqNdetC3tko6GM+iGkIcbCnTT6JlpwwVdr8lJickIUFvdggDv4ABK02YQj04oT8IybTuVxO0IzTC5lWTXpaYTi0UN4siEnOZtGMZo8WmFv55nRacug1gBK/DtoEjSxStFpthTac9h8lTIVoSQEI1zSjIoyF9jkl5rvEX4QIlMSUp/wcs3roprmiHTQporvRbeOtW+pCo9V6kXmELM7bXRegOZokgiN9HBYd76JakBqyi0sEKZqvAY+tnGhhixbSSZpqZqG0LyPH8a4c5T6ShL8SgZW4eACPheVyPrVVJrj0e9V8Q5tBu3hsOTayAVEuKG60TAKVSiUIaCR/co+kVavVFYpimjeTfGj/aoYpNUMngiJtYi6RSEp2ucvdwqRSqVC2TCaDXq8vSUMrhek4ELS7WC2IfHLr0K08oh3oaiG2nTub7fyA3TYYNlsfOmoxUGnyXM0smtynr5sxG62Xttl8iDaUDkRUCyRYVjVz1XKQRUgzO6fk2KVmwDCMwJQamVERIbKZXeBmTLOIMKpWq0uYGf28/LrWvVbSNpNPO01ydxpNtopGc9xOZmI7Gc18N5FPNodm60Mr34g/cSOTaKDy+A8azZhgVuNRm32vVhraOqsZEOV0q8IkUUq3IriWB91rBUQwI8rZZkEHyGxl3JKgfs2aR9NxPug603/Lr8nvRqbhtdJs9L1qz+td18qrHnYqn+w2fswwO/fona4WYtuFnfjhCNrRto0IDTS2ijhIOcRUt1l/02aYIdkVbkbY5TiuJV8ahimNzlwPdETNRn1Kdk/rpSNMXTSr2TpsRz+Xl1lOk+K3by+2qj+3eqGzU7GRhXW7+2Or+WS957S5dLN5lpstN/NOq+UA1U2vmwVZy9Amss2AmLA2EweDBm0u2wxo09udTG/NYCfzyW7kxzt1vO0KIXanods0KlslANOLi2bMVTZSRrdjJ7VlJ6HbvksvKKV2CsT+6k5023fZaj5Z73k1q6Bu66/NYCe1ZSeh275Lt9BkO8rYrRAPJOpB7KRBvRVtEftLRKexk77LTmrLVkDsr+7ETvouIp9sDTupLTsJO+m7iDTZHRCF2CLaGW1uN2Gz/bYV/d4Ldew0erENvVjnboA43nsDvdjPvVjnbkAv0GQv1LHT6MU29GKduwG9MN57oY7bjZ4XYmt9pGr36wU/IBqPTn70TuS9HYO0Wr9tFK2+34zP6mbLqPd+K+OtWTTjg7tZ1GtDu8eQSJO7iyZ3I0SaFGmylTJFPln/fjMQ+WT13yJNbqxMkSbr328G3SAk97wQW+sjV7tf/kEbpaHTtgPtinrW7jxbRbNlbrTf6r232SBUm0Ur462VPBu1uRk029/l5bW7P0Wa3Hk0KaIUIk2KNNkIIp9s/n6zeYp8UqTJzUCkyebvN5vndq8ptl2I3aoO2AwBtZKWLqcTbduMg3inUCvvjda11nvbTSztRjMMspU2b2ZMd3rcVoNIk71DkyIeQ6TJ6hBpcmN5i3yyPkQ+KdJkpyDS5MbQSeVOq9h2IbYTphDV8tqqjqY1E53UjDXCVmq9trJvdxLKtVjVTIa2o29FmuwMdiJN7jaINNkeiDTZOew02hf5pEiTnYJIkxtDI5rcSmy7EEvQzo/cTF6d7PR65e9EotmIrX83lrEdoBlh+Tfr5Ddspi9Fmty6OrQbO5VethsiTbYPIk32ZhnbAZFPPoZIk+2DSJMbRz2a3Ep0jRC71dhpmpHtRid8JjaTf69NGls9Hrtx/HdjnXoZnaZJEe1FN47/bqxTL0Pkk5uDyCe7s069DJEmN4ftHo/bKsRuxcfqtQHRi2jXIG6UT6d8QUQ8hkiTOwNbRZMiOg+RJncGRD65cyDS5M6ASJO9j20VYrfiY3WqjFYmmG6djLq1Xp3GTmh3p9og0uT2olvrJaIxRJqshEiTvYud0G6RJish0mTvYre2ux5k212BatiIjfVW22XvBM1Ko3oVCgWwLItgMIhMJoN0Oo18Pg+uUKggJofDAa1OB6VS2bXtJej2+pWjUCgglUphYWEBoKPCSSSQy+XYs2cPJJLO6qNEmtwadGu9RDTGVn87kSa3Bp32uczn84jFYkglk0gmk2BZFmyhAK5QKElrNJlgs9mgVCo7Pt8D3fs9WkGzbSgUCigUCpibm0Mumy15n5FIMDY2Bo1G0zAfkSa3Bt1ar05jt7a7HrpSiN3Ih9oJH3e7HaTLkc1mEYvF8P1XXsHS4iIWFxYQDAaRzWaRz+dL0v7yr/wKTjzxBEZGR7eptjsX2UwGC/Pz+PVf+7US5YFMLkd/fz/+8I/+CCqVquSddo8lkSZFiNgcRJpsD3YSTbIsi2g0ivfefRf37t7F3ZkZxKJRJBIJ5HK5krQvvPgiPvf5z2NsfHxLhNjdADKW2Hwe8Xgc//Y3fxMet1t4LpFKoVAo8Lv/8T9i3/R0w/xEmhQhYmvRlULsbsRWREhrdpLhOA7ZTAa3b97Eq6++irm5OSTicSSTSeRyORTKNMSigUN95HI5/M23vw3X+jq8Xq9wn2EYfOTllzE0PIyRkZEN5S32fefQTTQpQoSInUWT2WwWfp8PX/3TP8Xq6iqCwSDisRhyuRxYliUVAnbRHFGt/5v9Jm+8/jrm5uawvLhYwhdPnjyJ6f37MbV3b2Phv3x8ieabDbGTaFJEJTZDk1sBUYjtEnR6QLSafzQaxcrKCm5cv45oNFohuJbkXfa7XQO8mwhlM2BZFo8ePsSjhw+xtLQk3GcYBkeOHoXJZGp7mTuh37Yb3UaTm8FOoaVehtj/m8dOoslkIgGf14sb168jFoshS5mxUhUCUF9ZuZNou1o7mm3b6uoq7t65gzu3b5fcN1ss6B8YaPkMVlF8bQ47iSbFtWslNkOTW4Get0lptxZopzlOb6Q9hUIBN2/exIPZWYTD4VIBdhPnptWqS63720Eojfqrmf7caWOoVYg0WR+daE+jPNtFkyJ6EyJN1sd20OTc3Bxu3LyJUChUXYClUI8TinyyM+h0r4o0WR+9zCdFmtw69PxObLsHS7X8elmrspF6cxyHcDiMZDzO/8bjCf3AwYMYHhnB0WPHIJFIhPyn9u6FxWLZUF26qW/bESq9kXa31dbKFQoMDQ/jn//Lf1kyyUgkEqhUKsjlcj7vLhmnIk3WRyfqvdE8e4EmexndMk5FmqyP7aDJeDyOaCRSsXAcGh7G8PAwzj35JBQKhZBP/8AABgYGIJVK217XVtFpPtlJVBunUpkMWq0Wv/yrv4p0Oi3cZxgGEqkUDqez7fUQabI+RD7ZGnqZJjeDnhdiW8VGiLqZ9PXy7YWJhOM4RKNRZDIZJBMJeD0exGIxAADDceAYBgwAnV4Pe38/9kxNQSqVQiKRQCKRwGAwAOBNemhIpVLIZDL09fVVtauPRiLIZLPIZDLCfQaAXq+HQqmEWq0W0nIcB7/PhwwdPRAAGAYWiwUqlQrZbBbpdBrZbJYPjFFcIEhlMigUCigUCmg0mqYCY7Asi1wuJ0Rlzhf9gcmig7RdXsxXoVBALpeDYRgUCgWEQiHkslkkilEnc7lchQAbCYfh9XqhL/YfgVarhVKphEajAcMwUKvVmJqaKjFxYhgGUqlU6Fe6f0kd8/k834ZUCnmWRT6fF3bWGdIGqRRymQwqlQoyuVxoQzVwhQLyLAuvx4MCHSm5mBcx28rlckgmEny/sSw4joOkuCBQq9VQKBQl31akyfZgp7arG9FMX29Uibjd31CkyfaBblc8Hud5bDIJt9uNQCDAp8Fj5aZarYbFYsHknj1CJGKpVAqdVgudXo9cLodUKoVoNFpSjkwqhVKlqqpMJhGQCS8jkEgk0Ov1gjKU4zjEolFEi7yfgGEYaLVamEwmZLNZgc/mcjn+tAI85vVqtZrnJbLGy0sSfyObywk8u0BFZiZCpFwuh1wmg7JYT8K/I+EwMpkMMtksotEostQ6giARj8Pv92N1dbWE7yuL6wutVsvzUpkM4+PjyBN/5OI3YRimInBieRsACAEvCa9lWbaU10qlJX0kk8kEBXS1PDmOQyaTgd/vr/gWcrkcdrsd+VwOuXweiSKvJesTMmY0Gg0UCgWUSmXd+u9mmtxudFNdehG7Tojt1GCp5/jcrjI7Odiz2Sy+/c1v4s7t27h9507pMTpFARYALr//Pq5cvoy/+LM/A8MwkMlkMBqN+Omf+RkoFQr87u/+bonJsclsxsjICP7tv/t3UCgUFWV+83/9L9y5cwczd+8K9xmGwee+8AUcOnQIp8+cAcALlJl0Gr/z27+NezMzJWkVSiV+45/8E5w6eRIzMzO4euUKHj58iIWFBeSLER77+/uxd98+7D94EC88/zyUdZgSQSKRwPzcHK5cvoz19XUsLy8jFo0im82C4zgYjEYYDAaMj4/j4KFDGJ+YwNTUFBiGQSqVwh/94R9ibm4OqysrJcIvAcdx+Kuvfx0Mw1R814+8/DIOHT6MF158EdlMBnNzc/gnv/EbFdGJ7XY7fv8rX6nKZDmOg8fjwdyjR7j8/vvweDxwu1yIxWIoFAqC8sFoNGJkdBSnTp3C0MgIJicna/ZJNpeD1+PBP/jVX0WG0lhLZTLodDr8wVe+gjzLYmlxET969VWsr6/D5XIhn89DpVTCarXi3JNPYs/evTh79mzVtrcLvU6TG0E31WWnY6vG7XZApMn2ga7L+bfewu2bN/Hmm28KPIHjuBLl5sPZWTx6+BA/+P73AYaBhGFgMpvxsY99DD/1t/4W1lZXcf78eXztL/6ipBy73Y7jTzyBX/vH/7iiDqFgEN/4678WeBmBVqfDF774RRw/fhx7pqaQSibxrW9+E1//2tdK3lcolfjgBz+IX/kH/4CP7/DoEd57910sLS0hlUohn8uhr68PAwMDOPvkkzh95gz6+/tL8qj2XViWxezsLB4+fIiHs7NYWFhAPB5HIh4HB0CtUkFvNGJ8bAwjo6M4dvw4JiYmoFarwXEcvvnNb+L2rVu4NzMjHJNTjgvnz+PihQtgJJKSfj5y9CjOnD2Llz/6UcikUiQSCfzzf/pP4fF4hDQSiQQKpRK/8x/+A/bt21eRN922hfl5LC8v4/L778PtciEYCiEWjQrKZqPRyPeRw4Gnn3kGzsFBDA4O1swzk07jxo0b+D//zb8puS9XKDA+Po7f+8//GWtra1heXsaPXn0VLpcLoVAI+VwOBoMBFosFzz7/PPbv34/9Bw7ULGe30+R2Yzvr0m3fZSPYNULsdpzF1Q1HKhA0UxdyLixbdnxOeT7lwhg5O7bAcYLQWEwMNp9/HGmxTpm0dpjsZBaqCH3V0kqkUjy4fx/JZBIX3noLXq8XkUgEiXhcYGoejweZTAYulwtymQwTExOYqCKssSyLfC6Hd955ByvLy5idnYXP60UimUQ8FkM2l0Oh2B62UECiyHDX1tbgdDrxpV/4BWi1WiGvZtpfDWyZ0Mtx/HmCJX3PMCVaY4JcLodkMok3X38dKysrWF5ehtfrFc4hzOVywnhgWRbJZBKxWAxerxd2ux1Hjh7F0aNH0We3l5iMFysCFOtCfwcOvFLi8uXLCAQCuHP7NlZXVvhd6EQChUIBuaKm/dI772BlZQVsPo+Dhw7BbDbX7J92ohdpUsTuxXaMD5FPdrb9XKEAtlAoPaKOq4xATHgdABQY/ggYwis4jkOhUOB5LfVentr5qygXRX5Uxj9Zcu47qQd4nlR+hJ5UKoXL5cLbFy/iwvnz8Ljd8Hg8iMXjAv/3+/1IJpNIJJNIp1LYMzWFY8ePVwhEHMchm83iwf37mJ2dxe1btxAKhRAJhxEtRmcm64hcccc3nUphdWUFsw8e4G//3b+LoaEhKJVKFKq0qaLtZM1S1jdsWX9xVfgasVQifVM+PtLpNMKhEM6/9RYWFhbg9Xrh9XqRTCaRKe5Uk7bn83kkk0n4/H74/X4MDQ9jamoKZ8+dg1arrWodxlX5FoxEgmgshnfeeQe3b93C4sICVldW+DIzGUGYT6VSePONN+D1eBAKhfDEyZN1d2SF/HcZTe5mbLRfu+mbdJ0Q26nOqZfnZsqs924727HZftlsXTbiy0kYbMeHelEL6vP58P5771V1To/H44jH43C73bDb7ZDL5RgdGxOENMEkKJNBMBjE1StXeI3z3FzN+udTKaSLZl2rq6tYX1vD3/rbf7sqo2jUfxvq3/I8im1IFM3B33n7bayurpYc61MOlmWRTqcRiUSwtrYGvV6PVDIJm80GtUYDg8HQ3NgrLrpu376N9bU13L51qyJJoVBALpdDLBZDKBSCTqfD0NAQjAYDryUvM4cWaVJEr6HVMbHRsSryydbLaQbbQpMbLbPsPQad47UcAL/fj2vXruH9995DvBgvg36eLCpJ/X4/tBoNcrkcDh85UuLyQoTzYCCAezMzePfdd3FvZkYQ2Mv5IMuyyGaziMfjcAGYnZ3Fxz/xCdjt9go+W5eHVlEUbAR0OwAgEolgZWUFF86fx/r6eoWJN41UKoVUKoVgMIjVlRX+WKVAAHuK1ls6na6pOnAch1QyiRvXruH69etYWV6uaF86nRb4ei6bRaFQwKFDh0pMsUWa7A50k0DYLLqpvl0nxG5H5/QCgXXToGkFnTQXBceBA5DJZHDl8uXirfrR1fL5PF5/7TXI5XIcOHAAFqtVCJTBcRxmZ2fx53/2Z5idnUUykajOFDfAEOnU1Zhtu3qIZVm8e+kSvvfd72Lu0SNBE8wX3LjesVgMb7/9NtKZDA4cOoSf/umfbtp/OJlI4Mevvlqxg/64+MeTdSAQwA++/30cPnIERqMRprLdWJEmRfQiOuFH2s73NgORJrsQ1JzedNs3wL+ymQwW5uextLhY1bKoPLerV68iEAjgxZdegtFkEtxdSOyN3/9v/w2Li4vwejwlPLsRn6wHIW219rXS3ib7h2VZfOfb38bVq1exMD9f9xjCanC7XPB5vZBKpThx8iQ+/OEPN/VePpdDwO/H97773cdl1qnv/Pw83G43XnzpJTiLPtD8KyJNdgPE/tkcuk6IFbE9kMlkOHX6NMbGx3Hm3Dlcv3YNbpcLa2trAB4ziMNHjmDA4cD4+DgA3txGqVTCOThYEYBAQKeIlMqXBJ44eeoUrFYr1Go1AoEAHjx4gKXFxRJhLp/PCxpUg9EoCLGLi4uYe/QIK8vLyKTTJcxVqVTC4XBgcs8eWCwW6IsBNnK5HCKRCNwuFzgAkqLQrlAo8NIHP4iTp04hFArhwltvwe/3IxQKCX3JMAzOnj0Le38/+gcGSpo2PjGBPputpe5gWZb3K5qfh7voh0r3T19/P/bs2YORkRHI5XKwhQIezc7C6/VicXFRSFsoFLC0tASpVAqfzwej0Vg3sAUNhmEwMjSEqb17MeBw8H0dDuPdd99FNBJ5rHEvBn/yuN1wezwVQqwIESJE7DTsP3AAtr4+TO3di9kHD7C2toaHs7MlaUZHRzE8MoLp6WlIpFIwAJQqVfVYBeW7sc3w2k3wY4lEgtNnzsBms8FqsyEUDMLtduPa1asl7i4syyKVSmF5eRmTcrnAP7weD5aWlrC8tFQRmZlhGAwNDcHhcGBoeFiwAsrlcohGowiFQlhfX4dSqRTaefrMGYxPTOCpp5/GtatXsbq6CrfLVVLn6f37MTY2huHhYTCUQtZut8PhcPABrWgBtIn+SaVSmJ+bw/LyMnxeb4kAK5FIMDY+jsHBQYyOjQHgzaLv37sHd9EMG3hsvvzgwQMYjUb4jh+H2WJpKiAW6a+DBw9icGgIAw4H4vE4wqEQ3r54Edni7ivA8/NsNou1tTWo1WpBiBWxM9CLO7nthCjEigDA+7wcOnwYAK/pI74VRIglWtGpqSkcPnIETz39dMn7q6ur1YXYJndiSf4bNatVqVSw2Wz4wNNPY2xsDEajEUuLi8jn8/C43aU7kuDNi10uF6b37+fL5zgsLS5icWmpoh0SiQQ6nQ5Te/fiAx/4AIZHR2Hv6xNMdlwuF+7NzCAciUBaZEByuRxnz50DwJv2LC0uIpvNIhQKlbT3yLFjOHDgAA4cPLiBVpeCZVnMPXqE1dVVhMPhkmdECD995gxOPPEE1Go18rkczp8/j/v37vE+qpSG3evxQCqRwOvxQKlUNi3EarVajI2P4+lnnsH+Awd4P+T1dTx6+BCZdBrJZLIkfSAQgN/nA6anN91+ESJEiOhmTExOYmJyEmfOnsWrP/whZNeu4dHDhygUgztxABxOJ46fOIGXP/rRiui19Xb7GIbpnMIYPE/T6XQ4dfo0JiYmMDY+jpXlZczcvYv79+4hHo+X8JBsNgvX+jqc1PE0Xq8Xc3Nz8Pl8FUpWhUKBiclJHDh4EMeOHUN/fz84jhN47FrRTUVdjNjPMAwOHzki5EH4cbkQOz4xgSeffBKnTp+ueTxRrsE5veVIpVJ4+OAB3C5XiQkxwzBQKpWYnJzEsRMncOrUKaDYBqVSCebmTfj9/pJ+WltdxYrDIZxS0IwQS9YkBw4dwrFjx7D/wAE+AvPKCm7dvCmcNEFQKBTg8Xhg6+vDSEstFdHt2M0CLCAKsV2BXtCkbLR2kiaFWKbsb6s4feYMjh47hrNnz0ImlYKRSHDg4EH4/X5k0mlcvHixhGkmk0leg0rtDF67dg2z9+9X5D06NoaDBw/iF37xFyGXyXg/2mLUQoPRCFtfHw4cPAiO40rO9Wumve1EPp/H1StXsLqyUnKfaM+feOIJvPShD5UwyY9/4hPYs2cPVlZWsLa6ilQqJTxLplJ47733oFarYTKZGpYvk8nw8sc+hiNHjuD4iROCGbLVasWp06ehvXsXN27cKHknHA4Lgn03oRdoUoSI3YSdTJOb5X9A0XWnHZWpgbGxMTzz3HP4wFNPwWg0QiKRYGrvXsjkcj4C/uXLJXN5Pp+H1+stOXf10aNHuHL5coUwbuvrw+joKL78S78EY9E6ivAPjVYLk9mM6f378dzzz5f4dW4X4vE43nvvvQrepVKr8fTTT+OFF1/EkaNHBaHZCOALP/mTsFgsiMZiFWbZfr8f77/3HhxOZ1MKY6PRiE995jM4feYMxsbGIC0eXWc2m3H6zBnM3L2LhYUFIT3HcQj4/YiXHZ20Wexkmtwq9EIfdnMdRSG2C9Ctg2PDKPMp2YrWDTgcGBsbg1wmE0yGyHlsOr2+oo8LhQJy+XzJuavBQACRKoEZRkdHMT4xAZVKVZIPuZZIJE2bAHUSHMfB5/cjkUiU3GcYBsPDw7D391ccc6RQKKDX6zEyMoKA318ixLL5PHxeL9JVzt6rBolEgomJCfQPDFT0h06ng1qjqXinPBpkt2DH0aQIET0OkSZrgPDbVuNPNIgfUQ6D0YipqSmo1WpBOJNKpVAqFNAbDIIV0uPseVNgOkZCLBaD3++viF1hs9mwb98+aLXaCh7FMIwgtNY6V3Wrkcvl4PX5kC3bwZXLZBgbG4PZbK6oq1KphNliwfDwMFbLLJ/S6XTF7nQ9KJRKTO3dC7PZLPBacgatXq+HokpwyVwuV/ekhI1ApMnNoxf6sJvruK3qrEZBeHqljK1Et7Wnan3oAd/AxKld7bHb7RgaHq4oSyGXQ1NFeCLHCNDlh8NhxKpoKkdGRzE6OtqWenYShUIBoVCowmQXDAOH0wmr1Vr1PZVKhaHh4QoNcD6fRzAYrHqAfDUwEglGRkdhq+LLq1Krq0ZtZotHLPUyeoImRfQsRD7ZOrqtPR2tDx3YqcFis6QWLS5M9Xo9xicmKoRMiVQKrVYLadnuKAf+2B/a3zSRSCAcDlcVYvfu29cVyuBmkM/nEQgESoVYjoNMJsPwyEjNSMMGgwGDg4MVZs3kVIRmeaGieFZseTkMw0Cj0VQV9vMsC7bF4FPtxK6iyS7BbmjjtgqxWyHdd7MGYSNodATCVqOZo1fqId/gHNVmIC0y0WqMQ1LUTlatZ9k5rJlMpqpvjNFohMFo3FQdK4pu9LxWhF/+Yc330qkUcuXnyoHfCVWp1VXfkclkvAlXFU16KpWqehZtORiGgUwqhV6vr2oOJZNKq/sjFc+d7WV0M03uBia2VdiuvhT5ZOvYlTRZZy4lu6LcBoUYqVQKlUoFg8FQYsrLcRwkDNMUjwWK575S1j4Eao0GFqu1ZTPhjfLJzaJQKCCdSpWuXYo7xnq9vkLQJ1AWXZDK25kvntfeTIRjiUQCuVwOo9FYdddaVnR5qsA289pdSZPbgPJgaTsd2+tY0MPgygSgbsB2DthaZ9SRg9mrgQhJrQZVKCmXYSAp+s9s1k+G9sOhkc1mK8yGNotGX6rm+W38w5rvSWswsFwuB7aGqVKhePh8tQWOTCaDpBkfX+o7VK37FoxNkSa7r/ydhGp92Y1jrpvQjf2z3TTRjvKr5VAoFGoeb1YoFJBMJptSSFYD4a/lvEVoS5NtkkgkFcpSgFdmp8tOBGgGG+WTmwXDMJBWEdyJsqDWjifLsshlsxXtrKsIKC9bIoG0znqnkW+0SJPdV347sZPa0gxEIRYbI+RqvpG7GpQpE4fHO41s0WwXqJw8OY5DLB4viaK3ERDBqeqZtE1GbCTREauZ4STicSTKDnevh23bsQGv6ZVRO54cHisLavUzOeO1fEecHJ9UK6JjSdkSiXCofU16aIFORJoU0QvY7JjrlkVkMxBpsjtQITgV/+ZZFgWWFXir8JzjwLIsYrEY8mVR+psFCWZYk8fSf+tAJpdX3aXMpNOIRiItn7VaUo0Nv9k6JMUoxBKptMSqiuM4JBKJmv2cy+WQSCQqhViptOTooLplSySQ1OPJDdY8Ik12F7qJB3RTXZqFKMSi/YTcjZquDaPJ+stkMl4ALGoBSY+mkknEolEhCjBBJpNBJBIRzintBjicTtj6+oTfpOXXr1/H9WvXms6n2niq5a9UbcFR7bq8TtUgkUoxODgIIxVJmCnmc29mBsvLy1Xfi8diuHnjBuJlgrpcLsfw8HBVn+JNo8G4EmlSRLegk2OnlxaRIk12B+QKxWPf0eLRPAA/j8fj8Yq+TKVSCAYCeHD/PqKx2LaalVosFgwODlaMpaXFRVy8cKFpi6eqY4cSsMsFy1o71FXzbiKNQqnEyMgI1Gp1ifCcyWRwq3iMTjV4PR7cuX274sg/rUaDkZERKGoErqpVJ5Emex/dxAO6qS7Noje86Lsc5eGnd5Smi2Eant3KcZxwligDasItHuadTCbx8OFDDDgcMBqNyGQyWFtbw8L8POLxeFdEp2UYBk6nE+FQCCsrKyWCuM/rxfz8PK5fuwaHwwGdXg+1Wg2WZcGyLBKJBAJ+P9LpNPZNT0Mul5cEqCCmR9XMf4LBIMLhMPL5vLCTSb9XUc86bZBIJBgaGkI0EoGPUgxwHIelpSUYTSZMTEygr68PUpkMhUKBP8P10SN4vd7KSItyOYZHRqDVapvqw5bQYbrY0TTZBLo5JH6vod7YEfu5eYg0ufmxwjAM1Gr14+izVH65XA6RSASzDx7AOTgIpVKJbDaL2QcPMPvgAdLpNK9M3sa+tlqtGBoawtzcHDiWFdYW0WgUy8vLuHnjBq9Mttl45SnHCf6i8VgMXq8Xe6amoNPpBKsp0qdSKu4C3cJ4LIaA349cLlcS6bgWmukdpUKB4eFh+H2+kmNrcrkc5ubmMDwyAoPRCHtRKZ5nWayurGBxcRE+n69ix1mr1WJoeLhm9OVOfTGRJrdm/hb5ROewK3Ziq+5old3bjNaJYZhNvd/qu62k34q8SUQ8rVYrMAiOfyCYMb399ttYXFhAIpGAz+vFtStX8Mp3v9t0MIOtwNTUFIaHhysYhtfrxb2ZGfzNt7+NezMz8Ho8SKdSiMdiCAaDmJ+bw1tvvIFXvvtd3mSrilCupLXnFFZXVrC+vs77BudywpEzhUKh5W8nlUqxd+9e9FG7yQD/nR7cv4+bN27g2rVrCAQCiMViCIfDeP+99/D+e+/B7XZXRCFWqVSYnp5ue1CrYqWq3BJpsl15CzsSoja9YyALk432cTPjfSu/n8gnO5t3u2hSp9NBrVZXBgcqnst64cIFeL1exGIxeD0eXHjrLbz5xhsV0fg3A5JPq/k5nU7s3bdPiGRMeG00GsXiwgJe+d738N6lS3C7XEgmEkgkEohEIlhaXMTVq1fxzW98A6719ZKzZwnkMllVU2W/z4elxUUkk0lks9kKHruRb69Wq7F//37o9fqSZ9lsFndu38aN69dx88YNxGIxRKNRBAIBXDh/Hrdu3YLH4yld8zAMjCYTpqenoWzijNhq9anzsO67Ik1uDZ8k/bwV7e9EW7p5HbGjdmJraTuaubdRfyby3ma0LK2+20r6duRdKwc6rVwuh95gwPT0NFZWVhClzltNpVJ49Qc/wPm33oJCoQDLskilUkglk11zvArDMDh27BjAMLh37x6Wl5ZKfEgTiQSuX7uGB/fv8+ZcUqlgppTP5ZBOp6E3GMAWfZJoSCQSOAcH4Xa7S+5zHIebN27g/r17eOW73xXOtwWAL//iL2Lf9DSMLQiQMpkMp8+eRTQaxUpROCb9y7Is5h49gtvlwre++U1IipNqMpl83E7qe07v34/p6WmMjo1t6my+mpOfSJNbknd5BEZRG9w+0ONsI33bzHjvxPcS+eT25r3ZbyqXy2G1WrFv3z7Mzc2VWND4fT784JVXcP6ttyCVSMAWCojHYsIc38iqqhk09T1rzPsTk5PQGwy4eOEC1tfWEAqFhGcsy+L2rVuYnZ3F9195RQgAxRV5bK7IZ5NVohsDgK2vDwMOR8X9+fl5rK6t4crly7zgX6zzCy++iI+8/DIsFkvTbQf4NusNBjz51FOYffAAyWQSLperpB2X338ft2/dwjf+6q8A8METE/F4xZnrDMPg+IkTOHb8OEZHRyHbAK+tO55qPBNpcuv5ZCfb067v2Y66bDV2lBC71R3dzvI2QjjdtChlGAYatRr7DxxArOibQ7SNHMchFouVnMEqVyigVChgMBiQSqWQSCQ6X0mOq2tKpdZo4HA48MTJk8jlcgj4/YjGYmDAR3dMpVJI1WCgAGqG1SemyosLC5BKpSWCO8kzHA6XvJOoEmipERiGgU6nw+jYGI4fP45UKsUHzipqrYUoy9TCoRwyuRwWsxn79+/H9P799YNNNOhPUqet1OKJNFkbzdarm9vQreil/hL5ZO+BtIH8M5vN2H/gANbX1/mjc4pzbD6fRzQaLVEiq1QqqNRqmEwmRKPRTQdSbKova6RRKpUwmUw4ceIEf274/HzJubHpdBrpdBqROllzNayUbDYbBgYGIJPLwVK7zoTvxcvOgA8Vz2XdCH+SFo+T2zc9jVw+j0QigWQqJQR0SiaTj89rr8En1Wo1jEYjDh85gvHx8ccm4u1GlfaJNFkb3cQnmy2jk3Xu5m8FdKkQuxM6utX6bKTuW9neZjS4eoMBL7z0ElZXV+HxeOoyS71OB6vNhv7+ft4vc26uaQ2xUJcmhKgS1ElLFgcjIyP44he/iHQqhfv37yN2796m85dKJPwO9fIyVGo1ksnkhs/rq188H6b/0KFDGBoagtvjwfLSUsUOcD1oNRocOnwYz7/wAvZMTQn3q47nBn1flwZa/XZtwE6jyU5hJ7RhN0Dkk517Z7vQbAAf5+Agnn/xRVy5cgWpVKpuQCSzxQKTyYS+vj7cm5mBz+crFrb1JoIMw0Cr1eKzn/sczBYLGIbBzRs3mo6LUW+3aXR0FCzLQq1WI5VMdjTWBuG1Tz/zDMYnJrC+vo7VlRVEIlXE7xrjz2qzYf/+/fjwhz8Mc4u7wS1WtqXkIk02h61oQ7vL2InfqiuF2E519GYZeCvvd/uHbxWNWsNxHBTFYAef/+IXcfrMGbz5xhtwu92IRiLI5/PQarXQGww4cvQo9u/fj7Hxcbzx2msIBgItmTgxRADqQB9LpVKoNRp8/otfRMDvx8OHD3k/WK8XrvV1JJJJ5Iuab51OB51Oh8GhIUxOTmJ0bAwWi6XS/LZofnTuAx9Af38/3nj9dbjdbng8HqRSqQ35v9aDUqWCzWbDL/3yL2N1bQ3zjx7hzp07CAYC8Pv9QpkMw0Cr00Gv02HA4cDBQ4cwODiI6elpGE2miuBUraLaO4ICok3fbjfTZCN0m8Cym7AVvEbkk72HRn3TbG/odDqMjo7i57/8Zcw9eoQrly9jZWUF6XQabD4Po9EIi9WK6f37cerUKSiVSlw4fx5yubztc3CrYBgGKrUaTz/zDI4cPYq7t29jaXkZy0tLWF1Z4a2T0mlwhQKUSqXAYwcGBjA9PY3JycmqEfM1Wi3Gx8fx67/+67h69SoWFhYEtyB6t3qjqPbtNFotxsbH8Y9/4zfwcHYWq6uruHP7NgKBAKKRiLAbK5FIoNfrYTabYevrw4kTJzA4NISR0VGYzOamjrHbKpWDSJO9lf9uR1cKsZ3CZgdSL/mXbaZ+jESCwcFB5HK5UkEGwMjoKMxmc+U7xZ1MlUqFoaEhqNVqhMNh+Hw+xGIxsPk81BoN9Dod9h84gLHxcTidTkxMTEAilUKr05XkNTw8DFPxqBjSFplMhgMHDpREy2UYBnK5vKZfi8FgwNDQEJ44ebJEM+twODAyOloRbIlhGEilUtjtdmi1WsjlcsjlcgT8fjidTqRSKSFAhlarhUajwYDDgdHRUTgcDsjl8qoHwstkMlgtFsj27UMgGITD54Pf5+MjRlYRYq1WqyAMS4qmS6dOny5JJ5XJYDKZKsqTSCRg5HI+QqVKBZVKBZlMhlA4jFAwiFQqJfSpRqOBVqeDva8Pe/ftQ5/djv6BgZpjRyKRQKVW4+TJkyXaf6lUCrVaXdV/lmEY9PX1YWJiAqdPny55NrV3b1U/pmaxW2hyI+jmvtiJaKdf0nZ+O5FPdg50WTabDROTk4hGoyXz+tTevbDb7XXrJZVKoVKpMDExAaVCATafR//AADJFIVZvMMBkNmPPnj2Y3LMHUqkUa2tryOfzGBwaEvJRq9UYcDqh1WiAIu8bGhrCqbJ5Wq5QYGxsrGpdlEolnE4njh49iuHhYeG+VqvF6OhoRXR7wmNNJhP0ej3YfB4GoxEWiwX9/f1IpdPIpNOCYlyr1WJgYAB9djsm9+yBVqerKvQRBfTU3r3IZLMwmUyw2+3IZjLIVQlqNTo2BoVCwa9dJBLI5XIcPXasxE9XIpFAJpdDq9VW/R7kO5CAkEaTCXKZDKFQCLFYTHA/kkgk0Gq1MJpMsFgsOHDwIKw2G2w2W/UPDJ7vm8zmim8hk8kw4HBUrY9EIhGEfdq9SSKRYHxiAharVaTJMmyXANvt36EVbGfgJ4bbgtLfeecd/NZv/RYuXboEh8OBX/u1X8OLL74IR3Hxut0fs13l0/nQkSvL73Ua5ZHXOpF/qzb4jd5pNt1WolpdOlE/uu1A5/xVNvLdtgsiTbaef6doMpfLIZFI4Nlnn8WjR4/AMAzOnz+PkydPQrWBaJrdisuXL+PrX/86/uRP/gRmsxkf//jH8Uu/9EtVz7XcDESaFGmyVlqRTzYuR+ST7S9fpMnaaUWabFwOx3FwuVx47bXX8Hu/93vwer04d+4c/vW//tc4c+ZMW8ssR1ccsbPdH75d5dP5VNPIb1U7ya4ojXbqKlppR7M7E+3awdgoqvVPtbq0m3HSeVb7bpvFRsefSJPtRS/T5G6HSJPtLV+kydppRT5Zu0yRT3aufJEma6cVabJ2mdvddqBLhFgRIkSIECFChAgRIkSIECGiGYhC7C7BdmsMux3b0T/iN9ndEL+/CBHdBZEm60PkkyK2GuL3r4/dTpOiENsEqm3Xt9uVuNn8ttOBWsTGsRXjZTeNDZEmRXQbRJoUaVLE5iDyyfZCpEkRm0W3f7ddJcRu9GPQzu3l99qFZvPrJg0IjU4P9G4npEbo5HjZbDCE7exbkSY7h16nmV6DSJMiTTaCyCfrQ+ST7S1bpMnGEGmyPrr1uxF0pRC7kY/ezDub/RitvN/rA7dVdHqgdzshbSe2YlyLNNl7EGlm+yDSZHMQabK38u9liDTZHESa7K38dzu6UojdyEfvtoHSan06Nfl1O7aiDdtlPtPJOmw1RJrs3Dvdhp3Qht0AkSY79063QeSTvQGRJjv3TrdBpMnuQFcKse1Crc7vxo+yEya/jWAr2rBd5jOdrEOvQqTJ7sdOaIOI5iHSZPdD5JO7CyJNdj9EmuwOdIUQ2ynCrNX5nfoozbSjFUd7+n43Tl7dhF7on3YHWejk+BBpUqRJEa1DpMnGEGly+9AL/SPySZEmdxN6oX+6OUBaVwix3S7pN0IrAQNaOYR4Ow6b3gi2ajDXK6eb+4dgswdQl7e/k+OjF/qzHkSa7A4Gs9Mh0mTzEGlS5JPNQOSTWweRJkWabAabpclOoiuE2F5H+cfcbVqorRrM3UI0nUS9sbMb2t8uiDQpjpV2QaTJ9kCkSZFPtgsiTbYHIk2KNNnrEIVYtJ9Ye0ULtZPQTRPuZurSybHTTX3UCCJNiugWiDTJQ6TJ3kc3jTeRT24eIk32PrppvHVTXZqFKMSiN4m1FwdbJ7HV37AXzUO6tV7V0Et1JRBpUkSr6KVx3kt1JRBpshQin2yMbq1XNfRSXQlEmiyFSJObgyjE9ih6cbDtJIj9L6Ic4pgQIaK7INLk9kLsfxHlEMfE9mKn9f+2CrG9eM7SdqPb2tNt9ekEdkMbCUSabB3d1p5uq4+IzUGkydbRbe3ptvp0AruhjQQiTbaObmtPt9WnE9gNbdxWIbYXz1nabnRbe7qtPp3AbmgjgUiTraPb2tNt9RGxOYg02Tq6rT3dVp9OYDe0kUCkydbRbe3ptvp0AruhjT1hTtzNZxSJ6A6I42FrIdKkCBHdBZEmRTSCOB62FiJNimgEcTxsDj0hxNY7o6iZw5ZbwVafG7WVA7hdZTXKZ6vKobEZjVMr5WxH27qxLJEm21tmp/MRGWV3QaTJ1soRabI9+Yh8cmvLEmmyvWV2Oh+RJrcun3ahJ4TYemjmsOV25NdukHK2cru/XWU1ymerymkXGIZpmjB7rW1bXVa98kSarF1mp/PZDWZFvQSRJlsrR6TJzufTTDkin+x8eSJN1i6z0/n02rjd6TTZDHpeiBUhoh3oNsIUIUKECBEiugkinxQhoruw22my64TY7diq3kyZW23CIaI6dmP/tNrmbjdTaleZIk2K2C6INNn+d7uxnF7FbuwfkSbb/243ltOrEPtnc+g6IXY7tAqbKXOrTThEVMdu7J9W29ztZkrtKlOkSRHbBZEm2/9uN5bTq9iN/SPSZPvf7cZyehVi/2wOsu2ugIj64DgOLMsJ2hqG4Qe9VNo5/cN2lCmiN8AV+HHBFh5rD6VSiTBGRIgQIWIrwHEcOI7/WygQXsVAImE6Nh9tR5kbAalfQZynRWwhCH0UCvT6sfvoQ8TOwa4TYjmO6xhzq5XvZsrMZln8+j/8NhYXggj4k9iz14Znnp3EL/zSuc1Ut4ky/6ZYZgJ7pmx4+tlJfPmXS8vsVF9uBN1Ul05gO8ZtNczMeHD3jhv/9T9dQDabh1arwG/++5cxMWnF4KBxS+rQjnx36njZqe3qRnQLTXYCvUCTLMvh1s11/OCV+/ibb94GAJw+M4JPfuYQnvzAOLRaRVvqXFHmrXW8+v0H+NY3bgEATp4exqc+e7hmmVv9PTmOw/17Xly/tob/8h/fAgA4B434xV95EkePOTHgMGxZXbYaIk22N99Wy8znCzj/5jzeeO0hfvTDBwCAp5+bxE//7RM4cKAfKpW8LXXeLLrhexJ0U116EbtOiN3IYGlmkNV7vqkQ2gUOa2tRLC6E4PXEoFTJEAwmN5xfU2VyHNbXIlhcCFJlJirSdRPhdVNdOoFm2reRybDV9JlMHpFIGnNzfmQzLHR6JRLxDPI5tqV8NlMHYHtpspuxU9vVjegWmuwEeoEmOY5DKpWD1xvH3KMAAGBwyIR4LFOyA0mnD/gT8PkSmLnrBgDodEocOuKAxaKBWt3MAptDuqxM56CxZpkbaVc7kMnkEQ6nhDrmcixisQxy+cKW12UrIdJkKbaDJuPxDDzumDD2pvb2IZ3KoZtcP7vhexJ0U116ET0vxLZbi1Etv14eZJ3Q8mw0z1rvdZMmqlFdmqnrdrWnV/qwHfl1S1s3ApEmdw+6pQ9FmuTxcNaHty8u4nd+6zUAwPiEBf/mtz6ME08MNynENo+dTJMin9w8RJqsD5FPtoZepsnNoOedHNvd4a3k1wtRxToxINsd+KCbiGYzWstW0mwG3T7uRJqsD5Emdx66fdztDprsrm+wk2lS5JObh0iT9SHyydbQCzTZCWz7TmwvSP7V6kjfa0cbWs2j0+lbwWbybuXddmvRNoN29P9G82AYpi35tVLXboNIk53Luxe+f7dApMnH2H6a3PxOSaP0DMPAbNbgwMF+fOgj+wAABw8NYMBhgExWf0+g22lS5JOtQaTJ2mU8RudpcjMQ164bS99NY3/bhdhu6Yh6qFZH+l472lBrwm2lTu1Mv1V5t/Juu7Vom0E7+n8zeTTKbzOTjEiTj/MQaVJEPYg0+Ri7gSalUgn2H+jH/gP9+NIvnG1r3p16dzvLEPnk9mI30ORmIK5dN5a+m8Z+V5oTb8TUodtNR5pBNw0MEb2NTmjvtuKdboNIkyLaBZEm2wORJkW0CyJNtgciTYrYLmy7EFuNgDdCEL1GRDth4tootrPt3dLv3VKPahBpcvdhN7e9FyDS5O6DyCe7px7VINLk7oNIk91TD4JtF2J7jYDbhd3abmB7294t/d4t9aiGbq5bJ7Fb2w3s7rb3Anbr99mt7QZEPgl0Tz2qoZvr1kns1nYDIk0C3VMPgm33id1O5HIsvJ44VpZD8HhimH3gRzSSRjyeQTSSRi7HgmULUKnlMBpVsFo0OHTEgfFJK/ZN26FQSFv6oIUCh1g0jUvvLGL2gQ/raxG43TFwBd6fwGLTYGTEjPEJC559bg802s2H/C8UOMRiGVx6e6F6mVYNRkb5Mp95bnJDB8R3KlCCzxvHvRkPvv6XN+DzxgEAP/v3T2H/wQGMjZmxuhLB+loEb19YgGs9ikgkhXg8C5VaBq1Ggck9Nhw56sTe6T44Bw2QSBrrbJYWQ7hwfg7n35hDOJwGAPyzf/kiDhzsh1Ila6qd3/7mbfz4hw/g8yVgtWkxPGLCr/6jp6HXKyvae+3KKm7ddOH737sHAJjcY8XP/N2TGBs3AwAezfpx9coqVlbCWF+NIJPhz2M1W9XYs8eGsXErnn1+AiqVvCSwSKHAFc9q8+P2LRfmHvkRi2WQiGehVMlgMqkxMmLGCy9NwTFogM2mbdiuRmDZAu7ecWPuUQB377ixvhZBOpVDJsPCYFTCYtFgdMyCp5+dwMCAHiazuuVxE49nEAmncfHCPNbXonCtRxEMJJDNssjnC1Br5DDoVeiza3Hk2CBGRk04eGgAEglTs6xEIotrV1fx4x/O4t6MBwDwkY9O4wNPj2PPlA1+XwJraxG8fX4BXm8Mfn8S0UgaUikDjVaB3/ytj6B/QF+SJ8dxSCay8PkSuPz+CubnAggG+DMqs5k8CgUOCqUUGo0CarUMFosWQ8MmDA4ZcOSoEzq9EhpN67RIl98umhSxPeA4DnduuXHvngff+PpNAIC9X4df/JUnMTRsglotx4P7Xty55cL8XBCrq2FkMnmwea7IS0yY3GPDs8/z87pcLi3J2+uJY2UljCvvr2BhPoBoNI1YJA2FSg6dToHJSRvOfWAMY+MW9Nm1dcdTJpPH//72Hdy57cbMXZ6GXnhpCn/nZ09CpZZDImk8FpcWg/iP/+FNhEIpgOPnwp/4zGEcPzG4qT5cXgrj5vU1/NlXryIcSiEUenzOutsVw+/+zpswGFVQKiuXQ6NjZkxOWvFzP38GSqUMLFvAg/teXDy/gB+/OgsAOHR4AC99aC+OnxiCWlPKszmOw62bLszc9eBb37gFAHA4Dfj5XzqL4WETFAoZ7s14cPuWC4sLweIcn0c+X4DRpMLAgAFDw0a8+MG9MJvV0BtUm6ZtjuOQzxfw51+9ivNvzSMey8BkVsPpNOCf/ssXWz5qaHEhiG/+9S3M3HUjGs1AKmXwS7/6ARw9PgiDQdnxRW80ksaNG+v43nfuYmE+CAD4zOcP44mTw9izxwaPJwaXK4a33ngEjzuGYCCJeDwDhUIGtUaOyT1W7Ntnx9FjTjicBsgoOikHx3F4/ccPMXPXgwtvzQMAhoaN+D//3ctQqWWQyWq/S5DJ5PFv/82rcK1HEY9lMDllw6nTw/j0Z4/UfOf2LRfu3/Pgr79WNg8MmaDWFOeB227MPwq0Pg9441hdDuPy+ytYXAgiEklVzANni/OAvcE80AjBQBIL8wG88/YiPO4YvJ4YUqk8JBIGeoMS4xMWDI+Y8cyzEzCZ1VCpNrYGTqVyiEbSeOfiAtbWolhZDiEYTCKbYZHNslBr5NBqFRhw6LH/QD+GR8w4fmIQUmntdUI2y+LK+yt45+0FvP/uMgDg7JOjePlj+7Fnjw2xeAarK2G8c5Fvm8cdQyyWAQCo1DL8k3/2Avbu66usazKLcDiNd95exPJSCF5PDF5vHNkMi3yehVIlg0olh0Yth9mqwcCAHiOjZhw+4oDBqIJOp6zIczdh1wqx+XwBsVgGV6+sYmE+ANd6BPfuehEKpxCLZRAJp5DNsmDzLDQaBUxmNWw2LWLxLILBFFi2gMk9NqhVcsgV9ScujuPAsgWsr0WxthrBu+8sYeauGyvLYayvR1EocJAwDGx9WoxPWOF2x2C18otas0W9YT+LyjI9WFkOUWUCtj4dxicscLtisBYX0harpuXA6O1YNJe/n07n4XbH8M7FBawshwEAL31oCv0DeqhVMty55cLDh35cOD+P1dUwwqEU4rEMVGo5dDolXOtRpFI5pFI5qNVyaHWKhpNiIp7B3EM/LhYFFoDBl758Fizb/CHxS4shvPP2IlZXInAOGjG93458jq1Ix3GA35/A7KwPr//4IQAgGEzi4z9xEG6XDOlUDu+/t4x331nC0mIIy8shZNJ5AIDVpoXbFYPHHceAQ4fBIRP6+rSQSBhk0nnEE1ncvLGOu3fcuHZlFbMPvIhG0ogV+8di0WB83AKDUYW90T6ojzuhUskhbRBhsxaisQxWVsK4enkV92Y8uHljDSvLYaSSOaTTeZhMKlhtWkzuifALh0krDhwcgFb3mKnWG0MsW4Dfn8D6agSrK2FcuriI5eUw1tYi8Pv4CT+XY6HRKmA0qtA/oEcymYPPZ4NUKsHQsAkajbyEgRPk8wV43DFcu7qKS28vAgAmJq04cKgf6+tRzD3y4/49Ly6en4fbzTOYcDgFuVwKo1GFVCpXkV86lcPsAx8WF4O49DavtPL74vB44sikcygUOChVMmi1Cmg0clhtWoyNWTAyaoJEwmByjw2jY5YNfQuCTtCkiM6h2vcKBpNYmA8K88PomBlf/OljggL18nvLuH51DbOzPiwthoqL14LAS7zeBOz9OgwNm+B0GiCRMMhlWcQTWdy57cLsA/7c1LmHPoTDKUTCaShVMhgMKqyvRSGTS5BIZHHq9DCUKllV+gF4pdnCfBDXrqzinSINOZ0G5PMFfqKrEqW0HLyydREeTwwcB0QiKTz17MSm+hTgFV/LSyGhDx+DQyqVw+1bripv8XU+eGgA2QyLQoHniBzHIRxO4f59r5BfLsfi8FEH8jV4RDCQxPycX0g/uceGz33xKOQyKTiOw+X3lnHtyirmHvmxvBxGOp0Dm+dgMqvgHDRidMwMs1mDsQkLxsYtdQXDVtYKrvUo7txyYWE+AHNRwUiUcwpF46Uhv8bg4PclcPHCAm7eWEMinoXRqEI4lAJXaL8CrBqNZHMsPO4Y3n9vGbdv8t/y2AknJiatcHtiuD/jxcMHPlw8v4D19Qj8vgRi0TSUShk0GgVcaxGEAimwLIczCikMRpWgQKxW3vpaBDN33ML33DdtRy7HQlFFCVINLFvA1csrmH8UQDCYRCiUQl+fru475fPAyKgZX/ipY5DLpZBIivPAtTU8fODDYtk8MDZhgdcT5+eBIVNRoc/PA4lEFnduufFw1oeLFxYw99CPcDgpzAN6fXEekEmQTGShbTAP1ALH8QojryeGq1dWcfH8PNbXo3C7okglc5BIGBiMKqyt9mFsPAK9Tom9033os+ug1zevCOE4fjx6vXEsFXnv8koYi/NBBAIJZNJ5ZDIsNFp+jTg4aEQ4lILHHYNaLYPDaYDBoIJMJqkos1AowOOJ4fYtl/AddHolzj45ivV1fnPo9i0XLl6Yh2s9CtdaFJFIGoyEgU6nwC/80rmS/Fi2gFQqh4X5IFaW+TXjwlwAbncUbleMV2blWKjUcqjVcmg0cthsOjgHDVhfiwAAxsYt2Ddtb+lbtBvbHam4a4TYdnZEM3kl4hncu+vBz//s18Cy9SfbSCSNSCSNpcUQrl5Zhd6gRH+/Hv/Xf/okpvb2YcBRuQtDl8/mC4hGM/jvf/AO3nxjDrP3vajGaxKJLJYWQzj/5hxee3UWn/rsYXzuC0dRaFC/amDZAqKRDP7oK5fw5uuP8KBmmaFimfN47dVZfPIzh/CFnzzWktC21QPY543j/Jvz+Ku/vIFHD/0VjDuXyyAWzcC1HsWF8wswm1X49//Xx3H4iANTeys1YbWxPYTJcRxe+e4MZu548Nd/dbPqUWuJRBbLSyG89fojvHtpEX/n507iU585DK1WgeXlEK5fW8Nv/qsfIhhI8gtJCtksi2gkjcWFIN69tITjJwbxr37zQ9g3bYfBqCqpR7Pf9vqVVdy57cbX/+I6EolsxXOfj9+FvH/Pix+/OosDB/vxD3/9GZw9N4o+O8/A65WVTuXwjb+6hddencWltxeRq6IUAHitfDSSxsoyv8NkMKowNm7G//GbH8ahwwOw2prXJCeTOfzpH7+Pty8s4PL7KxXPpRKm6qIxFk3jwX0ffvP/+CFm7rqRiFf2BwDk41nh2eJCCFcvr0Iqk+BvvnUXX/7lc/j7LUY/pSEKn51BJxl2K/mSOf3P/vRqVf61shzGynIYFy/M4/J7S/jETxzEl758FhqNAh5PDFcur+K3/+2PsbIcrqClbJZFLJopKj8XMT5hxe/+509gco8NtgaL7Vaw3Yuf+vN75+v1ox/O4t5dD/766zcEIZmGxx2Hxx3H9Wtr+OErD/DiB6fwhZ86hudf2AN1DSsNEim2EWQyCQ4fdSAUSmJ5KYRgIAmWLeD+PQ+m9vbBOWhsqg3xeAZrq2FcensR+TwLs1mDJ58ax8iYGUaTqnEGTaLRsTnVEItl8PW/uI7vf+8+rl1ZrbJOyCIez8LrjeOdtxfx//7pFfzW73wUx44P4vBRB4Ctn0dbpYnzb87h/j0yD1Su2cg88Pb5BVx+fxkf/+RB/PwvknkgjiuXV/A7v/VjLC/VngfW1/h5YGzcgt/9z5/EnqnW54FCgcNf/tk13Lyxhtd+VK5M4pFM5uB2xfD2hQV84+s38aVfPItnnpvEs89NotkuyecL+M637+Li+Xn84JX7yOfZquveWPTxGvHK5RWoNXLs+ZoN/+AfPY0PPD0Oe3/z7cvnC/jLP7uGa1dX8fqPH1U8r7XJlU7lcOeWG//1v1zA2xcWEC/u2pYjQa0TlpfCuHaVH5f/+29m8OnPHsa//NcfbLqu7UQ5TW4XukaIbedk0bzWBlUHePEpajGyVDIHtyuK/9//eA/PPDeJn/qZE1AopILJFF1+ocBh3RXF//zv7+Gdi4tYW400LLNQ4ODxxHHhrXmEQylEo+kKJldvsisUOLjW+TLfvrhQp8zHbSRlXjw/z+/YRdJdaUp457Yb83PBorYr0rCOhQK/4/7V/+cyPvv5o3A4DdBoFBXmbd1ydlkomMTFt+Zx8cICVpfDVQVYGrlcAfNzAVw8vwCpRIITJ4fw2o8e4m++dQeRcLqhMiKTyWN+PoD/8d8v4R/942cwfaBfML1tpn35HIt3LvJmMHduu5FO56qkKqWlXI7FwkIQf/j7b0PCMDh63InBIWPN8q5fXcXNG+v4X1+/ifX1CPL56gJsNSQTWSwthPAnf/w+Tp0ewd/7hTM1aZXG3CM/3npdhh+/OguvJ1bRBoADh9KdD47jUChwmJ8L4Cv/7W0szgeQTlXrjzrgODT86CK2DZ1e1DaaVxKJLC68tYDrV1cxPxdoqIAtsBwWF4J4/91l2Gw6HH9iELdurOOrf3IFHnesIS1lsyzcrij+5x+9h7/7907hnEVT1zS/FbS/L7eDblovMx5L4/wbc7wZ90KwqgBbXkQmk8e1q6sIh/ldu9ExM+z9+vrv1QDpd7KD+Of/7zXk8wXksvxcLpdLawqx5ePz5vV13LnjFoQFo0mFFz44BVuftq2L21aPhXn4wI9shsXrrz3E+lq0Tj34eZ1lOaTTeXz9L6/D709gfMICtUYOqVSypcqWphWsiSwunl/AjWurmHsUAFug+Xzl2rVQIPPAEvr6tDj+xBBu31zHn/4/V+Budh5wx/DHf/Qe/s7fO4Unm54HOKyvRfDW64/w2o8fwuOKNWxbocAhk8njh6/cx/JiCINOAwYchhIFezXM3vfi6pVVfOOvbmJ1JVxTgK3avkweS4shfP0vr+PBAy/+4T9+GkqlvOHZz2srYZx/Yw6v/egh3O4abSuuC+ipgmULcLtj+MM/eBszd9wV1ly1Qb4tB457vAbZjrVru49q2ii6RojdDkgkgFIpg1wugUIhg0oth1TKQCJhIJVKyFgByxaQy7HIZlhEomnkcyzi8Swuv78Mk1mND7+8D312HSSSSo1LPJbB+ipPxMvLIUHbotUqoFLLoNMpIZNJIJEw4Dh+sshm8wgFU1haDCEWyyCdylVMMvUGTTyewdpaFG++8QgrS2HBLl+rVUClkkGnr13m8lII8XiWLzPX/G7sVmGx6PPy4J4PeoMS9n4dNBoFpDIJJAzAshyyWd5kJBhMosAWkM2yuH5tDUeOORHwJ6AekgNlQmy3nF0Wj2dx+5YbD2f9iEXT6OvTQq2WQyaXQiqVgGULyOcLiMd5/9ZMJo9wKIWHD3xQq+RQqWS4dWMdN66tQatTwGhSQa1+bEZbKHBIp3NIJXOIRHjlSCiYwnuXluH+qRhGxswt+Vjk2QJm7rixuhrB0mIQRpMaqqIPh1wu4SfZAod0Ko9UOodYNI18voBwKIUr76/gzm0XjCYVBoeMFZMrqeuD+1688/YCZu66wbIFMBIGBr0SKqUMyqIvMM9Q+e+fzxeQzeYRCfN+7ZFIGlcurwAM8IlPHUSfXdfQ72t9jTe5n3vkh0Ihhc2mg1bHjzOpRAKGARRKGfR6ZYlpVTqVg9sdw3uXFhEO8/0rk0lgMKqgUsmgVMqLfjc8OyqwPIPL5wvIZPIosAXBREzE7kOjeSWdzuPuLRdm7/vg8cRg69NCpZJDoZBCKmWEsRSPZZBM8q4UkXAa83MBvPfuEhQKCW7fcuHq5RVotQpYbdoSPzmygEyncwgFU0JMhfffXcKLL00hfiQDg6F9O2ztRfW+UyplMFs12LuvD6lUDslkDgF/AgAgl0vRZ9dWxBQgGB0zY8Chr/NdWqdTYsI8O8u7GFgsGqjVciiUUsiKJsaFAm/qnExkkUhkkc8XeP//YBIzd91QKKRNWbDUg71fh4mEFXq9Elxx3MzcdWN6vx2FAgeGqcy7/Pejh34szgfBcfzurtGowsFDA0L8h+1a3K6uhJGIZ/DgnhdqtQJ9fVpodUphfceyHL+my7IIBhLI53n3q1s31zE4ZITPl8DgkAFSaaVZaTcgnc4J84DbHYPNpoVKJYNCIRPmAbboMpdMFfl9OI2F+SDeu7QMuVza5DyQRyiYRKHAIR7L4P33lvDCS3sQP+poch5gEAwm+bgcD/3IswVYrBrodArIZFJBSZDPF5BJ5xGJpoq+oAU8euhHMpnDvRkPVGo59IbqY4rjeFpZWAji7QsLuHvbhWTRRFmvV0KpkvJrKBnvgsF//wJYlue5sWgGmWwe0Ugat26sI53O4yd/+jj67LqGayG/L4Hbt1yCRaDVqoG2uKbnxw4/x2i0CqioNUcmk0cgkMR7l5YQiaTB5guQySTQ6ZRQa/h1nETC15Wsocjahh+3eWHO75a163ah54XYWlqFavdL7hUXoeOTFhw8NIDJSStOnhmByaiCTq+E1abjB1CBg9+fwPJSCA9nffirv7yO9bUofL4E3C7eBv57/3sGn/ncEVirBMd55+0FwQeWaIUkEgZnzo3ixMkhfOwTB2Dr00KvVyKdymFxIYTZWR/+6A/egWs9igf3vEJe1cZetXZeuriIdy8tYuZOWZlni2V+sqzMxRAePvDhj75yCevrkQ2VuVW49M4iJBIJVCoZXv7Yfhw95sQzz03AatNCqZQhEk5hdtaPB/e9+P3/chGRcArpdB6JeBYzdzz48asP8VM/cxwa2caC5rQy3jaCgD+BV39wHyqVHOPjFvzkz5zAqdPDGBwywmLVIBhMwuuO45Xv3sPrrz3EnVsucBxwb8aD+bkA3r64gEg4BYmEwUdensbxJwZx9twohkbMAMchkcjiyuUVXH5/BX/5Z1cFQXhtNYLr19ag1Spw5txo0/XN5wp46805MAwDpVKGz37+CI4ec+KJU8NwOA3gOD5wwdWrq7h+dQ3f/OubcLtjyGZYsCyHr3/tBhYWgnjyqbEKU7FMJo/r19bwyvfu4fvfvQeOAxQKKbQ6JT7+yQM4fMSBQ4cdcDgNUGvkUKtk8PuT8LhjePjQj6/9+TUsLgThWud9TG7fcOFrf34Nn//JYxifsArfrRoe3Pdi9oEPcrkEJ08N48mnxvHBj+yDrU8Lk0ldEtRNKn383efng5h75IffzwePUSiksFg1+Mm/dQJHjjpx+IgDer0CCqUMHAdEI7wPvscTx/0ZD+bnglic97ccYG37TTN3F9rd3+X51RqX8VgGr/7wAZRKGQYcevzc3z+DI8ecmJi0wGrTIhpNI+BP4Lt/M4NLby/i0juL4Dg++I7bFcOltxcFrf/zL+3B0aNOPP/iFJxDRshkEiTiWdy6uY5bN9fxR1+5xAtQuQLWVqO4fcsFh9OAp5+ZACS9sxia3GPFxKQVX/ypY3j3nSVcensR/99//zoAPijPv/rND+HEE0MYcBgq3iVN3IhSqdY3jEYzeO1Hs5BIGJgtGvzkTx/DmbNjmNrXB4fTgGwmj0Qii/ffW8abrz/C+TfnBKVaJp3HH/7BJXzqM4dw5Jiz5TrRMBh45eHZc6O4fcuF5SXerejgYQeSyRw0GnldM06OAy6en8fVK7yrxYBDjz1TNhw7Pljzvc3QTUvuLdfWIJHwPOmZ5yZx6swwXnhpClarBjqdEuFwEkuLYczO+vDf/vMF+HwJJBNZJBM5zD8K4Iffv4/P/+RRWK2Pl8hbZZnWTDvj8ezjeWBAj5/90hkcPebAxKQVVpsWsWgafn8C3/1OcR54+/E84HLFcOkdfh7gOOD5F/fgyDEnXqg2D9xy4Y/+4J2yecAN56ARTz0zUcL7amF1JYK11QgkEgZ79/XhQx/Zhw9+ZBoOpwF9fTokE1kEAgncvLGOv/rL67g/44XbHUOhwMHrjeF3/8Ob+Kf/4gUMj5iq5s8rH1z48auz+PpfXhcUKmq1HC9/bBr7D/bj1OkRDAzoodEqoNEqEAwkEfAnMDPjwXe+dQcP7nuxshyGz5dAoeDB1//iOj768QMNaWxpiY9VIpdLcfDQAF784BRe/OA+2Ad0sNm0UMilYCSP1wnk264sh/Fw1ge/LwGOA6RSCWx9Wnz04wdw5twojh0fhF7PC74cx29MxaJpuN0xLM4Hcf+eF4vzgZYUip1Yu3bDuqPnhdhaHcnV/6oAAQAASURBVFjtPn1PrZZjbMyCf/b/eQlmkxoGgxK2Ph3kCinkcklJACCpTAKdToHBISMcTgPevrCA73z7LoKBBAL+BK5cXsFHPrYf1ir1uHXDVfTH4H8bTSp84icO4QNPj2N6vx3DwyaoVDLI5FLI5VKMT1hgsfKa2Tdff4RXf3AfAX+ypslRtXbeurmOq3SZRhU+8alD+MBTY5g+0C+UKafLLGqD33pjDj/4/r2my2xHpMRW3pdIGAwNG/HFnzqOk6eHMTRswsCAHkoVr4GUSSU4cFCK/n4dEvEMXvvRQ1wp+jMG/Ak8nPVV+Ii2glbG28byB2QyKT7/xaM4csyJM+dGYevTQqtRQKmSwWrVQqNR4JOfOiho7t67tIR8voBCIQevJ4bJKRsOHhoQzKftdn4XkeMApUqGEyeHYDCowOYL+Jtv3REiP6+uhLG8FG5JiAX4xczhow6cPTeKT3zqIAYG9LDatNBo+AlYqZTykR8HDJiYsOB//vd3MT8fRDyWQcDHK4hmH/gxOGQsieCcSubw6vfvY2khVMxHhmefn8RTz0zgxMkhWK0amC0aaDRyyKQSSGU8I9DqFLD1aWG1qnH92hq+9ufX4SsGY7pwfgEf/PC+pr6bRiPHz/zsSRw95sSBg/0YHDIVtd3SmqZU2Wweuexjqwm7XYfPfOEInn9hD0ZGzTBb1JDLpUWGBsjl/C6txaqB02nAqdMZxGJpjI23FtRpO2lyN6Ld0dir7XjVWjTLZFK8/LH9OHV6GE89MwGLTQO9no+uK5VKoFEr8PFPHoDBqIJUJsF7l5aQy7FIp3PweeMYGjbh2ecn8ROfPoThERMcTgO0GgUYCQOlQoYjR50wWzQIh1L40Q9nsbjAW7+4XDEszAfxgacnIOuR8fG4fwGGkfA7F2UCqVTKW141Mh3cSNm1viHHAc88N4mjx5342McPwN6vF6w15HIplCoZnjg1jL4+HY4dH8T//Z/OIxBICq5MS4u8sntszFI1qnKz9VOq5PjA0+MIhXjLr3Q6j5WlEK5fW8WZsyM1AzzFYhm41vnTAUKhFADg6DGnIMB2gk+2uk6wWDT4u3/vFI4ec2J80gqn0wClio8gbJFqoVDK0WfXIRJO4Z2Li0Kwnkgkjdn7XmQzldZvWyHINttOmUyKj7w8jVNnR/DUMxOwWjXQGx7PA2q1Ah//xAEYjSpIpdXmASOefW4SP/GZ4jzgMECj5V2tyDxgsWgQDiZL5gG3K4r54jzQSps+/dnDOHLMiQ88NY7BISPUGgWUSimkUiUUSimUShl0OgXu3nHjf3zlXcRimaLgHMHCfBDz80GMj1sqFCS5XAGv/4g/WYCsN44dH8TLH9uPYycGYbNpYevTQa3hrS1kMgmsNn432GhSob9fh/v3vPgff3gJAX8SyWQOFy8s4MTJIRxBY0WRTCbBT//tJ3DoyACeODkEp9MIlfrxbmq175nLsiXjy2BQ4nNfOIonnxrHvmk7rFYNZHIpZDJGUN7rdUqYzRoMDZlw+IgDsVim4lSEctTjMfS32Si6YZ3Q80LsRqFQyGDrk+GjH9vfMK1cLoVer0R/MbR1JpPH++8uIxJOIRbN4NGsH5l0vmTAcAUObKGAxcUg5ucDAPjBbrZo8MJLUzh+YrBCsySTSaBUymCxamC364TgU+FQGoVCYz9AEpF4cTGI+bnSMp9/aQ+OnxjEyIi55B0pKdPCl5lMZnH3rps3hcw2LnOro59qtQoMD5vwkY9OY2zCUqGJksl40w2LRYN0Jo+5RwFcv7YmBNdaX4tsKFDWVkEmk8JoUuHJp8Zx+uwIhkdMJX2k0Sig0ShgtWqxVox+d/m95aIQy/v1DA4a8dzzkzh9dqTCbFahkGJkRAGFQoZ0Jo83X38kCLF+X0K4bgVKpQxTe2148YNTOH5iCCpV6bQil0sxNGSC3a7D2IQFb70xh2g0g3gsg0Qii0AgiaXFIMwWtSDEEnO6a1dW4fPGIZEwMJnVOHrMiY9+bD+GR028yX8ZtFoFbx5l1WBwyAitVom3LywiEkkjkczyUZqjaeTzbA1TMd7nRKGQwmRW48UPTmHv3j4MDZua6guGKV0ka3VKHDnixJ4pW1WGQ8y3jEY1BgYqd4I2gq2mSREbw0b6WSrlTTZPnh7GSx/exy/qqPFGdiBMZjWi0Qy8nhiuXVkVjqAC8rBYNXjuhUmcOTcKk0ldkr9cLsWgxgitVoHQc5O4fm1NWLyGgsmi31f3zp+9AIbh58xjxwfx3It7cPT4YMlOr1TKz9OjowrY7TpMTFjw7W/eQT5fQCqZQyyagdcTx9JiCEODxg0LsQCgkEtx6IgDl99bhlQmAZvnffXu3fXgiSeGoKhhEJKIZzA3x0fXTSVzYBhgam8fpqocIbIdUGvk6B/Q48MvT2N0zFxhJSeTET6qwXMv7EEwmMT5N+eQzxeQTGSxthqpGTywG0DmgSdOD+ODH96HsXFLyRii54FYLAOPO45rV1eLJ24UkEEeFktxHjg7CpO5xjygU+CZ5ydx4/o6NQ+k4HHFmhbopVIGqqKyhA+a5Sx7zq9BDQYVbDYt+vp0eOV/38PSUkgI1Li+zp+yMTZmBm3CzxV4s/Cb19exuhIGwPPS6f39+OgnDmBo2ARFlcBKZB1ltvDrhAGHAT/4/n2kkjmEwynMPvAhGEwin2MhrRKp+HE/SaDTK/HsC5M4cKAfk3tsTfUJw/DujARKpQyHjziwd18fRsfMFenlct4k2lA8eaFZ7AZe3l7V4y6ASiXD+LgVz72wB2qNHLFYGg9nfUinciU7l5lsHq71GFaXw3AXndlHxy144uQQPvLRaQwO1Y/+p9UpcPbJMXz5V56ETt+caWEmwxbLjDwuc8yCEyeH8PJHpzE0ZGpY5plzo/jyLz8JfdedPcX37dknx/Dih/bi0BFHxbmrNBQKKU6cGMS+fX1wOvVgJAxi0TTW1yJlQRC6C312LT7+yYM4etzZUHDav9+Op58ZF4Q5iYTB8IgJZ58cxSc/fahCmKRht+vw0gf3wmLRCO97vXF4PI0DL9CQySQ48cQgnnp6HM+9sAdKZe3Q+3K5FGazGp//yWP4xKcOCvcTsQzeu7SEUODx+Y3EF+fG9XX4fHGoVDJ87OP7cebcKEbGzE2Z9ykUUoyOmfHZzx+B1apBPldAwJ/E2loEnlpBGIoMcnKPDU8/yzP4wSYjdQLAyIgJTqdRqF8ikcHtW+s1Iw+KENEKDAYlPvbJA3ji1DC/W1+HDMbGLXj+hakSIcc5aMCJJwbx6c8egbFOoBSjSYWXPrQXDodB2KEMBpJwrUebDpYioho4aLUKnDo9jGeem8DZc6N1TXZVKhn6+nX4ez9/Gk8+NS7c93njuPzuMlKp/KZqo1BKcfr0MKYP9At88sF9L1757gwymdp5r69F8Z1v3kE4lOLPy9bIce4D4zhzbmxT9WkXjp8YxIc+sg+HjzhgsWpqppNIGBw56sT+A/0YHOTHeiKZxWqXC7F6gxIf+8QBnCzOA/XG0OiYBc+/uAeqsnng+BND+PTnjtSNIm00qvDSB0vngUAwifX1SNO6LLtdh9NnhvH8i1M4eNhRN61Wp8DEHit+8Vc/gMk9j20bF+YCuHFtteLYpkyWRSScxq2b61hfi0Iqk+CDH96Lp54Zx9i4BXJ5YxFHLpeiv1+Pz37uCIaGTWBZTpjr1tfrBWIFBodMeObZSZw9Oyq4KDUDx6ARwyNmYe2VyeRx57YLwWCywZsiyrFrd2JpBPwJhIJJ3LvnRTCQRDSaQjjMB3Bii4FXaHg9MSwuhATBNZdjkUrl+EOU1fygzGb4qI7p9GNGMDJiwtTePshkTN1FONGeWG1aTO+3Q62SIyJpHC04m80Xy3wc6Wy4WKZUKmm48GcYRihTpZYVAz9tfMWyUbPE6u/xv4dHTBgZMdU1WQIgRNfVahUwmzVYX4sil2eRSuWrTkrdYkKp0SgwtdcGrbYygnJFWi1/fjGptlTKYHzCAptNW3WXkgZvtsxrEbU6BaKRNLJZtu7CpRqkUgn2HxyAw2Fookx+PE3ssWJ9PcoHNyoGFltbi5ZE6AsGk3C5omDZgpDm/feW4fXF8aMfzhZTVX7I8m8bi/EHkIco5pCI80cr1EO/Q4+9+2z8eXEt+MNpdUqMjJrwwktTuPz+CsKhFN58fQ7xeBZDwyYMDZuKZl9K2GxamMwaaLWKquO5E2OyW8a5iI1BUbR6MBpVDecHtVoGs0VNReImgYoMTZnOyopuNDq9EuFQCrkcK5xT3Z3oBemagVqjwKEjTpjNGiGwTc3UDG/qPH2gH9evrQlzZiKRxdpaa5Haa0EilRSV3cNwu+4hGkkLZ3BLJAyM1G49x/F+uV5vHLduupBK5WAwqHDw8ACsNk1dxelWYsBhwPikFZIGgW/4dQLvXmaxauByxcDm+fM7G0aN3kYoFVLs2WeDoYV5gKHmgZFRPmDZhuaBLD8PNNc7HCxWLQ4dcUCtlje1BtWoFTh0eABG4+NxFyqe5VpeZjSSwtpaBLkcb4nGcByuXV2D1xvHlcurJfUoqVVZRqlUDksLQawVz18FIFg91IPFqsG+/XYolI/Xy83wV41GAYfDgOdfmsKtG+sIh1J46405BIMpnH9zjnc9MqthMKrQ16eDwaiCXq+sap6823l6d8w4HUatIE+FAodEnD9vc2kxhDdef4SV5RA8nhhc6zFkM3nkioJsPbAsH8ktl80L5pu5HAu/P4Espc3rH9BjeNiEZiMaGgxKSCQmqNQyyGSSqppBum3VyhwY0FeYpFYDea7XKzE8bCpGc2tcZjXQ50dtBPXes/fr0Vc8WqAZ4lWp5MJh2Wy+gEw2X3Wt02xdOz1hqFQyDA2XmojVKlOpkhUFIP6ZRCKBw2mEwahu8ntz0GgVUKvliEZ4pU2uRX9hIjhbqgQ1qwWHw4CBAT0fJbDAIZdn4ffFkaHM16ORVDHIAv+x8vkC7t5xY+aupySvagvARnqXdDrfMKS91arB8EhzO74EDMNArZbDMWjE089NYn0tgpXlMGbueuByRWGxanD4iAMjI2b02bUYG7fAOWiExaKBSs1HmJXLpcJB6+0Mm79ZmhRRiu1aOMjlUgwOGaHR1I+uDQByhQxanQJMcZ3KMAwGBgwwWzQNA3yQvyq1HBqNAuFQio/6nWO7WFasP/63GrXKVCpl2DNlg67JCL4SCYORETOsVq0QWTedzsPvS4BluU2NRfLe0JARR4468er3HyCZzMHvjWN1OQy9TlkixAK8YtDnjWNhPoBcjoW9X4ejxwZhMqkFoWi7F9ZWqxaOulGlS6FQSKE3qASelMlUV3ZvNWr1I++iY2wqAKBcwZ+CIaFoe8BhgKXGPECDnge02uI8UDytozkwMBhVmNhjK4niX69tCqUUY+MW6PV8NGmW5SMjBwOpCpoi5/wS6zqOA+7f8+DBfW/JebQbWSdkMnkkk7niu9XdjoxGFUbHLMK4F9wJG4x/pVIKW58WTz87gWg4hXvJLO7NeLG2FoXJpMaxE04MDhrRP6DH+IQF/QN8bBO1Wl6M28PH7mmFp283TXYKXS3EduI8IwKW5eBaj+D//r0LePfSEhbmA2BZXpvDcWhJC8eB1+Sk03kYipaH+XyB382lNKVmsxo2e/OLfYmE982zWrUIh9IIhaqbGpB+EsqkjsYxmdXo62utTHmxzFAoVbKDRdDsxNcJ6HQK6HSKpsuRySVQFoN0kbDzm1mFdXoSkMmlMJrUkDahIeWPgnrMGBiGV3yoVLVNesshl0sEkxu2wKHQ4FzZcjASBg6noaUoeSoVH8DBZFYjGuHPso0UhWiCRCKLSCRd8h7HtWcxms3mkW2w46zXq4SzDlvF6KgZX/qFMzhyZAB377jx3b+ZwewDHx4+8OPRrF/QpkokDFQqGfQGJc6cG8PZc6M4ctSJI8ccTUV9pLGdNCli6yCV8jtjcsrPqxaflDAMZFIp6AWYTq+ApsbxUtXykMmlQlmFAh9zoQvW9j2BWoGAFAopnIOGhsd80VCrZdDrFTCa1MXdsDyi0TTYQqEttH3w0ACMJhW+8l8v8sHpcgV8/5X7yOcLGKWCzHEc8NYbc7hyeQXZotKxf8CAz33hqLDO6IbFskYrh74FniSTSaFSycEwDArF41c2s07o5NoV4HfPDcbSeaAWSo6MLEKvU7Q0/mRyScnxO/zGTnP9o9Uq4HRWt/6o1k8SCW+erjcoodMrEQmnkUplEYulK4pMpXIIh1IlZsabWyc8FlhzORbpmusEPo1Gq0B/v66CXzfDj602Lb7082dw6tQw7s148I2v38T8XACLCwEsLQZL1gkKpRQajQJnz43h2AknzpwdxeGjjqb94buBJjuFrhZiO9npd2+7cOe2G5ffX8b6eqTE7HcjIMIvAVdxwS/4JS20SdCKS5iaSuaSPqq2wyipb7pcLT/etHEjJ+B1Ho3MiKu80bG61MNmZC2GYUpq3Up7+aSttrmYfgN1ZvB4zDSVniSkNYhFpkMXX9iAQF0dlVpUnsnVf0siZSBrwp+m6rtF5dPkHhv0BhXMZg1cLj4Il9+XQCScQrx4rE4omEQknMbN62sI+BO4dWMdH/buw9S+vpZ8bERsLbZnQcAVywboMV2zLgwqpgIGrU3sdBZbJrx2oKCtiizbLJgWGGzpnMlfcmjv7rJSJYPJpMa+aTvmHgXg88Vx97Yb09N2ZLOssOvDcRzu3HFh7pEfQNHSa9gEx6ABiuKCuhsWy2QN0/qL/B9O+K8Rmj81ovy1zX69Ta3RWuDZQLEcaiJope4MUzyiqnwuqlEB2hrk8c5m9TKJYq19eFynZoRhiWST6wSlDCNjZmi1CqhUcni9cYRDSXi9cSH4pbu4dojH+PgaPl8MD+578aGP7MPkHhv2H+hv3KouoMlOoauF2E6ADMpbN9dx4a153C2epcowvIZUUvQdlUgYgeGXf36WLSCXKyCbLZqcFP/RA55f3KNkJm1m8VytroVCk7NGycTNL945jmu5TI4DCi3WdUdjQ324kc7rvQ7nwEcIbLa5Qr9wlK95kVkxJekqx59KLeOP0mnge9sI5AiCepAwDKQSyYYXCQzDwDlohHPQiGPHB5FK5RCLZTD3yI+V5TC8njju3fVg9oEXrvUoFheCePTQz2tWGV75NDRsEkyLRYjoTrViGcp0quXKqUboZj/EdoG4MjXbMWTOpPkKUR62C3I5f/72gYMDiMWycLtjeDjrxepqGMlkFgaDEhzHnwt+b8YrRKodGjZhdMwMWwvuJDsCTOkF17zUC2Cz66veohHBsnEz472e0F2WtUola8uRWSo1f3RfPRCfdWYTc3N/vx79/XocODSAdDqPZDKL2Qc+uNaj8LhjuHvbjYWFAJYWQ1hZCWNhPoBLby+iUODw7HOT2DNl29XrhF0nxBaK/g4XLyzgRz+cBcfxjutGowqf/txh7Ntnx/CICc5B/qwnpUomHFhMxsid2268+dojfPVPLiMSTlcth+QppwgpFOQ1LK3UNZtlEfQnEGsiuikpk9cMMcUyU/B6m484WyhwyGVZBJosc6eBkTD85EfNB5ksi2yWRbNsOp3KIxrNbECQ7b1JiCtwcLmiGBk1N/1OOp1DPJ5BJJwCy3JQqRkYjWrIKJ8ZrVYBo/Fx9GmdXolf+41ncPLUMPYfbKx5rAeNWl5S1lZApZJBqZTBbFbj+IkhcAUOebaAVCoLnzeBr/y3d3D18goezvrwtb+4DpYtQKtT4NSpkaZMxkSI2G5IZaWWRmy+gHQ6D22Tke7ZPO9WkMuxW06fW4lcroD1tQj2tnAcTTKZQzyWQSScRqHAQa7gjySRStp3wIRSKcNPfPoQ4vEMbt1cRyKRw8OHfrz+44f48MvTSCVzmJ/zY+6hD14Pv4558UNTOHN2tG116AVIpRJIKes2crSdugk/dYAX6qLRdMO4DDsFiUQW62vR4hFfjUGO14tG00JgJbVaDr1OVbG9rlbLYDKphHlHJpfgV//RUzj+xBBOnh7eVL1VKrlwJvxWQamUQqFQ44mTQ7w1WoFDPl9AJpNDNJLGH/zXd3D92ipuXl/Ht75xG+FQCg6nASeeGIKmCf/onYhdJ8Sy+QIfgTiSQTLJTyLjE1ZM7evDCy9NFQNfqGEs+hvIZJLieZKPNZ9KhRTJZBZcHZqUK6To69OVLEDdriiWl0KoZuJYDdFIGqurEaTS+aZMJuRyvkxFlTKrO6dXKTOaxtpqBOl0btNmGu2NTrw14E1BZSWLMT6abQZmi7rOm/wOfcCfQCSSQjqd2xU72SzLYf5RAHuaPB8N4I9nWF+PCrsucrkUdru2xL/DaFTB1qcTeFaBLcDjiqFQ4GC19p7Wn2iSJRIp5NRaR62WQ6GQ4YWX9sDrieHhrA+ZdB5uVwwPZ/04fmIIcrRvQb+TfWNEbB8Y8Gev0778mWwekXC6OG/WF7ZCwST8/gTSqRxYloOseXe91upZZUdnq+fpTDqHR7N+PHFquFh+fZosFDgsLQXhpwLdqdUy2O2VvnibgVTKYHjUDOeQETabFoFgEl5PDDeur+H5F/cgGEjg5o11JBP8ubA6nQJ7pmwtKTA7j+bWOZuBTC4pWdcVCgVEwilom/AzTcQz8HrjSCVzJTEgdjIi4RQePfSXBByth0wmj4X5AOKxjDDe9QYlrDZNBe3qdErY+3WPBU0O8HriSKdzm1onbNfalV4n0NBo+AB7zz43iUQ8g5vX15HJ8MHdHtz34uBhBzS9tyxqC7rynNiNmGI2+04uX4DPG0cqmRWEtH377Xj2uUm88NL/n73/Do8jOw/832/niEYj5wyQAEiABPOQwzA5j6SRNGMFW+NdeW39nCRn++qur9d7fWWvrHWQ1iNbaytYYSTNjKQZTQ6cYQYzCZIACBA55wYa3eh4/wCrpwEio4FuAO/nefiw2ayuOlXdp069dd5zahOV2zPJyU3AFm8MzdCrDLAOBifz70dHJybvLPlnrpTBYBC9Xkt6RhxGozZU8drbRmhs6A9NBz7XvgSDQQYGnNTX9uJ2L2y69w+3qftwm+3DNNwcwOdb2DYHB8apq+3F7fItO7VrJWYnni7S45w0GjVGk27KY1WGh10MDbnmLYfPF6CleYiBgXE8E8tvoGJpDNdsZfH7A9Te6KW7a/JOa/hy0z+jpKpPTl4wGLp41Os0ZGbFYzJ9GMTaE0ykpcWFJqTw+QJcv9ZNT/coPq9/0cdmJY9lePqT3xeYnOXZ6789Tn7u7Wq1amxxBu67v2TKxWB/n5ObdX0RHu+zvsfGrIaVbJtiZb1LoprsuQifgdQ17qWvb2zW2f2VNicYDNLTPXr75uny2505iznDHBGTKc9L+F6XWAaXy8u1mm6Gh8bnrd/KOaXuRi9dXR8+o9ds1pOZZZvSY73c34NGoyYrO56cHDtZOfFo1Cp6usc4f64dt2vysTrnqttwubzo9ZOPbSkqTiYn176s7UbWws5vyzlWer02NP4XJtumvt6xycfOzLJe5Xc+POymtXmI8XHPgnsm77Ry+7gS55ShQRfXa7pxjc/fMRIMBnGNe7l2tZvhsCxHu33yemD6nsfFGUnPiEerm+xoCgSC1NX20t46+Zzfpe5PpK5d57pu8vmmXifMVVaNRo3JpOPwPUVsKk0NvT887KL2Ru+8E1WuZzHZE7uUH9CCp5m+naLrD2soVbfHoM233kAgyKWLnZw80cwHRxtxjc+cDqJSqTAYNKRn2MjJsdOUbqOra3Lcm9fr57Vf1rJjVxa5ubPfwXSOeTh1opnv/PtZxkbnfqalInyb6Rk2ujodtDQN4fMGeO2XN9ixM3vOu6bOMQ+nT7bwH986s2ZSiSN9UW4y68jJtU/pzT5xrImAP0Dlttkf1O3zBejvd/LP/3CMmpruiJQllgKO2cri8wU4f66NjMw4MrJs3H2oEOPt2aCnf8br9TM2OsGPf3SJC+c+fIabNc7A3v15JCR++FB65Q5rxbYMmhoH6e93cra6jZTUybuuj39ky4Jn5pur/JEQvu7jx5sY6Hcy7vRw34ObSE21olbPvX2fP0hnhwPn2Id1bmLCx9joxIbozV9LVrJtmt/UH0MsnR/U6skAKN7+4YywzU2DvPLza2wuTZ2xh0qlUuH3B/B4/Pzkx5c5ebx5xctpMNwZgAwu8abjUo++0+mh+kwLR99rRKVSsf/uglnH+7ndPgb6nfz7v53hVuNg6P3UNCt79uVNOa6z/x4WdxIpK0/jyY9uofFm/+S5bNzD5YudXLvWzXvvNOB0eigoTOSRx8tISrasarplpCyn7qSmWkm7/Zg/COIYcfPyz69hjZtss2YzMeHj5Ilmnv/BRcbGVv76auZ9nLuneiXOKT09o4yMuHj3nZtUVWVRuT1z1mXHxibnjfiXb5ykrWUo9H5hcRLbd2bdcZ1uMutISbGwtSKDm/V9dHY4uHihA4NRS1KKhUcfL1vUkxMibbbjee5sG12dDsZGJ9h/dwG5eQnzZlUEAkG6uxw4woJ75ZpqI8wlMJuoB7Grnd6m1qiIizNMuWPc1jLMlUudXKvpJiXVgs1mxGjUEfAH8PkDjI1OMDAwTk/3KMfev8WlCx23nx81+3ZUKhVarYqCoiQ6Okbout1TNTzk4u0363C5PAyWj5OXn4jJqEWn1+DzBRh1uBkadnHxXAdnTrXS3jay4N6YD7eZSHv7MF2dk9scGnLx9hv1uMa9DA6Mk1eQiNGoRR/a5gTDwy4unGvn9KkW2tsXvs25rMV0YpNJR1bW5HNaVSpCPYcmk44zp1rIzrFjizdisejx+wKhZ/M2NQ3SeLOf+ro+hgfn7rVdqvDjEku9MB6Pn/r6Pt58vQ6jUUd6RhwpqXFYLDoITl4o9vaN0d01yvWabm7W9zEw4ATAYtWTlGwhPz8Ri/nDMR2T0+zr2b0nl3Gnd/L5xx4/9XV96PVaDEYtGRk2klMtJCaYQ89OU2Yr9HoCTEz4mJjwMTo6OSuw1+tHq9WwtSJ9SsAcSWOjE7S2DHHlciejoxNkZcWTm5dAUrIFi2XygfFq9eTvyjPhY3jYTX+/k6PvNtDS/GGjbTBoJp/xGT5RTgTqhaQTR9b0OrmyxzZ2vze1WkVGho3428+onswkGufK5S6qz7SQX5BEZpYNs3nyN+33TwaP/f1O6m70cvliJ22tQ/NvaJnMZj3msPOMy+Xl+rUeNpWmkpBgul0/V/Z5ysEgTEz4uXi+Hb8vgMGoJT09jni7CYtFT8AfxOv109MzSnPTIPV1fbS2DOO4/cgxm81AaloceQUJocejzW1x+5KaZqV8Szomsy706MAP3m+kvW04dHM7MdFM1Y6s29/n4ta/svVk5dOJk5ItpKRM3kwNBCZvNFy50kXJ2TaCQGFRYigrwecLMDrqZmTYzZXLnZw60URjY//tR/1Fw509hSvdHihjho8dbWRk2IXX5ycnxz45I69Jh+/22PmB/jFqrnRzraabzo4RXC4farWKOJuBzMx4snPsMz6OR6fXsGNXNhMTPjo7HHg8flqah3j3rfrbWV42MjJt2O0m9IbJ697JrMogngn/5CP3PH5GRtwMDY7jdnvRajWUbEomPcO2qH1d6PEcd3ro6nRwrrqN/j4nuXkJFBQlkZBgIi7OQNzt8xCqyXPFqMPN4JCLo+80UFvbE1qPTqeZfAbwMm8kreXrgqgHsTN1vy/1omAhy+t0GpJTrBiN2tsnoSDXarrp7naQX5BA5bZMCgoTSUq24Jnw4XJ5aW8b4erlTs6dbePN1+sWNSC/ojID55iHE8eaCAZhZMTNj394id6eMVp2DfHYE+UkJ1uwxhlwu7yTjVZ9H//2L6fo6nQwODi+qJlfVSoVWysyGBvzcOJYM8Hg5J3CH//oEr09o7TsyuaxJ7dM3WbzIDfr+vjX525vc2Dubc50nGd6b6XTiVfit2K16CksSsJi0aPRqvF5A9TV9jI87CLebuS+BzZRVJxEekYcE+7Ju2CXLnXw5ut1nD/XTtOtgSnPLIuk8PJGIphZzLJzbU+lUnG9poeG+snHLmzbnsXOXdlkZNkIBsE97uXKpU4uXujgpZ9eobtrNPSMwaRkCzm5dopLku7Yhsms48FHNtPcPMSN6z0EAkGuX+uZnLmvy8G27Zns2JVNWXkaNpsRa5wer3eyQRxzTDA8PM7goIuW5qHbN548WCw6kn//IPYE04oEhBMTPlpbhvjFS9c4cayZnFw79z+4iW3bMsnMsk3OOKybbESHh1zU1/VRV9fLt/9vNYMDHz6T2WIxhC6Uwo/zYsoSyTop5j+eSvC21GO8Fm/6KdRqFXn5CaSkWNDp1Hg8fvp6xxgcGOfnL12jakcWBw8XkpERh1qtxu32cf1aD9dquvnJ85dobx3G6VxYxtFy2GzGKT0zY2MTnDzRTPmWNBLsJnJy7WhuDyGCDx/zodEsPrCd6xyrUqk4cayJ69d6CAaD7NmXx6ZNKWRk2fBM+HE6Jzh/rp3332vg2Pu36Lo9h4BKBWkZNnLz7DPOQxCJm5vpGTYMxsmJo8ZGPbhcXl564SqeCd/tG4FqUlKt7LsrP/TM9pnKMd8jVCJ1U27a2hdVloWsf/pnMzNtZOfEo9Np8Hr9uFxezp9tw2LR0909ykefqiAlxYLFqsc17qWleYjGhn7+77+doaN9hP6+sZjJsJnvuETq3BIEXv75tclrqaFxHniolIxMGympFsadXgZuj7f+8Q8vUXejl6HbHQEGw+RQo/zCBPLzE2Ysk06n5t77SxgeclF9unVyDHnzEK0tQ3R2OigrT+PAwQI2l6ZitxuxxRvxeQNMePw4Rtw4RlyMjLhpvDnA9WvdDAyMExen59O/unPRQexMx2qmY+jx+OntGeMXP6vh/aONpKXF8diT5ZSVp5GbaycvPzH0WKuhoXGam4e4WdfHd//jbGhSNZjsdElNsy5oJubVqpOrLepB7HTLuVBfyPJarZrEJDNbKtLp6Rnj8sUOvF4/fb1O/s8/nUBvmOzR0WjUoTz1yR+8jwn35EPAc/MSKCpO5sTxphlTisN/CPvvzseeYOLdd27S2jLEqGOy6//UiWYunm/nh/95Ac3tx/oEg5N3YL237wrF241sKk3F7fIy6phgaGj8jm3NtP/77y4gIdHEu2/fpK1lCIeyzZMtXLjQwQ+/f3HWbdriw7Y5OsHQ4NRtzvYjX8gFdKRF+rcSDAbR6TXE203sv7sAnV5D9elWAPr7xnjhx5d57ZUbaHWTE34pj0qYmPBN9swHgmzfnsXo6AQOh5venoXPCj2TlTyGygX3QpedjU6n5uChItrahmm42cdPn7/Myz+7hsGoRavVAEECgcngbsLtY2xsAt/tXn6NRsWnPl3FgYMFM27DYNCyc1cOH/3YGAl2E8//8CI+XwCfL8DZ6jauXO7kJz+6NDkRV+gic3J7wUAQfyAw2avhm+yVjY83sr0qC58vEJHjOt86hgbHGRudoLlpEINBi1arDpsKf/JOsNfjx+OdbEyV7AejUcuWinQeerQUvX7+U3Qs1cn1bCFB6nIn9VjNz0WSSgW2eCOl5Wnce38JR99twH17QsI3Xr3B0Xdu8tw3ToQmSQwEmOwBmfAzOjZBYWESBoOWvr6xO9qchZv/fJaUbJ4c+pBpY3BgnAm3j8ab/fz//uc7GG+fs8IPZ8mmFMq3pPFHf3ZPaJjEgkpy+3cy0znWZjOyb38+Vy510Nc3xn9+9zw//fEVdGHtSjAYxO2avInucnlDAazRqOX/+Z0DbK+aOSVzMef12Wi1aqxWA/c9sIlz1W1cON/O4ICT4O1HEe7Zm0vVjmySki2zpkAu5De5Gufg5W5npptWFquerOx4HnhoE2er2+jpnmznz55p5cqlTl748eUPr68CQby3xz46Rtwkp1jZsSObnt6x27Pvzvx0i2iZfn5b/ncUJCcngdLyNE4cb6KxYYCuznP89PkraG5Pmqr0iipDaDyeyfGdarWK1LQ4/vTP72XbtqxZy6TRqCcfYzfuhSD8+EeXcDo9BINw6UIH12u6+eXL12/PNPzhDapgMEjAP3kN5w98+NhMg0HLnr25eCM08dZ8x9Ax4sY55uHf/+0Mer0GnVZze4zv5Ocmx89ODrtwjLhCcwwYjVqKipN49IlyrAuYAX616uRqi7kgdqUpKbdbtqQz6pjMv3e7vJNjY+ZoPNW3H72yY1c2KSkWEhMts979CP8hWCwGMrPiuf+BTRx9t4FbtwYYdUyEGqfZJgwyW3QUFCZRuS2T0yebQzMpL4TFoicz8/Y232vgVuPUbQ7Ptc2CRLbtyOL0yeYZe5wX+iNfi5VBKbNGA9t3ZOHx+Ki70cvY2OQkYA7HBA7HzGNZzBY9SUlmDh8p4tq1bq5f6172MZiv5y36gmg0asq3pmONM+D3T05sNdsxUqjVKuITjJRvSWdrZQZ5t++wzpQqZDLp2LQ5Ba/XT0NDP20tQ/T0jOF2eXG7PIwsInVMr9dMBooreOwyM+MpLEpm0+aUyZnFx71MLHDSBY1GhdGkY8/eXMq2pJGWNrUndqHB6mzWYp2MNYvtDd8olN7KnFw7+w/kc/VKFwMD47hdXsbGPIyNeWDgzs9ptWpsNiM7dmVjMul45636yYv/pZVi3iW0WjV2u4ntVVmcrW6lv28ylbC/zznj8maznpQU66JPGXP9DkxmHZXbMpiY8KI3aGhtGWaE8GBG2ZgKJT1WrVaRmWWjuGQyqE7PsK3oDU6tVs3WinS6Oh1cON8eunBWqVRsKk0lvyBhyc/hXOv1RK1WEx9v4sDBArq7RnE6PYyNhl1fDU+/vprc33i7iU2bUti+I4tXf3mD8VXIPFisyH8vKhKTzVRuy6C3d5TuzlF6ekanTNo0E7VaxebSFMq3pLO5LJV4u3HOXkSTSUdefgIHDhbQ2DhAa/MgbW2TE8W53T4cDjcLTTMPWCaD6pW8xEpNi6OgMJFNm1Pp6pocGzvbdfl0arUKg1HL7r25VGzLJD09bsqs8EuxluvkhghiZ/qCDt9TRHpGHO+920Bv9yhjY3NPoqLTaYiLM/Cpz1SBSkVP1+iCTuKTY4Xi+O3fuxu324t7wkf9aN88M5GpSE21sv/uAj7x9Dau1XTTN0sjO9s2029vU+kBqxvrmzPNVdnmXXfn88yvVE1us3fmbS7mB78SKeGRMN927n+ghPh4IydPNNPcNDiZ6jbL4VOpICXFwubSVH79N/bwvW+fo/ZGz8wLR0hsnHBUaHUa9u3PpaAwgcQkMz95/hLjt++Czkan05Cfn8jnf3Mfu3bnkJI6+2QYAFsrMygsTsLnC/D6q7Uce7+R8XEvgUUMK1KpQK26PTNphI7dTL+hyu2ZmEw6+vvGeOXn1+nqGsHj8c/bIKpUYDBqSUmx8l9/cx+lZakkTntEQKQCqLXcYMWy5aYTR1skyl5alkp6ehxvv3WTYLCPrs7Z545QqSaDxIKiRJ76RAUGg5b33rn5YewWYcq+JSdbeOKjW2htGWKg37liF6uztfFWq4EDhwowW3SkplrpaB+ZnGgytHj4dzD5yA2DQcP2qiye/tR2yrekYZznUS7LpdGouetA/pTJpADUatizN4fyrelzfn4hqYurJdJ1MhgMkpRs4ZPPbOdmfT/Dwy4a57x+VKHRqskvSOCe+4t58qNb+eD9Rvp7V7/s0ZCRYePuw4X4/QEuX+qkt3d0zjqnVqswGLQ88NBmDh0poqg4eUE3c4uKk8nLT8Dr83Ps6C1+8bMaxm9nMRBc6I3eye0vZYzpYr6r0rJUbDYjTbcGefftm5OPIPL4FnSdoDdoiI838dlnd7FlazpJyQt7tk4s1clI2hBB7ExfUJzNyJaKDL75rU9y4lgT12q6OXeujeFBF06nB5VqctIZm83Itu1ZbNmaTuX2DLZtz6SxcYCeroWnimo0amzxRr7wuwf4yFNbeePVWmqudtPaMkxH+zDB4OSEU0nJFgoLEynZlMKTH91KVnY8drsJ9RKeBads87d+Zz9Pfmxym9dqumlpGaKj7fY21SqSUm5vsySFJz92e5sJpslHmyzieEZi2aUsv1TzpVqaLXp27s7m6899nDdfr6O+ro+LF9oZ6J9MQVOrITHJTHKylbsO5LH3rjxKy9JISbEuatbcyIluz+yuPbnce/8mKirTuX6th8sXO2htGWbc5WXC7cNuN5GUYqGkJJkHH95MYXESpWVpk5M/LYDRqOPRx8vYvTeHnu59vPN2A63Ng5N1qGMY1+3taLVq9AYtVoueOJuReLuJrOx4Npemkp0dT+W2THLy7BHZ55l+q0ajlk2lKfzWb+/niY9sob1tmBMnmqm93kNPzyhdHY5QmpLZoic52UpyspnK7VlUbs9g8+ZUikuSMZrm/g0tJ+1rLTdYsW4tH9tIlF2v15KUbOH/+3ePcr2mm9MnW6g+08pA/zjDQ+Oo1ZPZBknJFvbszWFzaSr33l9CZlY8zbcG599ABCQmmnnwoc1Y4wzU1fby/jsNtLePMDLsmhzu4AtEJLCdL7X3kcfKePjRMqp2ZnPhXBsNNwdobR2aTMP2BbAnTJ678vMTeeKjW8gvSCQvPwGDUbfivzO1WkVWVjx5+QnkFyTS3jaM0aglLT1uSvbMbGJpKEOktzuZdQBxcQb+n989wBMf2cIrL1/nek03HR0j9HaPoVJN9vqnpcexaXMKm0tTefwjW0hPj8Ns0U15Dv1qlj1a1GoVv/bru+npHuW+B0o4+k4DnZ0OujoduFxe1GrV5FC2zakUFCby0COllGxKISXFcsc957mOiUaj5oEHN7Nrdw6f+mwV773bSOvtMcldnQ7Gxz2Mj3snrxP0GqxxBqy3J1LKy0uksCiRrGw7O3flkJm1/PGwszEYtGTnxPOb/89dfPSprXR1jXL03QYaGvrp7Biho20k9Pgds0VPQoKJ5BQLlduzKC1LZdu2DIqKkzGZ9QuuW7FUJyMp6kFstA6kVqvGYtGzuTQVt9tHQqKJ+AQToyNuXK7Jh3mbzDosFgOlZZMXliWbUkhINJM25qGoJJn7H9jE6NgEapWKlDQrBuPMh1NJYc7IsBFnNTAy7CYp2UJnh4OenlEIgkqtwp5gIifHTl5eAmXlaZgteiDI3n155OTYGRl2k5Nnp2RTyrz7N2WbcQZGhl2T2+wcmRzDEb7N7Hjy8hM/DCpUKvbuyyUnJ57hofm3GT7+J/y7XO5EJSaTjsyseI7cW0xf3+Rg9rz8RGy2+fP/Fdk58ezek4PJrEOjURMfb5xxnOH0gECtnrxjXrIpmaHBcVLTrCQmmRkZcuHx+FGpIN5uIiHRRNWOLMq2pJGdbUerVVNUkszhe4oZ6HeSmGQmO9s+5eHoH27n9kyQ5Wk8/FgpAIWFSSQmmqc8/282Oq0Gm83Agw9vZsLjQ6/XUFqWRvIC78wBbK/KwmLR09/vJDMznk2b5/5txccbyctL4KGHS/H6/JiMOlLT4khJtZKUZKZqZzZ2u4nEBDOdXQ7cbh8ej4+4OAMJCWby8hOo2plNWpoVm82w4N+HWq0iIdGM2aInJdWK0+klN9dOV+dkHZqY8OGZ8KHRTDZOJrMei1VPXJyRtLQ4CooSSUmxkJeXiN4w9djqtGoyM23s3ZcbekRI+ZY0EhJMi5roUqWa7DUxmXQYjVqscQaSky0EgfT0OAb6nfT2juHz3h77atKRkGgiIcHE5tI0Nm1OISfXjtk8/0XqfP8f6TopFi6SMxYnJU/e+HnksVKCTD7eIzHJgsEw//lBo1FjNuu49/4SRkZcqNUqyremk54eN+9nFWVb0piY8FFWnkpKahx5+Qmz9lIEg8HbM/uqKSxMQqNWo1arscYZGB5y4Rhxh1Lh7AkmKiszyM1PpKg4GY1GjT3BxOF7ihgeck3O8lqYRErK7FkaarWKxCQzFRXpofPn1q0ZZGTa5syS0uo02BNMlJenER9vhCD0dI8yOupm3OnB7w8SuB185uYm3N6XyX1WqSbPQ1u3frjNLVvS593mTBISTFisBnbtycFs1pGbm0Bnl4OJCR8Bf5A4m4G09DiysuLZtj1rcubSsLZvrt9WfLyRgoLEUBlTUqxkZtlmfNTRbALBybGCPt9kJokt3kjJphTi402h8cFLvYCOJL1eQ2amjQN3F5CVHQ9MjmW2202hAGi+OpmSamXn7hxMJh2BQHDy2i9u9usMlUqFWgOZWfFYrHoGB8dJTbXS0zPKYP84qECrUZGUYiW/IIGCgkRKNiVjMGjx+QLsO5BPQWEio2MeioqSKCpOmnMfk5MtFIefB1KsJCVZpjwuaibBYPD2eUA/OfnRsAu1SsWWremLmrSorDwNt9tHWdnkeSA3b+bzwGQWoI1tVVm43JPD0XbszCYpyUx6ehxWqx6VWkXAH6S3d4y+Pidu92QQa7UayC9IJDvHTuX2TOx246LGocPk92JPMIWeejA+7iM3105uXgJ9faO4XL7J2Yc1arQ6NRaLAbNZPzkELyuenNx4Um5/Z9OPrVqtJiPTxo4d2aH5K6p2ZJGQaA51NM1WH6a/r/Q2p2fYsMUbSU2LY2LCR1Z2PL29Y/R0j+K7HcSazDpsNiMJCWY2l6WGfksms37G7yAW6uRqUgVXYXDdyZMn+Z//839y6tQpMjIy+OIXv8h9991HRsbkczfXy4XVfPsRjZkrV8LqPlYi+lZ6f2NxVtL18r1KnVw+r9eL0+nk8OHDNDQ0oFKp+OCDD9i1axdGY/SewRdpZ8+e5fnnn+fb3/42CQkJPP7443zhC18gOzt7weuQOjm/jVQnAY6+28jJE0387//1PjCZ9vjVf3ySsrJUkucI0qMpEAjS2zPK9759jv/1lfcIBILs3pPD05+q4mMfr8CeYLrjM9JOrl0bqU7KtevKrL+zs5N33nmHr33ta/T29nLXXXfxl3/5l+zduzei25xueaOBI2St/JCUWQPD/x1utv1QllvOfsbSMVpsGmNsTEI0s4WUbalpmws1X9rZdOG/p+m/yUiWaS2QOjlpPdXJtUjq5IekTk5abFliqU56vX5e+MkVzp5tIxAIotWqyc6xc+TeotsZYneSdjJ2SZ2ctJ7aybV47boSYiKIXSsm0wUX/6NYzo9nrhNPrJivjLG8/5Go2JEo41LHNE7/TW40UidntpJ1UtxJ6uSHpE4uTbT3PxicfNze8JCLttZhLl7ooL11GICkJAupqVZS0+KWNSvxcsso7eTSSJ2cmVy7rm6dXAlRHxO7UAvpCo/FtJHlduev9J2USFjJMq6V/Ve+22j8RqJF6mRs/yZnei0WT+pkZLc/3+fWa51cSZHY/2AQnGMTXLncxdnqVt56ow7nmAe1WkXVziw2laYuaLz+XGWUdnLpy6zk9uf73Hqtk3LtGrk6GS1rJohdyIFayYO5nBP3ctcRCbP92GLhRzifucoYK+WfqwzzHftY+Y0sltTJ5VnLdXIjWUvfhdTJ5VnLdXIp7eTIiJtv/p+TNN8apKdnFJ83wNjYBCMjbty3nxOv1al56OHNbNuRtexjIO3k0pdZye3P9zmpk0uzka5do2XNBLFieWa7o7aQH+H0z3i9fsbHPbS3jeC63dBFik6rxmDUUVCYGHpUzVxljHYlWsiJaLb/j3bZRXRFsk4KIZZvLdfJpbSTXo+fa1e7qbnaRUvz0B3/bzZPPg6peFPKoma1BvD7A4yNeejucjA6OrGoz85Ho1FjNGrJzUvAMssYXbE+bLQ6uVrWy7WrBLHr3FIq/nTTPzMy7ObK5U7+8v/1GjeuL+CJ3YuQnGKhqDiZ5771SXJy7RFd90Is9qQXS5VZrA0rUSeFEEsndXJmhUVJHDpSRGl5Knb7hzMSL6SdHB/3cv5sG//4tQ84cawpouVSHvfzd197nG3bsyK6bhEbpE4uzka9dpUgdgFm+nFEYpzBSlrZ7v7g7dnu5l8OVGF/z/R/09cbnUkAopUesdRxJ5H8Ta5FUidFrJE6KXVyrdNq1VitBuITjOy7K5+qHVnctT8fi8Ww7PFzH5re9s90LTDfKoIffnTOxaROSp1c32Ll2jVaYjKIXUplUQ7iSnyRM60zEuMMVlL0TtzhDdL0v8Mt9L3VEY0T5nLuNEbyN7kQUieXbyNfTG0EUielTs7EYtWTkmqltDwVgNzcyRRYzRJn+Y0kjVZFdo4dl8uL2axHp1NjizeSlGzh7kMFlG9Jp2xLGsohicyxWWYAu5gtSZ1c0HtLXddKkHZycdbatWukxWQQK2kDkbd6x0fZzmyN08o2WmvJWvrNSp2MPDk+YjmkTkZepI+PSqVi954cdu3O4b/+xt7Q+2p1bHwPdruJv/6bh2fs0Jzs3VnpEsTGcYgUqZORJ8cn9sTSdxKTQexKiHRaSbSnTY8ma5yB8q3pfPn/8wAjw+6Irttg1BIXZyAxyRzR9S7EWvq+Iv3bjca+S51cXRt531eD1MmFrW8py6xlHwaDd+5jtPddpVKh0iy+53AhZTYatZRvSeOLf3iIT392x1KLOCOdXoPNZiQnL2HO5aROLmx9S1lmvVqL+74Wyxwp6zaIXUh393K+9IV8dq5l1vKPzmjUkZGhIyPDFu2iRMxqfx/L3V6kP7uaY11WqhwbuU4uxHret1ggdfJOUifnttb2bTHfh06nIT3DRvoyrhOknZQ6udrW2r6ttWvXSIv+oIwVEksHeSaxXr6NZrW/j434/cf6Psd6+YSItFj/zcd6+TYaaSdXXqzvc6yXb6PZ6HVy3Qax691iZwOL5uxhc1mNcq3ENiKxzlj9TsTSSJ0UIrZInYzuNqSdFNNJnYzuNtZbnZQgdo1a7N2QWLt7oliNcq3WrH/RWIeIHVInhYgtUiejuw1pJ8V0Uieju431VicliBVCCCGEEEIIsWZIECuEEEIIIYQQYs1YU0FsMBiMqVxsITY6qZNCxBapk0LEFqmTQqyMNRXECiGEEEIIIYTY2NbUc2JjaTCxEELqpBCxRuqkELFF6qQQK0N6YkXUSHqNELFF6qQQsUXqpBCxRepk7JAgVkSN3J0UIrZInRQitkidFCK2SJ2MHRLErlHywOjobmO9PTBaLJ/USSFii9TJ6G5D2kkxndTJ6G5jvdVJCWLXKHlgdHS3sd4eGC2WT+qkELFF6mR0tyHtpJhO6mR0t7He6uSGDmLXyx0hiJ2yRboc63W/Imkj/47X076slFgpx0aykX/H62lfVoq0k6tvI/+O19O+rBSpk2vThgliI/FFht99WMj6VvPHEyt3RpRyRGrfV3O/5ipzrBxfRXhZI1G2aJzopE6ujkjXSTEzqZOTpE7OT9rJ1SF1cpLUyflJnVybNkwQO9MXuZwvdyGfXe8/nrmsxX1fS2WO9G83GvsudXJ1beR9Xw1SJxe2vkiuf61bi/u+lsosdXJh64vk+te6tbjva7HMkRKTQexS7oQEg0HpaZiDHJvYs5a+E6mTkSfHRiyH1MnIk2MTe9bSdyJ1MvLk2MSeWPpOYjKIXcpdBZVKtWJ3I2b6wpb6Ja7Wlz99Oxv5Ts1CRKNSqlSqKdtdTBki+ZtcCKmTyyd1cn2TOil1cr2TdnJuUieXT+rk4qy1OhlpMRnExppIpnOsVoVc6xV/qXc0lypaxyt8u4spQ6ykOkWL1EkRa6ROSp1cbdJOLvxzS/n8Wid1cvVJnVxdEsRuMKtdwZZqqXc0V1sspVWItWmt1EkhNoq1UielnRQbhdTJyFovdVKC2A1C+cFOrywL+SFH+87YXGWMdkVcyLGZrYzRLruIrrVcJ4VYj9ZynZR2UqxHUidXxnqpk2smiI32tOCRGEcQzS9+th9stCv5QsxVxlgp/1KmOJ9pSvdYOjnMR+rk8qzlOrmRSJ2M7Pbn+5zUyaWRdjI2SZ1cHqmTKytSdTJa1kwQG+1pwSMxjmAp64iVE8lcVrKMa2X/l1OpY2VswWJJnYzt3+RMr8XiSZ2M7Pbn+5zUydhad6RIO7m8ZVZy+/N9TupkbK07UiJZJ6MlZoPY5c5At16shRP3Ysu4mO8r0vu/Er+VtVDGSJA6OWmj18mNKFaPj9TJSRu9Tq6FNmgtlDESpE5OkjoZ+7/3tfAdzScmgtiZvpzlzkAXDfP9yJbzI4ylk91y7zBF8/uKxTuKS51SfrVTkKRORu6zkbaW6+RaIHUycqROLoy0k7OvH6RORpLUyYWROjn7+qMl6kFseHd2rFroD2G+/VjOfsbSMZp+90Y5JtOPTSTGYkRifcstw0rfrVpOus9KnKSkTi5MLB2jla6TYmGkTt75ejqpk9JOLoW0k4sndXIqqZORFQvf7aoEsSqVCr1ej0qlwuv1Mjg4iNvtxufzrcbml209dLkvx3wVUDkm049NJMZiRGJ9CxGLd3kXYiV+m2vhNy51cuXrZDAYJBgM4nK56Ovrw+fzoVKp0Ol0aDSadXfcNRoNBoMBtVqN1+tlaGiI4eFhxsbGQsdiIaROro3yRpq0kwv/3GqTOrk2yhtpUicX/rmlbjsYDDI+Ps7IyAh9fX14vV7UajVGoxG1euVDzFUJYk0mE1lZWej1evr6+nj55ZdpaGhgaGhoNTYvlmkjnPwifdISYiWt1u/O6/VSW1vLd7/7XRwOBwaDgeTkZMxmM3q9flXKsFri4uIoKChAp9PR1dXFq6++yhtvvMG5c+fw+/1RvxAXsW0jtAXSToq1ZCP87qJdJ4PBIDU1Nbz33nt873vfo7u7G6PRSGFhIWazOSLbmIt2xbcApKWl8eCDD3LixAlu3bpFfX09X//618nPz2fXrl1s3ryZ9PR0srOzUalUa+KHtxZSSZZjve/fSljNYybfz53W+zFZjf0LBAKMjIzQ0dFBU1MTZ86coampidraWsbGxsjJyeGhhx4iISFhRcsRDSkpKezdu5fS0lLq6uro7+/npz/9KceOHePll18OtVNFRUVkZmZitVrRarWh72S9//6WYr0fk/W+fytB2snoWu/HZL3v30pYyDFTel1HR0fp6emhoaGB7u5uGhsbqa+vp6uri66uLsxmMwUFBTz00EOkpqaueNlXJYi12WxUVFRQXFzM2NgYHR0dHD9+nGvXrjEyMoLD4aCgoIBAIIDRaESn04X+Vi4SYu1HOVd51kMlmq38C923tXgMllvmSO/vXOVZa8d2NUidnFv4ckqvos/nw+fzMTExgcfjYWJigvb2dhoaGrh69SpvvPEGAwMDjI6OkpCQQElJCXfffTdWq3XNH8/prFYrBQUFVFZW4vf7cbvd1NbWUl9fz5UrV9i1axd5eXmhNispKYm4uLhQerVer0er1aLValGr1evu+CyF1Mm5rcVjIO3k2iZ1cm5r8RhEsk4qwapybeDxeEKvx8fH6e/vp6WlhYsXL9Lc3MyVK1fo6urC7/djsVjIz8+nvLycrVu3EhcXF4ndm7vswVXIkVIOSktLCxcuXOAf/uEfqKmpYXh4ONTYGwwGsrKy2L59O0VFRezcuZPi4mIyMjIWfMG0mC9yOV/69IvBhdzBWG6liPR2IrX/kVhfJLa52O0vtbxr9ftezmdX6zhLnVy9OhkMBvH7/bS3t9PR0cH58+e5efMm9fX1XLx4EY/Hg9/vJxAIYDabSUxM5I//+I/ZsWMHd91117oM0pSm0OVyUV9fzy9/+Uuef/552traQm0VgFqtxmAwEB8fT1VVFQUFBWRkZFBaWkpOTg6pqakkJycv+vhIndzYdTISpJ2M7HakTsbedyR1cmXrZDAYZGxsjO7ubtrb26mtraWjo4OWlhbOnz/PyMgITqcztKxyjZCbm8vDDz/MZz7zGYqKirDb7cDK30halSAWJg+O0+mkr6+PK1eucOXKFVpbW6mpqaGpqQmHw4FWqyU5OZn4+HhSUlKw2+3YbDZycnJISkoiISGB9PR04uPjsdvtJCcnh+56r7bl/AjXgtU6ea3UtqNhNU+GK7mt9XD81+o+zGUp++Tz+RgZGWFwcDCUBjQwMMDw8DAtLS0MDw+HJmRQXvf39xMfH09aWhqVlZXk5eWxefNmdu/eTWpqKmlpaSu0h9GnNMojIyO0tLRQW1tLd3c39fX1NDU10dfXR1NTEy6XC5hMQbbZbJjNZhISErBarVgsFlJSUkhISCA+Pj7UYxsXF0dSUhIWi4W4uDhMJtOC2661+nuWOrly61irx1PayeiSOrly64j14xkIBPB4PDgcDpxOJ4ODgzgcDsbGxkLXBSMjI/T29jI2NsbY2BhDQ0M4nU5GR0fp6+sjEAig1WopLCwkJSWF3NxcSktLycjIoKioiE2bNmGz2dDpdKtyLFYtiA0XDAa5ceMGt27d4t133+XcuXN0dHQwPDyM1+vF7/fj8XgIBoNotVqKi4vJzs4mMzOT4uJi0tLSSE9PJy8vb0rasVqtRq1WT3mtzKK5GgdT+QHH+g95payn/Y6FfYlmGWJh/yNhPdZJ5ZStBFxKj2kgEMDn84XeU1Jie3p66OjooK+vj8bGRtrb2+np6eHq1atMTEzg9/unpMKaTCays7MpLi7mwQcfpLS0lO3bt6PX66NywzBalJSqgYEBLl++zIULF0LZRL29vYyPj4d6rP1+P16vl0AgAEBycjLp6emkpaWRm5tLUlISSUlJ5OTkkJiYSFJSEvHx8Wi1WjQaTai9Cm+zlPeV17A+0iPXY51cjPW037GwL9JOLp/UybW538q1gNL+T/+jTEiotFF+vx+n00lvby9DQ0Oh64LBwUHa2tro7u6mt7eXzs5OgFA8pdFoQkNmzGYz8fHx7Ny5k4KCArZu3crevXtJTEzEZDKt+jGIShALTDnILpeL4eFhTpw4wfXr12lpaeHcuXN0d3czMjISashVKtWU1waDgcTERDIyMigsLCQpKYn09HRycnJISEggIyODzMxMjEbjlAk4FmMpP265+xdZ86VFrtfjEUu/PSlLdNY92/YAxsfHGRwcpL29naGhIbq6umhraws1SM3NzQwPDzM6OkogEJiS/hOeBmSz2di1axeFhYUUFxdzzz33kJycjN1unxJgwfoIohZq+s2C8D+tra10dXVx8eJFmpqa6Orqora2lq6uLoaHh0O/idn+qNVq7HY7drudtLQ0MjMziY+PJzk5mdTUVGw2G8nJyaSkpBAXF0dqamroYiK8fLFSD2KpLCu97lgl7eTKfkbKsvrlWetWuk4qMVRfXx+jo6MMDAzQ09ODw+Ggr6+Pvr4+HA5HaNKlkZERBgYGQjdbw68Lpv+x2+2kpKRQVlZGZmYmubm5VFVVkZWVRUFBQSimCr/ZGo3vN2pBbDilx6C9vZ3+/n6Gh4fp7u6mv7+foaGh0JgkpZtbmVjD6/ViNBqxWq3Y7XbMZjMWiwWbzYbRaAylcJlMJuLj40Ov4+LisFgsoWXMZnPofaPRuO4eHREt6zUlQ4iV4PP58Hq9OBwOXC4XLpeLkZER3G434+PjjI6O4nK5cDqdDA0N4XK5GB0dDb0/NjYWeu1wOBgeHg71tCrnPyXN1WazkZ2dTVJSUuhGYEJCAgkJCeTn52MymTAYDNE+JDFLGRfU3d0depZsf38/IyMjjI6O0t3djcPhwOFwMDAwgNPpDKVvKd+twWDAaDSG0osNBgNmsxmz2TzltV6vx2KxTGmzjEYjBoMh9J5er8dqtWIwGNDr9cTFxaHX60PridYFhpiftJNCxJbVrpOBQAC3243b7cbj8eB0OnG73UxMTOB0OpmYmJjy2u12h9p6pe2fmJgIXR9MTEwwPj7O+Pg4ExMTodRgZRmj0YjRaCQhISEUDynXBTabjfT09NDr5ORk4uLiQkOM4uLiVm2860LERBA7G+VC7MKFC7S3t9PV1UVdXR3d3d2huwrh6XPh6XXKa+WhuykpKaSlpYW+iMTERGw2G6mpqaHXyhenjFWaqfd3ttfhf4QQG094z930PzP1hE7/t9KIKYHR8PAwXV1dofOgkpkyMDBAR0cHLpcLj8czJRV1+h+NRoPBYCA7O5uUlBRKSkrIzs4mIyODbdu2kZGRQVJSEhAbDdJap1xg1NXV0dXVRU9PD83NzfT399Pf309raysjIyMMDQ2F0sCVdK+ZesqV1wDx8fFYrVbS0tKw2WxYLBaSk5ND43BTU1NDwW5KSkro/YSEhDvuli/1j0J+K0KIjSo8bJqtJ3Mxf3w+Hw6Hg9HRUZxOJ/39/aHXytMBxsbGGBwcZGxsDIfDQU9PD6Ojo4yMjBAIBKbEJcq5Pvzv8D/x8fHYbDby8vJISUkhMTGR3NxcMjIySE9Pp6ysDLPZjNFojOJRXpiYDmJnGvMVnuPd3t5Ob28v7e3tNDc3MzAwQHd3dyilrquri/Hxcfx+/4KDUp1Oh16vD91xsFqtoQsCpSdD6e0Nf52YmBi6uyGE2HiCwSAejwePxzOlwRkeHg69HhoaYmhoKPT/Si9eX18fLpcLt9s9b7CrvFZSebKyskhISCAzM5OsrCwSExPJzs4mPz+flJQU8vPz0ev1M469DJ9lWAKT5Qv/fsL/hL+nPNKopaWFwcFBenp6pqR69fb24nA46O3tDY29dbvdoe9nscGoTqfDZDJhtVqJj4/HbDZPeR0XFxe6eavcfVdeh2cyKT2+Sx2aI4QQ64FyPvd4PLjdboaHh0O9oCMjI6HeUeV9JStHyZ5yOByMj4+HMneUXtfwMa6LCYKVsapJSUmhm5wpKSmhoSnp6emhbKucnJxQhs/0gDd8Doa10ikX00HsXILBICMjI6EfSvgMWkqqncPhCP2glPQvt9vN2NhY6MIg/LXT6Qx9kVardUrKlsFgwGAwYLVaQ2laymuj0YjZbA4FwAaDAa1WG0rt0ul0oc/P9L5yYaBMUqU8J1eZaEUIsTKUyQ6U56T6fL5QSo/X68XtduP1ekPve73e0PvKM9Rmeq2k83g8nlDj5vF4GB8fx+Vyhf5fabzGxsZCk9qZTKbQDTFlaET4a2ViBWUIhDKUwmazhQITu90emi03MTFxXT4SZ61SAtmhoSHGx8dDd9aVNmhsbCzUNo2OjoZ+H+GpYcrvRrnxMdNr5YZK+M1ZJRBVUpmVNshkMoVehz+r3WAwTHluu9Kzr7RNSnul1WqnTA6mvFa2q9Fo7nitfG6mdWykCcSEEJGltOvKxHtKm6xMwKe06eGvlTZf+Vz4c1Jne19Zh3LNoFwDeL3eUNuvPH9deT/8tXIt4PP58Pv9oXOh0guqBKdK/BD+Whk+otyIVK4NlNcWiyUUxyg3KpVrA+Vcvh6s2SB2IYLBIENDQ4yMjIRm5BwZGaG7u5u+vr7Qa2UsU19f35ReX2Ud0//M9D5M9mRotdrQ3Wul93b6XW2bzYbVag3d4VbG5Cqvlcc1KD/i8Dsi8/0933sL/ay4U7TGIMXS2KeVLsv001F4fZvp79lez7bc9PcnJiZC41CdTmfohpcSNCg3wZTX4+PjOJ3O0F3V6XdeXS7XlPOB8vdMaZnhkyUpfzQaDQkJCaEgVJnwJzExccrkP7m5uaGJF5S7pmJ9Un6f/f39oR7aoaEhRkdHQ735DoeDwcHB0HwRSs//2NjYjG1Z+L9nez1THVKpVKGbKsoNXuWmizI+12QyTXmtXGxNf63cHA4fB6z8f3hv70Lbq0i9nu//xNyknYytsoRbyXLN1nav1uvw85UStCo3j2cbN+p0OqfcHFSCyumvlaE+SkeYMk9FuOnt/Wyv5/o/q9Ua6lFV5rFISkqaMj5VyaJRhkcmJiaGHje6Ea37IHZ6SrKSijz9tZIaoHTvK7N6KTN+hU/SMTo6ekeKYHgqQPiPdabUr9nSwaa/r9Fo0Gq1d/TAKHfLw++eK+kB4XfPTSYTJpMJvV4f+lt5X7kQUQJl5f2FnODmOxFG6kS5WttZjPW8zdXct9m2FQwGQ3cxvV4vo6OjodfKXU3l/el3O5UJEZQ7ny6XK7RMeOaF0igpvVzh54Ppfxb7vrJfyuyzVquVpKQk7HZ7aAyjMrZx+uvwSRbC03rmer0RZw3eaOZLUQ7/v+ltns/nY3Bw8I4spbGxsTvS3pTJw8InB1Nu1oyNjU0p00LHzyp1YSGfAaakuisBcnhwq/wJb7OUxz9YLJZQD0N4L7PS26u0l0o2VHiPcnj7qPQGK+teaq+wtJPrc5ux0E7GIuW843Q6Qz2USrustNvhvZbTs5d8Pt+UNltZ3uVyhc5lyrqVyWBnCy6VZRaajgvM2XE1W0eWInxyWCVLSgk2p2dMhU84q2RPWSwWEhMTQ+evuca1zvV6I1rXQexiKBVQudhVGnLlwlepHEplUdLAwmcMC6+0yp2g8Moa/r5SQWd6rVRo5QeqBJpKMKqkHCg/+PCGV2mklWc6zfR++PJKelf4Msof5WIi/HPKHfLwiqPcAVLS1uDDXunwAH36RbiSzjD9/5RnUynrCX9ocvgzgMOFp6DNFhzFWkO/UpRUmulVW2kIlBNxePAWfqMHCDUCyuemXzj7fL7QepVnOiufm35hrawnEAiE0nKUP8p2lLSf8GWUFF5lmfC6oaTgKI1l+PvhKUPhqUTK+pR65nK5QsdD+e0qF7hK/Zrp9UzLKPVHGQYQngakNFjKTOrhvU7hyygN4Wo9JFysb0o9nH6Bp9zkGR8fD11UKu+73e7QhaQy82V4Wv30lDql7s32/vTXSj0Pr5/K6/AMKLVaPWWoTXjdU9o9pY1T2gODwRBqR8LbRqV9CR8XHt4eqtXqKe2gsu7wzyqvlX8rf8LbyJnarvB2UNkv5TMKpe1a7DLTxyYr543wZZT2OHyZmdIIZyrrTNZTO7nSlB7B8MAnXHh7rPB6vXcEVl6vd8rnwp9HrSwbvsz0dnemNnumZcKvB5TyTX/+uPJaab+V95RyBwKBKTeGw9vg8OdpK+tTzg/K8uHpv+Epwcp2JiYmpmxz+vAe5Tpa2Q+lToZfLys3q8KHNcz1OvzcED5kIvx6WTlXhQ8tVDqawt9XruGVm2wmk2nKbPTLuWm2UUkQGwHBYDA0BXb43WsltUu5qz06OhpKS1TSFZSJXcbHxxkeHg6lN7hcrtCJStnGTK8j8e9wSi+vUuGUfyuVzGQyhRp6pQIrk1lptVosFgsw2YCGV0rlBKA0tMp6gSmBgHJxYDQaQ422xWIJNbzK9qenTigni4VYiUZ4tsA50hayTuVErjRQCqVHUmlslBsrSmPhdrtDn1HueAaDwSl3RZVlXS5XqDwOhyPUmCp3TcMbq4mJiVC5wm/4KDeJPB5PqFdUudidyVwpfwtdZqaURKWRs1gsoWwH5XVCQkLo0V3hr5XUf4vFErrDqjzqS0mtFGI9mW1OCSVAVsb1Tr/xq9zsVXp6lZ6T8JQ+JYNi+kU9zN32rcR70ylzZIT32io3gsPHFCsXv0q7pgSiRqMx1H6FX/QqyygBurJM+PhgmDxXhfc4K8sobabCbDZPuZmr9E6Hn+ssFsuM7aRSVrPZPO/xCLfaAe1qtbOzWcy2gsFgqE2d3hYDoZtG4YHj2NjYlGV9Pt+ULIhgMBi6+QQfPidUadeB0BwPyjJKUBg+1CV8HKiyjNLOK9edSnustNXhc0MoN8KU6wJlAtX5js9C2uzZ3l9se690lig3lJUhDuFjRZV2fqabzTO9Dl8mfL6KjdwTGm0SxEZAeHrBTLNRLva1csdJuQhQLg7CXysBQPhAcSWdUjm5KL1OM72vBDCjo6N37M9CZr+EmccqzfZ6rv+f7//C70xN/7/53p9pOavVOu+ySuBtMpnmXWf43T1gSq/DfOYL3BTKjRLlDuZ8y4b/Hf7+9AvC8GXD/2/6DZTp65ztswtZbiGpOvDhxVv4pDTKn+nvKxeS4e+Hp9KH34hRGjAlWFVu2iwmbWch/y/EejI9hXmu1/P9/0yvlQtpZSza9GclKq+VC2a/3x+62Rae+RR+ca20dcpNNSXVMPxiPHyCFqfTOeOF+Gzt32zvTf9c+L/D/57vM7P9vZBtAXech+ZqJxfahoYL75laKOUG92Iu/JWMrOlPf5grSJxNMBhkdHR0UQFp+I3exZitLVbem/7+9LZ9vmUW0u4udN0z/Tv8/fDe4envz3YslZs/Go0m1AERnrlksVhC/z89xV/pSAnvAFFu5mi12tDEqspztMOfux0+5E6ZM2K+x2Mu9rGa4a9BhvREiwSxMUhJQwlP+5qeAqY02ErjrNxFUxrw8Dtryl246bOqKe8rqRxKCofSS6fc5Zue/hmecqqcwMKfzTs9fSU83WV62spMY7zCPzdTyutyLSQwVe7iKXfM5xKevgYfpuFMTwOaSXjv5lyUYxh+13YppqeMhaeuzjQWQ9knlUo15Q5+eKq4RqMJfT+9vb1YLBaSkpKm9KyHry88DS88NTC81z48JT58xtPw3o/w95XAdfry4e+H95ood2fDU/WlERIiepRzf/jM4NNnCVdeK21GeBATPtvo9H+Hrzs8TVFpB8PH2YW3Q+Fpl9NTKMP/rZyfpwfw4ed15d/hwcD0ZaandIYvo9y8NhqNU26Uha9X+dz0NNbwNjiSwocdLZRKpQrtw2KCWKU9CBeearpQSsbQYtrR8BTWSJs+fGR6SjrcOVxKacfDPxOeijrTMjPNozB9PGV4Wx1elvChY8oy09vt6e27chM6PJ0/vG1XAtrw9P3wFP7wDIXwQDc8wyF8GE/4Te3w6wW5oby+SRArQnejw4Nlh8MxZYyU8v7o6OgdKadKz3H4+AblLjlMNgCjo6OhxlkJqMPHQynjKpUJeYAZx0TOlCYbLYupOrEQICkNjTJxEHx4p1S5sJg+floJ+DUaDTabDZjcFyVVXGmclIvCU6dOkZ2dTVVVFTabbUqqndLwKIFj+Gyl099XUnyEEGI1hbdf4fNVhD8aQ2kbw8fihbdxSnsVPuxCac+U9is8PVNZJnxeDGUZpQe5r6+P7u5ukpOTpwzNCW8nlTYpvG1W9mlsbGzOXrNYs9RyxkJbu1AqlYq4uLgpvXpKD6VCabPD5x5RUsWVdYSPGwdCgV/4ZJ3KjV/lRoASOBoMhtAy4dcAyjJxcXGh9SntsrKe8PGdStCoXBts1NlyxeqSX5kIBS1Go/GOntXpd5bD73iG3zGenlaiLB++7GzLLeVzwJSxIXNRZsybr1FU7lYvJGVI6QWYLw04fEKA+RrX8GcozmX6JCZzCX82o7L98M9MnywEpqaVhS8bfrd9ehrNq6++yk9+8hNaWlpwu92YTCb++q//mrS0tDu2MT2FZ6b31tKFiBBi/VDOSTabbcY2ED5sp2b6P+X/Z0vXnJ76OdvQDeXfbrebb37zm5w5c4br16+j0+l4/PHH+dKXvhQKFKZ/Lryc099TKAHzYrJ7gsHJicIW0/O51FTcxaYKK9/bYsf1LiUlevq8HQuhUqlCKbPTyx2+zEzvzZQ6vpBlpvfwhm9jrs9M/9z01Nu50nKXkpYuxFJJECumnJDWEiUVej6BQCB0R3y+5ZRJERayrJKaNpfwVJr5hKfOzEVJ7Z1plubpwlN2V7JhKSgooLy8nNOnTzMyMkJLSwtDQ0MkJyeTnJy8YtsVQohICk+tjLaxsTH6+/vp7OxkcHCQYDBIWVkZ5eXlFBUVLeu8rqRTr3Qqbnj69mLLFz5j/nyUa5jp42bns9B2N5wyo/VSxvUudAJKIcT8JIgVa9ZCxrYqlFRYsTKqqqpISUnhZz/7GZ2dnVy+fJk333yT8fFxHnjgAWBtpXkJIUS0KEFiT08PV69e5fXXX2d4eBi9Xs9nPvMZduzYsex0TSX9c7Hi4uKWtV0hhIgUCWKFEMsWFxdHXl4en//85zl69ChvvfUW3/3ud+nt7aWoqIjs7GwZ4yqEEAsQDE4+SuXtt9/mu9/9LmNjY5SUlLB7924OHTpEenp6tIsohBBRt7byR4UQMUmZ9GH37t1s2bKF5ORkuru7qauro7q6etHjqIQQYqPy+XzU1NRQU1NDfX09BoOBgoICDhw4QEpKyqLHfQohxHokQawQIiI0Gg33338/9957L7t370aj0XDlyhW+9rWv0d3dHTOzSgshRKxSxp1+85vf5L333mNwcJCMjAzuvvtuPve5z02ZuVYIITYyCWKFEBFVVVXFl770JbKzs/F6vdTX1/PCCy/w/vvvR7toQggR0+rq6njjjTd47733aGlpwWKx8Hu/93s8+OCDUx6HIoQQG50EsUKIiFBmuU5KSqKiooKysjJSUlIYHR3l/PnzXL16dcpzhoUQQkxSHqfT0NDAmTNn6O7uRqfTUVBQwK5du8jLy1vxWeaFEGItkSBWCBFRRqORlJQUvvCFL/D4448TDAZ55ZVXePnll7l27Rrj4+PRLqIQQsQUn89Hd3c3r732Gv/6r//KxMQEO3bs4Nlnn6WiooLU1NRoF1EIIWKKBLFCiIhSnte3Y8cO7r77bo4cOYLJZKKuro6vfvWrNDU1MTExsahnDQohxHoVDAZxOBx8/etf58yZM3i9XkpLSzl06BBPPPGEpBELIcQMJIgVQkScSqUiJSWFoqIi9u7di81mw+FwcObMGRobG+nt7Y12EYUQIiaMjIzQ3t7OyZMn6ejoQKPRUFFRQXl5OQUFBWg0mmgXUQghYo48J1YIsWK2bt1KXl4e586d48qVK7S3t/O9732P1tZWfu/3fi/axRNCiKg7ceIER48e5dy5c2g0GjIyMvh//7//32RnZ6NWS1+DEELMRIJYIcSK0Wq1WK1WPv3pT5OVlcX3vvc9zp49C8DBgwcpLi7GZrNFuZRCCLH6PB4PHR0dHD16lNdeew2fz8ddd93FwYMHyczMxGKxSBqxEELMQm7xCSFWjFqtRq/Xs3fvXnbu3ElCQgLd3d3U1tZy4cIFhoeH8fv9Mj5WCLGhKLMRX79+nWvXrlFfX4/FYqG8vJyDBw9is9nQ6/XRLqYQQsQs6YkVQqy48vJy/H4/t27d4vnnn6exsZH//t//O6mpqcTFxWG326NdRCGEWDUej4e2tjb+/M//nLa2NrRaLffeey8PP/wwDzzwgPTACiHEPKQnVgixopTnx2ZmZvLUU09RWlqK3W5naGiI119/nddffz3aRRRCiFV1+vRpfvnLX9LR0QFAZmYmn/nMZ9iyZQtqtVqCWCGEmIcEsUKIVZGYmMjevXspKysjIyMDt9tNdXU1J0+exOl04vP5ol1EIYRYUYFAAJfLxcWLFzl27BhDQ0NYrVYKCws5fPgw2dnZ0S6iEEKsCZJOLIRYFSqVCr1ez2//9m+zdetWvvjFL3Lp0iUcDgd79+7l0KFD5ObmRruYQgixYkZHR6muruYXv/gFx44dA+ATn/gEH/nIR0hKSpLH6QghxAJJT6wQYlUo6XGZmZmUl5fz0EMPkZCQQH9/Pz/96U+pq6tjZGREJnkSQqxLLpeLjo4OfvCDH9DU1IRer+fw4cPs2LGDkpISSSMWQohFkCBWCLFqVCoVCQkJFBYWcv/995OamorT6eSdd96htraWnp4eAAlkhRDrRjAYJBgMMjw8TFNTE6+99ho9PT3ExcVx6NAhtmzZQlZWljwTVgghFkHSiYUQqy4rK4vf+I3foLGxEa1Wy9WrV/m///f/cvXqVb7+9a+j1WqlR0IIsa58+9vf5r333qOvr4+MjAwqKir43d/9XeLi4qJdNCGEWHMkiBVCrDq1Wo3RaOTQoUNoNBrq6uro6uri+vXrnDlzhs2bN5OamhrtYgohxLKNjo5SV1fHxYsXqa+vR6VScdddd3Hw4EHi4uLQ6XTRLqIQQqw5krsihFh1KpUKtVrNwYMHuf/++4mPj2dkZISbN2/y3nvv0dnZid/vl7RiIcSaFQwGCQQCDA8Pc+zYMa5evUpbWxsWi4WDBw/y6KOPotfrJY1YCCGWQM6cQoioSU5OZvv27fz5n/85mzZtYmBggH/8x3/knXfe4datWxLECiHWtO7ubs6ePcv/+l//i1u3bpGRkcGf/MmfcO+995Kfnx/t4gkhxJol6cRCiKjRaDTYbDb27dvHmTNncDgcdHR0UF1djcViITc3F51OJz0VQog1RZnM6eTJkxw/fpzBwUESEhIoLi7m7rvvJi0tDa1WLsGEEGKp5AwqhIiquLg49u3bx6lTpxgZGaG1tTV00ff0009jtVrR6/XRLqYQQixYIBDA4/Hw2muvceLECTweD7m5uWzbto27775bbswJIcQySRArhIgJTz/9NKWlpVy4cIGRkRGuXLnCN77xDR555BF27doV7eIJIcSCNTc388ILL3Ds2DHa29tJSEjgv/23/8aRI0ckgBVCiAiQM6kQIiYkJiZSUFDAoUOHSE5OZnR0lOPHj4eeHxsIBKJdRCGEmFMwGGRgYIDGxkY++OAD+vv7MZvNHDx4kE2bNpGWlgYgjxATQohlkiBWCBETTCYTmZmZ/Nqv/RrFxcW43W7eeustqqurqa+vJxAIyERPQoiYpZyfmpubuXjxIq+99hojIyOkp6fzq7/6q2zatIm4uDgJYIUQIgIknVgIETMsFguHDx+moaEBnU7Hm2++ySuvvMKtW7f4j//4D+Lj42V8rBAiJvl8PlwuF//4j//IuXPnCAQCHD58mAMHDvDggw9iNpujXUQhhFg3pCdWCBEzNBoNcXFxVFRUsH//fmw2G8PDw9y8eZMLFy7Q3d0d7SIKIcSMBgcHOXfuXGgIhMViYefOnezcuZO4uDiZjVgIISJIglghRMy5++67efrpp8nKyiIYDNLW1sb3vvc9rly5Enp0hRBCxALlnNTY2Mi///u/09DQgNvtJj09nSeffJKHH3442kUUQoh1R4JYIUTM0el0ZGRk8OUvf5k9e/bg9Xp57bXXeP3113n//ffxer3RLqIQQgCTQeyZM2d4++23ee2113A6nZSVlfE//sf/YPPmzRiNxmgXUQgh1h0JYoUQMUetVmM0Gtm+fTtlZWXk5OQwNDTEjRs3OHXqFE6nE5/PF+1iCiE2OGUcbHV1NVeuXGFwcJDMzExKS0upqqrCZrOhVqtlMichhIgwGaAhhIhJer2e0tJS7r33XgKBAM899xynT5+mubmZj33sY2i1WqxWKyCPqxBCrL5gMMjExAR9fX18+9vfpr6+HoAHH3yQw4cPU1ZWFuUSCiHE+iU9sUKImLZv3z4++9nPsmXLFiwWC729vfzv//2/ee+996JdNCHEBqWMg7148SJ/+7d/S2trKzqdjtLSUj7+8Y9zzz33RLuIQgixrkkQK4SIaUlJSRQWFrJz507S0tKYmJjg7Nmz3Lhxg+7ubgKBQLSLKITYYILBIF1dXdTV1XHmzBnGx8dJSEhg9+7dFBUVkZqaGu0iCiHEuiZBrBAipqnVauLj4/mjP/ojDh06hEaj4eLFi7z33nu89tpruN3uaBdRCLHB+P1+fvnLX/L6669z8eJFAKqqqvjyl79MVlYWarVcXgkhxEqSMbFCiJimUqnQaDRkZ2dz+PBhxsfH+eEPf8jly5cZGxtj165d5ObmYrfbo11UIcQG4HA46O7u5vnnn6e+vh61Ws3TTz/N4cOHyczMRKfTyTh9IYRYYXKrUAgR89RqNVarlU2bNnHXXXeRkJDA6Ogo165d49q1a3R1dcnzY4UQKyoYDBIIBOjr6+Pq1avU1tYyODiI3W5n7969bN26FavVikajiXZRhRBi3ZMgVgixZlRWVvL000+zd+9e0tLScDgc/P3f/z2vvPKKjI0VQqw4r9fL+++/z1/91V/R19dHSkoKhw8f5oknnmDXrl3RLp4QQmwYEsQKIdYMlUqFyWTi85//PIcPH8ZkMtHU1MTp06f5xS9+gdPpjHYRhRDrlMfj4YUXXuDo0aO0trZiMpmoqqri85//PHa7XVKIhRBiFUkQK4RYM1QqFTqdjj179lBRUUFWVhYOh4OGhgaOHz/O8PAwHo8n2sUUQqwzHo8Hh8PBiRMnuH79Og6Hg6ysLMrKyti7dy8mkynaRRRCiA1FJnYSQqwpKpWKlJQU7r//fiwWC3/6p39KTU0NDQ0NHDx4kMrKSgoLC6NdTCHEOtLe3s7Vq1f54Q9/yMjICHq9nj/6oz9ix44dJCYmRrt4Qgix4UgQK4RYU5SUvezsbPbv38+ePXuoq6ujvb2dH//4xwwMDJCdnY1Wq5XHXAghliUYDOJyuaiurubFF19kfHyc7OxsysvL2bFjB7m5uZJGLIQQUSBXeEKINSkhIYGSkhJ27txJfn4+KpWKkydPcv78efr7+/H7/dEuohBijfP7/fT09HDlyhWOHTtGMBgkJyeH/fv3U1BQIL2wQggRJdITK4RYs/R6PX/4h39IVlYWDQ0NdHZ28v7772OxWPjSl75EZmZmtIsohFjDnE4nf/M3f8OZM2fo6+ujoKCAhx56iN///d/HarVGu3hCCLFhSU+sEGJNs1qtVFRU8Mwzz2C1Wunu7ubdd9/l6tWrtLe3R7t4Qog1qqWlhTNnzlBdXU1XVxcGg4FPfOIT7N27F7PZLGnEQggRRRLECiHWLJVKhcFgoKioiEceeYSkpCTGxsa4dOkSV65cobm5mUAgQDAYjHZRhRBrRDAYxO/309zczNmzZ6mrq2NsbIzExEQeeughtmzZglarlSBWCCGiSNKJhRBrXkZGBklJSTz99NOcPHmSo0eP8s///M/U1tayZcsW4uLi0GrldCeEmJ/f76ejo4MXX3yRH/zgB3g8Ho4cOcLDDz/Mzp07sVgs0S6iEEJseNITK4RY89RqNXq9nnvuuYd9+/aRlJTEyMgIdXV1vPLKKwwODka7iEKINSAYDDI2NsbPf/5zrl69itPpJDs7m6qqKg4ePIjRaJRZz4UQIgbImVgIsS6oVCoOHDjAnj17yMnJwev10tTUxC9+8Qv6+vrwer3RLqIQIsZ5vV6GhoZ46aWXqKurIxAIsGnTJrZv386ePXsko0MIIWKEKiiDxYQQ64ByKuvp6eH69et84QtfoKmpCbVazV/91V9x4MABDhw4IOPYhBCzeuONNzh27Bhf+9rXUKlUpKSk8KMf/YiCggJSU1MB5BwihBAxQG4pCiHWBeXC0mazUVxczK5du9BoNNy4cYPjx48TDAaprKzEbDZLb4oQYgqfz8fAwAAXLlzgxIkTTExMsHXrVnbs2EFubi42m02CVyGEiCGSTiyEWFfMZjPZ2dkcOXKEHTt2oFarOXr0KO+88w69vb14PB6CwaDMWCyEACazODweD7du3eL06dMcP34clUpFVVUVH/3oR0lJScFkMkW7mEIIIcJIECuEWHdUKhVPP/00zzzzDJWVlQBcvXqVv/iLv6C+vj7KpRNCxBKPx0NLSwt/8id/wunTp9HpdDzwwAM89thjPPDAA5K5IYQQMUiCWCHEuhQXF0dhYWHo+bEul4urV69SU1NDY2NjtIsnhIgRdXV1nDlzhsbGRiYmJkhKSuKBBx6guLgYs9ksacRCCBGDJIgVQqw7KpUKtVpNfn4+//W//ldyc3Px+XzU1tZy/Phxzp49KynFQmxwwWCQQCDAiRMneOWVV+ju7kar1ZKTk8OnPvUpysrKol1EIYQQs5AcGSHEumUymcjJyeHXfu3XKCws5Dvf+Q4vvPACjY2N7Nixg8zMTOLi4qJdTCFEFIyNjXHx4kVeeeUVjh07BsDHP/5xHn30UZKSkiSNWAghYpj0xAoh1i21Wo1Op6OyspKqqioyMjIYHx+nubmZDz74gL6+PgKBgPTICrHBeDwe+vv7effdd2lubsbj8VBWVkZFRQVlZWVotVrUarlEEkKIWCVnaCHEurd7924OHz7Mjh07MJvNdHZ28i//8i/U19fj8/miXTwhxCpRhhE4nU6ampp47rnnaGxsJC4ujscff5x9+/axadMmCWCFECLGyVlaCLEhFBQU8OUvf5nKykq0Wi21tbX87Gc/48UXX5SeWCE2mO9///v8y7/8CwMDA6SkpLBjxw5+8zd/k9LS0mgXTQghxAJIECuEWNdUKhUqlQqz2UxJSQmVlZWUlJTgcrm4du0aZ8+eZWhoiImJiWgXVQixwtxuN83NzVy+fJnr168TCAQoKSlh165dZGVlYTabo11EIYQQCyCzFgghNgSdTkdSUhKf+MQnyMjI4Pz585w8eZLu7m6eeuopSkpKSElJAZBHagixDgWDQQYHB3n11Vc5ceIEtbW1GAwGnnzySR599FH0er3UfSGEWCOkJ1YIsaFUVFRw5MgRHn74YVJSUuju7uav//qvqa6uxu12R7t4QogVEAwG6enp4cKFC/yf//N/aG1tJTU1lS984Qvs37+fnJycaBdRCCHEIkgQK4TYUGw2G1lZWezfv5/09HQCgQBXrlzhxo0bNDU1yfhYIdYZZTKnuro6Ll++TGNjIxqNhszMTA4cOEBmZiYmk0l6YYUQYg2RdGIhxIaTlpbG7/3e79HS0kJvby9dXV28+uqrjIyM8Jd/+ZcyM6kQ60gwGMTv9/O9732PEydOMDExwZYtW9i/fz8f/ehHpb4LIcQaJEGsEGLD0Wg0mM1mnnrqKdLT0/nKV77ClStXGB0d5ZFHHqGoqIj09PRoF1MIEQHt7e28/fbbnD9/ns7OTmw2G8888wyHDh2SAFYIIdYoCWKFEBuOSqVCp9NRVlaG1+slPT2dwcFBmpubqa6uxmQykZSUhFarlRRDIdaoYDCIy+Wio6ODY8eO0dnZSSAQYPPmzVRWVoYepyN1XAgh1h4JYoUQG1Z+fj5Go5Ff+ZVf4bXXXqO2tpavfOUrAOTm5pKYmCgXuEKsYfX19Rw7dozvfe97+P1+ysvL+ZM/+RO2bdtGfHy81G8hhFijJIgVQmxYKpUKu93Opz/9aQYGBhgZGaG/v593332XYDDIb//2b2MwGKJdTCHEIvl8PtxuN//5n//J6dOnCQQC7Ny5k3379rF//34SEhIkgBVCiDVMBoMIITY0o9HI1q1b2bJlC8XFxfh8Purr6zl58iSDg4Py2B0h1qDx8XHa2to4e/YsdXV1aLVatm7dSlVVFVlZWRiNxmgXUQghxDJIT6wQYsPT6XR84hOfYPPmzZw7d47GxkZ6e3t5+eWX2bdvH5WVldEuohBiEWpqanjuueeoqanB7XaTnZ3Ns88+y65du6JdNCGEEBEgPbFCiA1NpVKhUqlITk5m8+bNfOQjH6GwsJDx8XF+9KMfcebMGQYGBggEAtEuqhBiHoFAgKtXr1JdXc2JEycYHx8nPz+f3/zN3wyNgRdCCLH2SRArhBCA1WolPT2dw4cPk5+fj1qtprq6mqtXr9La2orf7ycYDEa7mEKIWQQCAXw+HzU1NVy9epVbt25hNBopLCzkgQceIDk5WWYcF0KIdULSiYUQ4ra4uDieffZZnE4nDoeDc+fO8corr9DU1MR3vvMd7Ha7XAALEaNcLhf9/f187Wtfo76+HpVKxSc/+UkOHTrE9u3bpe4KIcQ6IkGsEEKE0el07NmzB7/fT21tLcPDw9TW1vLBBx+wZcsWSkpKol1EIUSYYDBIMBikrq6O119/nc7OTlQqFTk5ORw5coSqqirUakk8E0KI9UTO6kIIcZsyPra8vJz77ruP1NRUfD4f7e3tnDhxgsbGRrxer6QVCxFjxsfHqa+v55e//CVDQ0OYTCY2b97Mzp075caTEEKsQxLECiHENHa7nZKSEv74j/+YAwcO4Ha7ee655/jFL37BzZs38fl80S6iEOI2n8/H888/z0svvcSZM2cA2LdvH1/96lfJzc1Fo9FEuYRCCCEiTYJYIYSYRqVSYTAY2Lt3Lzt37qS0tBSPx8Ply5f5yU9+gsPhwO/3R7uYQmx4TqeT7u5u3n77bWpqaggEAhw5coQDBw6QlZWFTqeTsbBCCLEOSRArhBAz0Ol0VFZWsn37diorK1Gr1dTV1fGzn/2M/v5+JiYmol1EITYsZRzsyMgITU1NHD9+nIaGBgwGA/feey/79u0jKSkJrVam/hBCiPVIzu5CCDGH++67j02bNnHx4kW6u7upra3l3/7t37jnnnt47LHHol08ITYsr9fLW2+9xXPPPUdfXx/p6elUVlby1FNPkZOTE+3iCSGEWEHSEyuEEHOwWCxkZGTwwAMPUFJSgsfj4eTJk1y4cIHW1la8Xm+0iyjEhuPz+Thx4gQXLlygubkZrVZLSUkJjz/+OImJieh0umgXUQghxAqSIFYIIeag1+ux2+189KMfZfv27ajVas6cOUN1dTW1tbV4PB6ZrViIVRQIBHC73bz22mucPXuWnp4ebDYbFRUVfOxjH8NqtUa7iEIIIVaYpBMLIcQ8tFotBw8eZHR0lNHRUV555RVOnz5NT08P3/nOd8jPz8dkMkW7mEJsCK2trVy/fp3vf//7DAwMoNfr+fM//3P27NlDUlKSPBNWCCE2ADnTCyHEPFQqFUajkZKSEu6//35SUlLw+Xy0tLRw+vRp6uvro11EIda9YDDIxMQEtbW1vP322wwPD4d6YLdt20ZOTg4ajUZmIxZCiA1AglghhFig0tJSPv7xj1NQUIDRaKS/v59f/OIXnDx5kkAgIGnFQqygYDDI6OgoZ86c4fnnn2diYoK8vDzuvfdeKisryczMjHYRhRBCrBIJYoUQYoG0Wi02m40//dM/5aMf/SgAb7/9Ni+//DJvvvkmo6Oj0S2gEOvY2NgYX/nKV3j11Vfp7+8nJyeHhx56iN/93d+VcbBCCLHBSBArhBALpFKp0Gg0bN68mS1btlBeXo7H46G5uZl3331Xnh8rxArp6+vj5s2bnDt3jo6ODtRqNQcOHKCiooLU1FQ0Gk20iyiEEGIVycROQgixCGq1msLCQnbv3k17ezudnZ3cunWLb3/72zz88MPY7Xb0ej2AjM0TYpmUFP2GhgZOnjzJ6dOn8fl82O12nn32WTZv3hyqb0IIITYOCWKFEGIJtmzZQmpqKhcvXuTGjRt0dXXxjW98gyNHjvA7v/M70S6eEOuC3++np6eHl19+mZ/85Cd4vV727dvHkSNH2L59OzabLdpFFEIIEQUSxAohxBKYzWYyMzPZs2cPfr+fzs5Orl+/TlJSEs3NzWRkZGA0GqNdTCHWrGAwiNvt5uzZs9y4cYPOzk7sdjubN29m3759xMXFSS+sEEJsUDImVgghlkCtVqPX63n22Wd59NFH0ev11NXVcebMGd58802Gh4dltmIhliEYDDI8PMzXv/51qqur8Xq9lJaWcujQoVCdE0IIsTFJECuEEMuQlZXFXXfdxX/7b/+N5ORkbt26xT/90z9x6dIl+vr6JJAVYomOHz/OD3/4Qy5cuIDD4SAtLY0/+7M/49ChQ6jVcvkihBAbmbQCQgixRCqVCqPRSFZWFvv37yc9PR21Ws2tW7e4cuUKN2/eBJBAVohF8Pv9OBwOrl+/TnV1NSMjIyQmJlJeXh6ajVilUsnEaUIIsYHJmFghhFimnJwcMjMzefvttwG4evUq3/3ud2lpaWHv3r3y+A8hFsHj8XDz5k3eeOMNXnnlFQKBAEeOHOGjH/0oWVlZ6HS6aBdRCCFElElPrBBCRIBarebZZ5/lmWeewWq10tbWxtmzZ3n++efp6uqKdvGEWBM8Hg8dHR185Stf4dKlS+h0Oo4cOcI999zDgQMH5IaQEEIIQIJYIYRYNiW1sbS0lIqKCoqLi/H7/XR0dHD8+HG6uroYHx+XtGIh5tHT08PNmzc5d+4cQ0NDWK1W9u7dy6ZNm0hNTZWxsEIIIQAJYoUQIiJUKhUJCQlUVVXxB3/wB2RmZtLV1cW3vvUtTp48SXNzc7SLKETM++Uvf8m///u/09LSglqtprCwkC9+8Yvs2LEj2kUTQggRQySIFUKICFGpVCQnJ3P48GHuvvtutmzZgt/v52c/+xk//OEP8Xg8+P3+aBdTiJgzNjZGdXU1R48e5dSpUwA88MAD/Pqv/zrx8fEyDlYIIcQUMrGTEEJEkMlkIicnh6qqKsbGxqirq+PGjRvo9Xo6OjpIS0vDYrFEu5hCxAxlNuJz585RV1dHd3c3KSkpbNu2jX379mEwGCSNWAghxBSqoAzSEkKIiAoGg4yOjnLq1Ck+//nP09/fT3x8PJ/61Kf43Oc+x/bt26NdRCFixvDwMBcuXOCzn/1saBzss88+y9NPP82uXbsA5HE6QgghppBbm0IIsQJMJhOFhYV8/vOfJzs7G4fDwRtvvEF1dTV1dXUyyZPY8ILBIMFgkNdee40XX3yRoaEh4uPj2bx5Mx//+MfJz8+X58EKIYSYkQSxQggRYSqVCp1OR0pKCvfddx+5ubloNBpu3LjB1atXqa2txe/3SyArNjSfz8fIyAhnz57l9OnTTExMkJGRQXl5Odu3bycpKSnaRRRCCBGjZEysEEKskPj4ePbv389HPvIR7HY7L774Ij/60Y+4du0a+/fvx2azYTAYol1MIaKit7eXX/ziF7z55pvU1tai1+v51V/9VR5++GGpF0IIIeYkPbFCCLFCVCoVarWagwcP8uCDD5KWlobX66WlpYWf/OQnNDU1RbuIQqy6YDDIwMAAtbW1vPjii3R1dREfH8/HPvYxtm3bRmZmJiDjYIUQQsxOglghhFhh5eXl7Nmzh4KCAjQaDX19fbz55ps0NTXhdrslrVhsGMpvvbOzk9raWo4fP47T6SQlJYUHHniAoqIi7Ha7BLBCCCHmJEGsEEKsML1eT3FxMX//93/Pjh07cLlc/PKXv+SVV17h3XffJRAIRLuIQqyKYDCI1+vlG9/4Bs899xxut5uysjLuvfdePvOZz5CbmxvtIgohhFgDZEysEEKsMJVKhdFopLCwkD179uB0Ojl9+jTnzp0DYM+ePcTFxck4QLHu9fX1cf78ea5du0ZPTw9ms5l7772XgwcPotfro108IYQQa4T0xAohxCrQ6XSkp6eze/du7rrrLrRaLTU1Nbzzzjt0dHTgdDpDjxwRK0s5znKsV08wGMTn89HV1cWbb75JY2MjDoeD5ORkDh06xMGDBwEZByuEEGJhJIgVQohV9NBDD/Hss8+yfft2zGYzbW1tfPnLX+b48ePRLtqG4vP5JI17lV2/fp13332Xb33rW/T09FBYWMj/+B//g507d5KQkBDt4gkhhFhDJJ1YCCFWkcFgIC0tjaeeeoqXXnqJq1evcv36dS5dukRubi4VFRVoNJpoF3PdCQaDOJ1OWltbuXXrFg0NDaSmplJUVERFRQVGoxG1Wu7rrgS/34/H4+Htt9/m+PHjjI+PU1xcTFVVFTt27CA+Pl6OvRBCiEWRIFYIIVaRWq3GbrfzzDPPUFdXR319Pbdu3eL8+fMkJyezefNmDAaDXNRHgJIu7Pf78Xq99Pb2Ul1dzTvvvMPbb79NWVkZ9913H+np6SQlJWE0GtFoNJLSGmFer5fh4WFeffVVrly5AkBlZSV79+5l69atcryFEEIsmioog4KEEGJVBYNB/H4/r7/+OseOHeNrX/saRqORrKwsfvjDH5KTk0NycnK0i7nmBYNBPB4P1dXVnDlzhv/4j/9gYGAAh8PBxMQEOp0Oo9FIWVkZ+/bt42Mf+xg7d+7EYrFEu+jrSnV1Nd/+9rd54YUXcDqdJCUl8dxzz7Fr1y6Sk5MliBVCCLFo0hMrhBCrTKVSodVqKSkpYWJigvz8fPr7++nt7eXNN9/k8OHDJCYmolKp5AJ/ifr7++nv76e6uporV65w/fp1WltbUalUxFktbCouYnhkhJ7eXm7dujVl4qH8/HxKS0uxWCxotdJMLlUwGKStrY3r169z9uxZnE4nqampPPjgg+Tn5xMfHx/tIgohhFijpHUWQogo2bRpE/Hx8Wzbto2LFy/S2trKD37wA6xWK9u3b1/wI3eUhBploqKNOqZWmXHY7/fT3NzM5cuX+epXv0p3dzfDw8NoNBoy0lLJycniwL693Gy8xanqcwwNDdHX10d1dTVXr15l//792Gw2cnJyMJlModTujXhDYfoszgu9sRIMBgkEAly9epVz585x7tw59Ho9hYWF/Pqv/zrZ2dnySB0hhBBLJunEQggRJcFgEK/XS21tLf/8z//MT37yE9xuN/fffz+PPvoozz77LGazed71eDweHA4Hb7/9NjqdjqeeempDBly9vb20trbyzW9+k8uXL9Pc3Mzw8DAGgx5bXBwf/8gTbKvYQnlZKWaTiXHXOINDw/zil69z9doNzl24iFarxWQyYbfbeeyxx9i5cydPPfUUJpNpQ/bKOp3OUABqsVjYunXrgsZrj4+PMzg4yOc+9zmuX79OT08Pn/70pzl8+DC/+qu/il6vl3HfQgghlmzjtchCCBEjVCoVGo2G3Nxctm3bRktLC++99x6NjY2cOHGChx9+mNTUVKxW64yfDwaD9PT00NnZyfnz5zlz5gzp6ek8/vjj6HS6DREkeL1exsfHaWho4Nq1a9y8eZNz587R1taGw+EgJyuT/Lxc8vNy2b2zirzcHNJSU1CpVFgsZmxxcezZtYPEBDv2eBu1dfUMjzhoaWmhurqakZERAMrLy0lLSyMnJwfYOL2ybrebmpoahoaGUKvVTExMkJubS0pKyoy9ssp98Y6ODs6cOUNTUxPj4+MkJyezZ8+e0EzQQgghxHJIECuEEFGk0Wiw2+0cPnwYq9XKiRMnqK+vp6uri8985jOo1erQREMqlWpKamcgEODGjRscP36cr3/964yMjLBnzx6cTidWq3XdpmsqxyAYDOJyuejs7OTHP/4xr776KnV1dXi9XrRaDVarlQN37ePew3eze+cOzGbTlKBLq9Wi1Wq578gh9uzawf33HOZb3/4e12vruHrtBmfOnOHSpUu8+eabfO5zn2PPnj1kZGRMSddez8Gs8liiEydOcObMGYaHhxkaGuKJJ57Abrej1+sJBoN3HAO/309NTQ3f+ta36O7uxmw2U1RUxAMPPEBJSUmU9kYIIcR6IunEQggRA9xuN729vfzhH/4hly9fpqmpid27d/PMM8/w+c9/PjQ2MxgM4na7uXbtGi+//DIvv/wyHR0dDAwMEAgE2Lp1K3/7t3/Lrl27SElJifZuRZwyRnNwcJCTJ0/ywgsvcP36dZqbmxkdHUWtUrF1SzlHDh1gW8UWigoKsFotmE2msJ7DIHBn4OXz+xkaGqanp5cbdfW88LOXaevoYGBwCLvdTnJyMpWVlXziE5+goqKCzZs3r+sgNhAIUFdXx2OPPUZvby9ut5uEhAQ2bdpEaWkpf/zHf0x6ejp2uz30Ga/Xy4svvsgbb7zBj3/8YwKBAPfccw9/9Ed/xK5du7Barev6mAkhhFgd0hMrhBAxwGg0kpSUxMGDB3E6nXR0dNDY2Mi1a9eoqalh+/btBINBRkdHuXjxIpcvX+bEiRM0NDQwOjoaWo/L5eLWrVuUl5dHcW9WhtfrZXR0lIaGBlpaWjh27Bjnz5+nra0Nn89HTnYW6Wmp7Nm1kx3bKykpKiIxwT5D0KS6I4zVaDRoNBrS01Ixm03o9Xp6+/poam6ltv4mHZ1dtLW14vV6SUxMDE0WlZubS2JiIgaDYd0FZ2NjYwwODjI4OMjExAR+v5/+/n4ARkdHef3119myZQslJSXk5OTg8/lwOBycOnWKGzduMD4+zvbt26moqKC0tBSj0bjujpEQQojokCBWCCFihMlk4nOf+xxOp5OamprQuEKj0Rh6HE99fT1/9Vd/RUNDA729vXesY2xsjIsXL3Lo0KEo7EHkhScLOZ1Obt68yT/90z9x6dIlrl+/DoBeryc7K5OPPPYIu3dWsXtnFSq1mrnCpSn/Ny2itcXFEbfZSklxIZ1d3bxz9AN+8tLPaW5po7GxkcbGRux2O/fddx+f/exn2bNnD+np6VPXvw6Cta6uLpqamhgdHQ3NfA0fPr7oL/7iL3jkkUd45JFH+PSnP83Y2BjNzc28+OKLdHV1oVarefrpp7nrrrvIyMiI4p4IIYRYbySIFUKIGDE52ZCFBx98EJvNxl/8xV/Q2NjIwMAAOp2Ovr4+Ll68SEtLCy6Xa8Z1OBwOTp8+zec+97lVLv3KmJiYwOFw8NOf/pSrV69y/Phxuru7cblcmM1m9u/dTdnmEu6/9wgpyUnE3U5XVUJIJT69M4E47J1Z4k2NRkNaagqPPfwgW8vLaGlr4813jnL5ylUGh4Z57733qK2tJTs7m4997GPs37+f0tLSdTOLcV1dHVeuXGG2UUcTExMcPXqUq1evcvbsWVwuVyjATU1NpbS0lEcffZT8/PzVLbgQQoh1b320tEIIsQ6oVCq0Wi3Z2dns3LmTrKwsOjs76e7u5vTp0wwODlJfXz+lV2w6r9dLT08PDocDl8u1JlM4lWeMdnV10dvbS0NDA8eOHaOuro5r164RH28jOSmRwvw89uzawabiIso2b0Kj0dyekTnsuaZM/vPOQzDLMbkd2yrHzGAwkJKsx2wykZiQgMMxikatprW9g/b2Dppu3aKnp4ekpCQCgQAjIyMUFRVhs9lCE3KtVd3d3bS2ts76/4FAgMHBQUZGRjAajXi9XpxOJ4FAgKysLPbv309WVhY2m20VSy2EEGIjkCBWCCFiSDAYJDU1lbi4OO69917OnDnD+fPnOXny5II+7/V66e/vp6Ojg56eHvLy8la4xJEVDAbx+/1MTEzw6quvcuLECV544QVcLheBQAC1Wk3FljK2V1bwa59+Bltc3AyzMKsIBkGlUiLSebeKslBwyuKT76tUKqxWM1ZrHkWF+dx75BA3G27xb//xHRpvNdPf388PfvAD3nrrLXJycviDP/gDdu7cyebNmz8s0Rq8kdDQ0EBNTc2sPbEKv9/P1atXQ4+Mslgs7Nmzh9///d/HbrfPOIOxEEIIsRwSxAohRIxQgoX6+nquXLnC0aNH6ezsnDeImEl9fT3Z2dlrKogNBAJcvHiRixcv8vbbb1NTU8PAwABut5u8nGwKC/K5/97DbCouJjkpkXibLfS4m+npwpMx00IDJ9UMr6b/68ME5bTUFGxxVtLT/oiaaze42XiLV157A7fbRX19PX/zN39DaWkpZWVlfPaznyUtLY2EhITFHYwo8vl8OJ1OWltbaWlpWfDnlBsQTqeT8+fP881vfpNf//VfJzk5ed0+7kkIIUR0SBArhBAxwOfzMTExQUtLCxcvXuTs2bO0t7czNja2pPV1d3fT3t4e4VJGnvLIoJGREfr6+jh58iTnzp3jgw8+YGhoCL1OR052Ftsqt1K6qYR9u3eRnpaK0WhECV2DMNOg13k2DHcMnF3Q51SYjEaMBgMJdjsGg4GEBDsdXV20d3TS3z9IbW0tDoeD3t5eCgoKKCoqIjc3l8zMTHQ63ZTnzMYin89Hb28vw8PDOJ3ORX02GAzi8/no6Ojg5MmTVFRUUFhYSG5uLhaLJeb3XQghxNogQawQQsSA0dFR2tvb+bM/+7PQc0+Xo66ujsTExJhP5QwEArS1tfHuu+/y4osvcvz48dCkVclJiZSXbuYjjz/KkYMHsNvjw/blw8gz1OkaFozOG5fO1Ml6x5rn+RxQUlRIcWEBBw/cxfGTpzl74SI/+slLdHV10d7ezunTp9m2bRv79+/nS1/6EqmpqTE/VnZsbIwzZ84wMDCwpCwAgLa2Ntra2rhy5QpHjhzht37rt9i+fXvM77sQQoi1QYJYIYSIIrfbzcWLF3n33Xc5ffo058+fn/Lc16Vqbm4mJSUFj8cTc71/gUCA8fFxampquHDhAq+99hptbW10dnYSCPjJy8mmvKyU++85RFZmJjnZWVhvzzpM2MzDd1DN+HJGcwWqd85mfGe37fQbAwaDgaptFeTmZLOpuJhLV65y/UYd127U0tDQwNDQEK2trVRUVLBv3z4OHTqExWK5PRFVbHE6nVy4cIHh4eFlr6u/v5/333+f9vZ2PvKRj1BRUcHhw4fRaDQxfXNFCCFEbJMgVgghVpkydnBoaIi+vj5OnTrF+++/z+nTpyMSwAKMjIzQ39+Pw+EgPj4+6kGs0qM3Pj6O0+nk1q1bnDlzhuPHj/Puu+/i8/kw6PXk5eZQXFjA7p07OHDXXhLs9hUZT6map6926nNkVWETPt35GZVKhUatITUlhaTEROx2O0ajAb1ez+jYGMMjI3R0tNPX10dfXx8+n4+UlBTS09NJSkrCZDLFTDCrpHc3NjYuOpV4Jm63m/b2drq6urDb7YyPj5OZmUlWVhYmkwmdTheBUgshhNhoVMGl5goJIYRYEp/Px8jICP/5n//JW2+9xRtvvIHP54v4dkpKSvjGN75BZWUlaWlpEV//YiiBe3V1NWfOnOEf/uEfGBgYCAVK2VmZlJVu5nd+8/NkZaSTkGAP9dStpR678CbV6/Vy4fIV3vvgOO+89wHNLa34/X7UajXl5eXcfffdfOYzn6Gqqipm0mwDgQDnz5/n8ccfZ3h4GI/HE9H1JyUlUVZWxpe//GUqKytJT09fU9+vEEKI2CA9sUIIscq8Xi+3bt3ixo0b1NXV4ff7V2Q7LpeLK1eukJubG9UgtrOzk46ODn72s59RX19PU1MT/f396PU68nJyeOC+IxTk51FYkE9udhYmswmVWr2AuZYWO5vTygsPyLRaLcWFBVgsFrZXVHDy9BnqbjZwvbaO9vZ23nnnHW7dusX+/fspLy/nyJEj2O32qPZOKhOCORyOFbmxMjo6Sl1dHa+//jojIyN88pOfjPlx20IIIWKPBLFCCLHKAoEAbrcbAL1ej9FoxOPxRDyYnZiYoLGxcckzHC+H3+/H6/UyMjJCXV0d169f5+c//zldXV2MjIwQF2clMz2dvNwc7j18kLycbDIzMxa8/tsjU5cex87xuUiFxmq1muSkJBITEigpKkSjUWM2mxl3uejs6qatrS00Xra3t5fU1FSKioqw2WyhMcCrHdz19fXR3d0d+n1GUvj+DA0NMTQ0FPFtCCGE2BgknVgIIVZZMBgkGAzS399PU1MTf/Znf0Z9fT2dnZ0R3Y7JZGLTpk383d/9HQ8++GBE1z2fgYEBWltb+cY3vsHJkye5efMmfr8fo8FAfHw8n/2VT7JrZxXbK7ai02mjErAtyrTINhhUnkW7gI/ebmaV8aaO0VG+/6OfcvHKVU6dqSYYBJ1Oh8lk4tOf/jT79u3jk5/8JHq9ftXHMn//+9/ngw8+4F//9V8jvm6j0UhFRQXPPvssH/nIR0hPTw+NBY7p714IIUTMkZ5YIYRYZUrAZrPZKCws5Itf/CLnzp3j8uXLvPnmm3g8niU/2iScx+Ohvb2d/v5+RkdHP5zhd4UoPa+nT5+murqa+vp6Ll26RE9PD1qNhsqtW9haXsrmkmIqK7aSlpqMTqdjctLhyJVrRZKMp61wMcUNH9trMBiwq9U8cN8RNm8qZnvlVj44fpLevn4GBoc4evQoDQ0N1NTUcPfdd1NYWMiWLVumrGclNTU10djYGNF1mkwmEhMT+fjHP05FRQX79+8nISEh6pONCSGEWLskiBVCiCgxGo0YDAaeeOIJUlNTSU5OpqamJjTh0XLTi/1+PwMDAwwODjI8PIzVao1QyScpgXYgEGBiYoKhoSHa29t59913efPNN2m4eZMgQcwmMxnpaeyoquTuu/ZRVbmVuLi4GYMyJQCd/vccpbhjiWWFekHCZiKeb0uLp9Fo0NwO6PNzcykpKmRkxEF9QyMej4fGhgaampq4evUqXq8Xh8NBSkoKVqsVvV6PVqtdkWBWyQ7o6Oigvb09Yus1m82kpKRQXFzMk08+yebNm8nOzo7Y+oUQQmxMkk4shBBRFB4Iut1uLly4wAsvvMBLL71Ee3s7gUBg2dv4nd/5HR544AEef/zxiD7KRSl7f38/x44d4zvf+Q5Xrlyho6MDv9+PXq+ncks5jz50P7t3VlFYUIBOp41QCukqDGpdyrYX8TElcPR6ffT29XGl5hrf+f6PuNXcwuDgEFqtFrvdzo4dO3j22WfZuXMnxcXFKxLEer1exsbGePrppzl69GhEJnXSaDQ888wzHD58mKeffhqLxYJGo4mZxwkJIYRYu6QnVgghokgJSDQaDUajkeLiYh577DGys7P56U9/Sltb27LHyra3t3Pr1q2IpCgr3G43AwMDHD9+nIaGBqqrq7ly5QoDAwMYDQbKSjeRn5fLgX17KC4qJDM9DYNBH8EAbI71rHjW7RI3cEdKsup2irGepMQEtpSV8qlPfpzm1jYuX63h+o1axp1Orl+/zve//31OnjzJ/v37qaqqIicnB5PJFLHjOT4+Tl1dHQ6HY9kZABaLheLiYnbv3s1jjz1GUVERVqsVjUYjY1+FEEJEhASxQggRIzQaDRkZGSQmJrJt2zY6Ozs5d+4cDoeD8fHxJffKdnV10dTUFOr5W2ogoXze7XYzNDREXV0dL730ElevXuX69evo9TqMRiMZ6Rns272Lqm0VHLp7/5J63mbv64zGY3VWfptms5m83BwyM9Lp7OohId6Gc8xJS2sbPT3dvPZaJ3FxcXR1daFWq9HpdKSnp0+Z/Gk5AeL4+Dj19fU4nc4l3+wIL9fu3bv51Kc+xb59+zCbzUsulxBCCDETSScWQogYEx4s1tTUcPr0af72b/+W/v5+PB7Potdnt9upqKjgrbfeQq9fem+ox+NhdHSU7373u5w9e5bXXnstFFxrNRruu/cw2yu28pHHH8VsNqHX6ZY9hjM8fIzuU2EjsPV5VhGeWu7z+ejt66e5uYUfv/Rzzl24RE9vH1qtloSEBDIyMviN3/gNDh48SHl5+bJ7Oa9fv87f//3f8/rrry+557+oqIjKykq+/OUvk52dTUJCwoqN4RVCCLGxSU+sEELEGCXN1Gw2k5+fj1qt5nOf+xxXrlzh7NmzDAwMLCrlc3x8nOHhYbq7u0lOTsZisSz4s8FgEL/fz7Vr12hububixYucOnWK1tZWHA4HGelppKelUbWtgsqtW8jNySLBHo9arUatUi877lPN8nr1RWDr86wiPLVcrVaTlJiIRq3m0YceICszg+aWNs5fvMz4+Ditra288sorNDc3s2nTJg4dOkRqaioJCQmLKpISOCs9sePj44v6vFqtRq/Xc9ddd1FVVcWePXvIy8sjLi4OnU63qHUJIYQQCyVBrBBCxDBl1uLExETeeecdBgcHcblcjI+PLziQ9Xg8OBwO2traMJlMCwpileDV6/Xicrk4ffo0p06d4qWXXgoFOgaDgZKiQiq2buFTn3yKhAQ7RoNhWfu7kQQB1Sy9s5M3MUyYzSYyMzMoLirkZkMj/QMDtLV3MjwyzBtvvMGFCxfIzs4mLi6OiooKjEYjer0etVq94B7QQCDA2NgYN2/eXFQQq1arMZlMJCQk8Oijj3LgwAH27dsXKr8QQgixUiSdWAghYpwSULpcLoaHh/nWt77F6dOneeuttxY8fjE1NZU/+IM/4JFHHqGysnLe5f1+P+fOnePkyZO89NJL1NbWMjY2htvtJi83h7LNJXzsySco21yC3R6PyWhcVOC0Jk0JOMP+EdFM45lX5vP58Pl8OJ3jXLx8lWs3avneD3/M+Pg4Pr8fi8VCWVkZFRUVfPGLXyQ9PX1BvbLBYJDGxkbee+89fuu3fmvB4641Gg2FhYU89dRTPPbYY1RWVmIymUK9r+v6dyCEECLqpCdWCCFinEqlQqvVYrFYMBgMHDp0iMTERCwWC6dOnWJoaIiJiYk51+HxeLh58yYHDhyYdZlgMBjqsb158ybHjx+ntraWmzdv4nSOYYuzUrGlnN07t1OYn8/mkiKSk5M2Tu+rapZ/RDTTeOaVabVaNBoNer2ekuIiLBYzLreLxlvNtHd20tB4i1u3buF2u/ne975HSUkJxcXFVFVVYTQa0Wpnb+7b29vp6OhYcACblZVFdnY2jzzyCHv37qWkpIS4uDh5dI4QQohVI0GsEEKsEcr4w/vuu48tW7ZQXl5OX18f9fX19Pf3zxmETExMUFtby9DQUKj3VqVS3TGZUGdnJ8eOHeNnP/sZH3zwARMTE6jVauz2eIoKC3jo/nt55IH7SUxMQKNZmaAluhM4raBl7pgyVjovN5uc7Ey2lJdy/NQZzl24RFdXD0ODg/T19VFTU8P27ds5cOAA2dnZJCcnYzabZ30+761bt2hubl7Q9nU6HeXl5ezfv58vfelLmM3mOQNkIYQQYiVIOrEQQqxBPp8Pj8dDc3MzFy5c4N/+7d+4dOkSDodjxuWViaK++tWv8tnPfhaLxRIKYl0uF+fPn+fUqVN897vfpb+/H4fDgdfrJTcnm53bt/GJjz1JRnoadns8ZpPpduowTInKgnP+c3YzLTjrh6MY4q70pmdLV55p0bAZrMddLhoab3H85BlOnz3H5avX0Gg0mEwmCgoK2Lt3Lw899BD33XcfVqt1ShAbDAb54he/yIkTJzh//vys27NarWRmZvKHf/iH7Nixg8LCQux2eyiwFkIIIVaT3D4VQog1SEkvzc3NJRAI8OSTT2I2m7l16xY3b968Y6ysEqwODAzQ09NDQUEBAwMD9PX1cf78eWpqarh69SpNTU2o1SribXGUl5VSmJ9HxZYyigrysdnmmHF2hphrwaHNDAsGVbN9PhoB0+2dW8KmZwxFZ4tPZ0tXnmnRsBmsDQYDRYWFTEx4sFotWC0WOjq76Orp4datW6jVagKBwOR45rw8ioqKSExMRK1W4/V66erqoqenZ8btKM99rayspLy8nN27d5OTk0NiYuKCj4EQQggRaRLECiHEGqVSqbBarWzZsoWysjLS09M5fvw4ra2teDyeO9KLA4EAHR0d3Lx5k+zsbBoaGjh79ixf/epXGRgYwOl0olarycxIp6S4iC/8xq+Tk5VFWmrKjNufEotFOLaMrb69aaVZRI/sjItFeOc0Gg0pyUkcPniA/fv2UF66maPHTvDu+8fo7OziwoULXLhwgVOnTnHgwAE+85nPsG3bNnQ6XehxPTM9G1YJknfs2MF/+S//hbvvvpuEhATpeRVCCBF1kk4shBBrnHIaHxkZob+/n4sXL/Ktb32LK1eu0N3dPWXZAwcOsGnTJtxuN42NjbS2tjIwMIDZbCIxIYFPffIpNhUXUVxUSGJCAjqddk2MeVxYXLmC+cDLWPX0jy52VeHLB4NBxl0uxkbHGBoe5s13j3Lp8lVOnz1PMBgMPRLnwQcfJC8vj4KCAv77f//v1NfXh9anjH194okn2Lt3L5/85CdDE4mt+xmohRBCrAmxf2UihBBiTkpQYbfbMRgMqFQq7rvvPhITEzl58iT9/f2h5392dnbi8XhCAe/Y2Bg52Vnk5WRTWJBP1fZKsjIyyEhPC60/GIRViVtmfWrN/GHdHKNHARW3p7JauR7e5UzYtMxVhS+vUoHFbMJkNGK329m5fRsmkwmj0UB9wy2Gh4dpbm7m7NmztLW10dLSwsjISOjzFouFhIQEtm3bxpEjR6isrCQ3N1fGvgohhIgp0hMrhBDr0Pj4OI2Njfzt3/4tx44do7W19Y5l9Ho9cXFWnv74Rzmwdw+7d1ah0+mWHKzE0qzCq1WWtbCd8XEXwyMjfO9HP+bylRrOnD1PIBBApVKhVqvx+/2hZQsLC6mqquKv/uqvyMnJwWazRaT8QgghRCRJT6wQQqxDWq0Wm81GeXk5169fp6urC6/XC0wGr5UV5Rw6sJ9dVdvJy80hLs66wLTh4KyzLqlu//es0dY8kdjiU4Lv/ITyTkQDyzkKFvEANrStqRtd8HaU29JhHzAYDSRrk/i1Tz1Dz3330HCriRd//gqtbe10dHYBhGYzfuKJJ9i/fz+FhYXo9fpl744QQgixEiSIFUKIdcTj8YRSRltbW2lra8PpdKJSqbCYzQCYTEbycnLYvKmYLeWlxE177Mrc5pmld6n/N/9/AxCckhK8uOf5LLk3U7Wy/a0RnSBrhs9r1Go0ejUZ6WlYrRbi4qzcutWMRqOmu6cXFZPPIA4GgwwNDdHe3k5NTQ1ZWVnY7XZMJpOkEgshhIgpEsQKIcQaFz4qxOFwcPr0af71X/+VS5cu0dHRAUz2vmZnZQFBzGYz5aWlZGdkYouLW+hWbgdb03tBZ+j6C/vMbFHZ4sPC4JQA9o7Pq2YqxUJ7Mz9cbureTO/Xnb3nd2FmXjp8Wx8uoZqnz3nhwj8bZ7VitVj4+MeeIDUthUtXalCrVPj9fpxOJ9/97nex2Wzs3r2b//Jf/gt79uyhqKgo9BuTYFYIIUQskDGxQgixxrlcLvr6+njxxRepqanhzJkzdHZ24na7MOj1HNi3l7LSTezft5dgMIjf72NoaIRNJUXk5eYsebuLnXxpRa3axMOxNPJ3aYLBIDcbGxkZGWV0dBSdTkf/4CAnTp3h5OmzDA4NYTKZyMrKIjs7m0ceeYTDhw+zadMm6ZUVQggRE6QnVggh1qBAIIDf76enp4fe3l7q6ur44IMPqK2tpba2lnibjZTkJIoKCti1s4qyzZuo3FpOMBhkwuOhofEWZpNpWWWY2g+7uNTeec2yjll7J2fZ3qKLMsMHwvtEg0HVHTM1L7d/dv5iRD5wNhqMGFONbC4pQqvTMTA4iNfjxTk+TmtrO13dPTQ2NNDZ2YnVakWn0zE6OkphYSHx8fFYLBZAemaFEEJEh/TECiHEGuTxeBgbG+Ob3/wmp0+f5tVXXw3NMqvRaLjn8N3s2FbJZ3/lkxiNRjQazYzrmTcImTd+miudeKHrWLwZVznrI3qWuvb5n+Aame3M/E6kkrFnCohna/p7enu51dTC95//KecvXqantxcAq9VKWloaX/jCF7j33nuprKyUZ8YKIYSIGglihRBijQgGgwQCAaqrq7ly5QrvvPMO165dY2BggN7eXgoL8inIz+OBew5TWJBPSnISWZkZqNXqyYl7uDP0WUg4tJYTaFel7Gv5AE0zMTGBc9xFR2cX167foOFWE6+/9Q4Oxyj+QIC8vDxKS0vZvHkzzzzzDFlZWaSkpES72EIIITYYSScWQogYFwwGGR8fZ3R0lP7+fk6fPs25c+d46623cLvd6HRacrKzqNhSTlnpJg4euIvEBDsGg4HwCGumSXYXEntN/dx8Pa8rEdEtcp1hHakL6iicb/Xz/f9CZy+edbHYiYINBgMGg4HEBDtWi5nUlBS6urppbm2jr7+f+vo6hoaGaG1tJT8/n82bN1NQUEBaWhparXaBj2kSQgghlkd6YoUQIsb5/X6qq6s5evQozz//PHV1dbjdbgCyszLYUl7GMx//GNsrtxJviw8FbstP9YxkcBWBdc2W5btKggsNimddAYudxDmCKdJzbHK28cfBIMFgEJ/Px8nT1Vy4fJXv/uBHjI+78Hq9qNVqtm7dSlVVFX/6p39KRkYGdrs9QiUUQgghZidBrBBCxKBAIMDIyAg3btzg/PnzvPnmm7S1tdHS0oLH4yE9LZXtlVvZv28P2VmZFOTlYrfb0et0C1r/HXHLtDeiESdGYhKm2d5fdgC6YpbxgNsFBr8L3cyMq7kdyPYPDDAwOMT1G3VcqblGfUMj5y9ewmKxkpCQwLZt26ioqGDHjh3ce++9mM1m6ZUVQgixYqSFEUKIGKEEDG63G6fTSUNDA2fOnOHdd9/lnXfewefzYTDoyc7MZPOmIg7s28vhgwew2+PRqNXzrZ0pz0ydHtRMTzOOQhR75+bmmaN3tvLN8P5SAtjQ9lb0WCxgxYvYz1n/b4nlV6lUqFQqUlNSSE5KIjMjA5stDqvVQk9vLyMjDjo7O+nq6qKrq4vR0VGysrJIS0vDbrdjsVhmnVRMCCGEWCrpiRVCiBgRDAZxuVxUV1dz7NgxnnvuOYaGhkKpw3m5OVRtq+A3nv01MjPSiYuzhlKGF5U6PEsvXVSydCPUYxhTVngfIrX6xa5HuVwIBoN4vV7qbjbwznsf8P7xk9Rcv0EgEECtVpOVlcVdd93Fk08+yeOPP47NZotAaYUQQogPSRArhBAxoKOjg/b2dn7+859z8+ZNbt26xfXr1zGZjCQlJnLv4YPk5WRTWJhP2aZNmM0mdAtMHV6QGAgeI5ZOLBZuKanK3E53dzjo6OiivaOTsxcucqOunhu1dfh8flJSU8nPz+fIkSOUl5dz1113kZqaGtnfrBBCiA1L0omFECJKfD4fPp8Ph8NBfX09NTU1/PjHP6a/v5+xsTEsFjMZaWmUFBfy8AP3kZWZQWpK8tSVzJjzuoTobqaJfeZdy8K3uZASLazEYWtaxu7GnPkGKa/UpmbbZtgEWjOVRK1WY7fbSbDb2by5hAR7PBazGadznNa2djo7O2lpaWF4eJiurq7QhE82mw2z2SzPmBVCCLEs0hMrhBBR0traSmNjI3/3d39HXV0dHR0deL1eLGYziQkJPPurn6Jyazlbt5Sj1WhRq1Urc+EfzSAwItteoR2IpeA4lsoyjfL8Yo/Hw9j4OD958Wecu3CJE6eq8fv9qNVqDAYDTz75JHfddRe/8iu/Qnx8vPTKCiGEWDIJYoUQYhVNTEwwMjLCqVOnOH/+PHV1dZw6dYqRkRF8Xi/bKreyqbiYkuJCqiorSElJJiU5KXIFWPRAyEUuv9rrEzEjEAjg9fmoq79Ja1s7Nxtu/f/Z++/oRq8rwRf9fciJYAZzziymCixVVpWyrGRZLbdstdtuj5/dMz3d6615q2du98yd1e/dnntnOtx509NvpqezgxzlIEt2SSqFUpVUObJYzDmTYCYBEPF7fzAUAwACIECyqs5vLVsk8J2993fwHdbe2Pvsw6Wr1xgeGWFwaISioiJyc3PZu3cvx44do6CggKqqqpXmUQKBQCAQhIooJxYIBIIYszpTNTExwcDAAL/+9a85d+4c7e3tKBQKjAYDaZZUjhw6yMH9+6itrkKjUYfp3IfQJSncWMHv9eGc7RKKvFAQ0e9uR6FQoNVoqKnaQ3FhAfvqavDJPhqbmpmemaWnp5u+vj6uX7+OzWajvr6ejIwMDAYDGo0GlUolglmBQCAQhITIxAoEAkGM8Xq9jI+Pc/r0aX7yk59w+/ZtrFYrHo8HtVpN/f69PP34KQ49Uk9WZgZqlWrlWJL1Tv39FsrtRntjatMO3PAWvlKIDTLILB4X5XK5GbNaaWvv4J/f+AHdPX0Mj4yiVqsxm80UFBTw9a9/nf3793PgwAERxAoEAoEgJEQQKxAIBDHC4XAwPDzMtWvX6Ozs5OLFi9y5cwer1YpBr6O0pJj83Bz27a2lrKSY3JxsTEbj7nTkI4mGdmMEK9h2bDY7E5OTXLtxk97+AZpb2rjdeBebzY5er6e+vp6ioiKOHDnC3r17yczMJC4ubneuA4FAIBDsCkQ5sUAgEESR5dJht9vN5OQkjY2NfP/736ehoYGenh5USiV6vZ68nBweP3mC+n11VFaUo1Aogggl7E68Ud/KKoV/nKssgbTFpskh2RYbsRERDVvu9z5b62UYjQYMBj3ZWZmMjI5x7cYtZufm6O7tY2pqinfffRez2Ux7ezs+nw9JklCr1ajV6oAVCQKBQCB4uBGZWIFAIIgidrudkZERvvvd73Ljxg3OnTuHw+FAln3odToeO3mCuppqPvfUkxgMOtQaDSqlcktOekgBJesCymgriAEh39cusGQ3BdK7hTXfXyy5GsvNnyYmJ+np7ePtX73H+QsXGRuzolAqMZvNZGRk8Bu/8Rs888wzVFVVodfrRRArEAgEgjWITKxAIBBsEZ/Ph8fjoampiZ6eHm7cuMGnn35KX18fMzMz5GZnkZ6WRm31HqqrKsnNySExMSFqR+aEIkEK9cJIFcSAkO8r5myuRYRYG1k9J8vPuVKpRKFQkJKUhEJScOrRYyQmxNPbP0BDYxMzszP09fVx9uxZ5ubmaGho4NChQ2RkZJCUlLRGlkAgEAgeXkQmViAQCCJgdWbJ5XJhs9l44403uHjxIr/4xS/weDxIgEaj4eSJY+ytqeaLr3wevV6PWr34/eFWTrsJbezuyA9u6VSflV+2Pxu6nbMny7Cl2MyfsVu8gU1titIEDY+M0tnVwz+/8QOamluwjk/g9XiIT0ggMzOT3//93+fQoUOUl5ejVqtRKBQikBUIBIKHHBHECgQCQQQs7309f/48ly5d4uc//zk9PT3YbDbsdjtlxUWUl5Xwhc+/SEFeLvFmM0ajYetnYu6OuDR0tsXe+21SdhGBpm4bp9Tj9eJxe5i3zXOnsYmW1na+9+M3mZmZxeVyrXQxLi0t5Q/+4A/Iy8sjPT19e4wTCAQCwa5ElBMLBAJBGMiyzOTkJMPDw3R0dHD+/Hmam5tpb2/H43YTb46jtqqSvXU1FBXkU1JcSGJ8AlqtJkKFrKvL3IrxEY7fSkAT5eygf1lSgNejrGYbiarOYMKkAJdtQwZ2WZRKqUSlVKLTaSkpLsJgMDAzN0dXdw9DwyO0dXSufEH0s5/9jPLyckpKSqitrUWn06FWq6NjjEAgEAjuG0QmViAQCDZh+c+kLMt4vV7u3LnD2bNn+fGPf8zt27dZWFhAoVCQmZFORVkpL7/4HIfqD5CYmOBHVpASzQiPsVnfOXiDvGB1yJvpXHo/ksZQIV8e5MKV+QpwzfI/YDtxFmpU2/iGW08c8ZFH9wZuXi686oJtbLssyzIej4eLV65x6/Yd/vmNH2K32XC53QDU1NRQX1/Pv/23/xaLxYLJZFrp7i3KjAUCgeDhQASxAoFAsAk+n4/JyUmuXbvG+fPneeuttxgfH2dmZgZkmdycbA49coDnn3mKjPQ0EuIT0Ot1S8eDROD9RxT9rQpO/A0PEuyGGMdu8npk5wAFtSnQjWxpo+fG4ZHef9gDwhIUy+cmCgIC7cElXBs2Clp2SxyOBex2O919/Vy4eJkbt25z4fJVlEvHVOXm5nLgwAGOHTvGyy+/TFxc3MqRPAKBQCB4sBHlxAKBQOAHWZaRZZmJiQmsVivXrl2joaGB69ev09nZiUqpJCU5ibKSYgrz86irraaosIB4s3mNIx1RXBHygNUhpLTym9/h689sDUNdKONW6w/5BgJlkJclBMi8bilOi+T+w9W/WelumEICf1kQot6QCUOABPK6Tz2y+HfjoOVsqsGgR6vTolKrWFhYwGDQIykkhoZHsFrH6ezsQJIk3G43BoOBvLw88vLySE1NRaUS7o1AIBA8yIhMrEAgEKxj+c+iy+XiypUrfPrpp/y3//bfmJ6exul0IkkSBfl57Kur4Rtf+woZ6WmY4+I2k0psil53U1Oj3WRLNLif+x3Hmu2/F7fbTUtbOx+ePcfHn3xKU0vrYhdwSSI/P58TJ07wxS9+kePHj2MymVbGiRJjgUAgePAQQaxAIBCso7e3l87OTv7u7/6Orq4uBgYGGBsbwxwXh8WSwm++8jKFBfkU5ueRkpyEWq3evIwxZj5/tM9WCWfsTnSK2kYeADN38y2EffSSLLOwsMDs7ByTU9OcPf8ZN27d5ur1mzhdLoxGI0lJSRw+fJgDBw7w/PPPk5mZiVarjdUtCAQCgWCHEPU2AoFAADidTux2O52dnTQ3N9PS0sKVK1eYmprC4bCTn5tDTk4WRQUF7KurJSPNQmpqSugKpFgFFBv3wa4t8gxX62bXrt57K63SGY6W8GYh5oFYoH2yyz2N/PQ3irVN4cgPdl3on2b4u5ojPf93+b8hzeOqCyRJQq/Xo9PpSExKZG5+HrVahVqtpq29g6npmcVSf5UKh8OBVqulrq6OtLQ0MjMzUalUIisrEAgEDwgiEysQCB5aVv/5Gx0dpbu7m//8n/8zt2/fpre3FwCjwUBSUgJfe/3L7K2tpramasNZr9uTjwz16o0NnqITcG3YARlEc+BXQtO0WW55c7mLV0TWqCicRsFbynkH1LP6k4NgdxKdYHN1Ryb/V4fbqDh8e5c+sdVzEoIip9PJvM3OD37yU67fuMWFy1dxuVxIkoRKpeLVV1/l6NGjvP766xiNxjUVEyKgFQgEgvsXEcQKBIKHFofDwcTEBL/+9a/59NNPaW5upru7G7vdDsCxw4+wv66W2poq8nJziDMZMRqNwGYO8OqAbzcXdO5iAk7b6vB0B+Y22tXbAYdHGIAvvST5eS8SS2LS8HjNa1vT4PP58Hq9jFnHGbNa6e3r5xfvnKa3r5/evn5SUlJITU2lqKiIF154gcrKSg4fPrzhiyiBQCAQ3F+IcmKBQPBQIcsybrebqakpent76e3t5dy5c1y+fJm+3l70Bj2Z6WmkpqZSv38fe2ur2VNRjk6nFU6vQLDLUCgUKBQKsjIzSEiIJzUlhaHhUZISEtBqNAyPjtLb28vo6CgJCQlMT0+j0+nIzMwkLi4Oo9Eo1rVAIBDch4hMrEAgeKjw+XyMj4/z7rvv8p3vfIebN28yOTkJgE6n49DBAzz71BMcfqSerIz0NQ5uIGc3klxS+GNCGxF4X+PWMl6hyFqfI2VLGtfqCXe/ZnhXrs/rRl+D/6s3K7oNNIvRbty1eTlx6LaHqjPQNaHr2XDlKnfGOj5Ba1s7f/uP36Gzu5vhkVEA4uLiKCsr43d/93epr6+nurpaBLECgUBwHyKCWIFA8FBgt9vp7+/nnXfe4e7du1y/fp3BwUHsdjvx5jgeqd9PZXkZj9Tvx5KaSkJCPDptNLKvu7+ceCctjFUwv31ytlv2bmd3zKvL5WLeZqO3t5/e/gGuXL/BuU8vMDU9jUqlJi8vj6ysLI4fP87jjz9OSUkJiYmJIqAVCASC+wRRTiwQCB5YfD4fHo+H8fFxxsbGaGho4OzZsyt7X81xcVhSUygtKaJ+/z6q91RSVVmOQqGIohVhdMOJiK1v0ox8F+TWW1qFPzpakxiCnIg/s+0NhHbXETvRb1UWiWyNRkOiWk282UxaWioKhcTk1BR9fQOMjI7R0tJCX18fbrcbk8mEw+GgtLSU+Ph49Hq92DMrEAgEuxyRiRUIBA8sy42b/tf/+l9cuXKFDz74AJ/Ph1KpxKDX8/QTp9i3t5aXX3gOtVq9ErzGxnmNVTixm7J+u8mWaBDt+3mQ5mf338t692Zqapqunl5++tbbnPv0AsMjo8iyjE6nIy0tja9+9as899xz1NbWotFoRBArEAgEuxgRxAoEggcKr9eLx+Phs88+o6mpiU8++YTm5uaVbGxpcRH5+bk8cfJRCvJzSU1JISszA4VCsei0Rtk33/xgmmjpCcHsGJ4FtF0hzXbNZ2D9UbjPMIVEc29zNIn0swj7DqJwy8sN3Ww2O/2DQzQ1t9DV08uHZ89hHZ/A6/WSn59PeXk5xcXFvPDCCxQVFZGRkbE1xQKBQCCICaKcWCAQPBDIsozdbmdubo7x8XEuXrzIjRs3ePfdd5F9PtRqNTnZWVTtqaCyvIzHT53AaDSiUavXCopyfBCbgGujVx9SSbCfl0KKDwL2+9mkLDgG8dbm8xnbIC8qksMUEuyT3kkifbbDHhWFW5YkCY1Gs1hmnJhAUlIi2VmZjFmttHd0MWYdp62tjbGxMdra2khNTcXpdOL1eklOTkatVqNSCZdJIBAIdgsiEysQCB4IfD4fn3zyCZ988glvvPEGAwMDOJ1OZFmmoryU6j2VfOVLXyQ3OxuT6d6xGsv/lQEpSPwTvDuun4EBGstupcfrThL02FY2vhmd7sSbHhcbHWSQpU26H294MVA33YjUhyUhWn2mw+kZvBUCavSzqDa8FKM1Kcsysizj8/m4efsOjU3N/MO3v8fU1DR2hwOFQkFpaSl79uzhj/7oj8jJycFisYR34wKBQCCIGSKIFQgE9y0+nw+r1UprayvXrl3j3Llz9PX10d7ejkKSsFhS2Fdbw8H6/eRkZ1FSVITJaEC9PvsaKaGeRhILHdspazfYEI6sqJeEb/8XDVHVGaKwkHVG0bioz20Yz8Sy+zMxOcnk5BR3mpq509hER1c3V6/fxGAwEB8fz759+6isrGTPnj089dRTmEwmtFptNK0WCAQCQZiI2hiBQHBfsZw9cTqd2O12WltbuXjxIu+88w7Xr1/H43aj1enIzEinrKSYUyeOc7B+P4kJ8UB0mjat+MOB0nXR9Mq31ng4uKxYj4ON9sZkbtYpiXoJ8/YTVZ3BhK2aOr+J5nDlhUnUv88IY00u/y1ISU4mKTGRnJxskpMSSUxMYHBomJnZWUZHR/jlL39JV1cXg4ODFBQUkJ6eTnJyMkajUXQxFggEgh1CZGIFAsF9hc/nY2Zmhs8++4wzZ87wgx/8gJmZGTweDyqViqKCfI4dOcQXv/ASaWkWDHp9jLsOh8aKk70qONhKGWloY3dHsfKWymX9TVyU9IRlR4yRZdjS47n1k5bCt2l3PF4Rs/rRkpdqjX0+H263m/6hYT7+5DyXLl/l3GcXV7qaJycnc/jwYZ5++mm+9KUvERcXF+UjuQQCgUAQCiITKxAIdj3L2df+/n56e3t57733aGtro729nZmZGQx6PRZLKiePHyEvN5fS4iIsllT0Oh1KpXKnzQdW+fpbSBiGn9DcHRHGVu7T78RFSc92ywuqa6vK/I3fosxNbdodj1fErH60lptUKZVKJEkiLTWVo4cOkpudRV5uDi1t7XR0djMzM8OtW7eYnZ1lbGyMiooK9u/fT3Z2NhqNZsfuRSAQCB42RBArEAh2NR6PB4/Hw+zsLC0tLVy9epXvfOc7TE9P43Q6Mej1ZGakU1FeyovPPUtmRjqJCQn+hW2WObrPM0ubEkYW2H829AFlN95fhDZtqaHWbtz8uwM2KRQKzHEm9lSUL34hlppCfLwZt8dDR2cXw8ND9Pf3Mzg4yOHDh9Fqteh0OsxmM/qlyg9RYiwQCASxRZQTCwSCXU1HRwetra38+Z//OT09PYyOjuJ0OklKTCAjPZ1vfv2rFBcWkJ+Xi0ajRlIoUOyQAxkzfzv8OuKYl9aG3Nk2Atu3attOEt1uvtvP/W7/erZqiyzLeJdKjG12O++f+YiLV65x/sJFbDY7kiSh1Wo5ceIEx44d4/XXXyc9PV1kZQUCgSDGiEysQCDYddjtdmZnZ7l48SK3b9+mubmZtrY2bDYbSqWSI4cOUlxYSFlpMXsqyklKTECv1+202bFz3CNojBT10toIeidtOB4lRhO0WwImiI4tO3k/97v969lylbYkoVIqUSoUqJQq9tbWkJAQT2FBHpevXmdoeITBoSGampqw2+1MTExw+PBh8vPzqaqqQq1Wiz2zAoFAEANEECsQCHYFy+c2ulwuxsfH6evr48033+TKlSt0dHSgVqswGU2kJCdx6sQx9tbWUFtdhUKxu7uD7qas1JaI5CYekKxrtHQ+MM8C9/e9RGK7JEmo1SoqykspLMjjkfr9qFVqbt+5w/TMDAMDAwwODnLlyhVGRkZ45JFHyMjIID4+Ho1Gg0qlWpEjEAgEgq0jyokFAsGuwOl0YrVa+cEPfsB7771HY2MjMzMzeD0eNBo1j596lGNHDnFw3z5SU1NQq9WoVItNm+4nxzBqAdFWu9neJ4QzX7t/Tra/w3Ik8u+nztfRIOzu2UtfuC04nUxMTNLXP8A/fff7dHb30NPbh1arJS4ujoyMDH77t3+bffv2cerUKeD++lslEAgEuxkRxAoEgh1DlmUWFhbo6+ujoaGBjo4Ozp49S1NTE1arlaTEBIoK8snLzeGR+gOUFBWSl5uNTqd7eJzBnT43Zqf1CwS7jVXPsN3hYGZmlguXr9Db209LWzsNjXexOxwoFEoOHTpESUkJR48epba2lvT0dBISEh6ev18CgUAQI0QQKxAItp3lTIbb7WZ8fJyPP/6Y733ve9y+fZvR0VEUCgUGvZ69tTU88+RjPFK/j/y8vPD3lm17wBRE4W4O3u73TkKiY9T9wwO8JkfHxrjb1MI/fOcNenr7GLOO4/V6MZvNVFdX841vfIO9e/dSVlaGSqXaFedXCwQCwf2KCGIFAsG2Mz8/T3d3N9/5zne4desWN2/exGaz4fP5iI+P59SJo+ytqebxkycwGAxotZqV8xu3Row9aL/it0tn9NsAh1f8Gvzq6M2CH0kPQoC34R5id1OBJa97Z+nXQNdv11MWffGx0en1enG73UxOzdDX38+5Ty9w+v0PGB2z4pNl4uLisFgsPPHEE7zyyitUV1eLrKxAIBBEiGjsJBAItoVlB6+lpYW+vj6uXLnCxYsX6e3tZXp6muysTNIsqdRWVVFTXUlBfh7JyUkoJEXU/E1Zllb2TMbEjfUr+95PsdUp+dUZBdEhXbFWfySyArPpfMY4CbstMfK6YDGqz2qInaVX61x9YaAYMDp7ux+cNalUKlEoFFhSk1EpFThdTmRZprevn+a2dsasVvr6+rh8+TJqtZq2tjb27dtHTk4OSUlJ4nxZgUAgCAORiRUIBDFj+c/L8t7XmZkZvv3tb3Pp0iXefvttZFlGqVCg1+l44vGT7Kur4ZWXXkSjUaNUKkNQwI6Vou5485tl0cFU+Htvp/fERkr0OhJFKCSMvHSQS30+GVn2sf6fXkmSVv2PewKi3a3K7zOxWscWJ1GsyXsZbFlmamqKzu5efvzTn3PxyjVGRsfwer0YjUbS09P56le/ylNPPUV1dfXKXn8RyAoEAsHmiCBWIBDEDJ/Ph8fj4fTp01y/fp23336b4eFhbDYbNpuN6j2VlJUW88pLL5CZkY7ZHEecybQNjtz2RmbLf2R31jX1Xyoa6uU7w1ojttukUILScLnb3MrFS1fp7O7B5XKtvJ6Xm83JE0cpLizAYDBER9l9xYO3JmVZxufz4XK7mZubp6mllda2Dn7ys18wZh1nwekkPj6evLw8CgsL+da3vkVZWRnZ2dkxtEogEAgeDEQ5sUAgiDqyLDM+Ps7o6CidnZ188MEHNDc309railqlIt4cR111FXU1VRQVFlBSXITJaECj0WwimCh5nVtNT24yLMTyzU3FRzUJt1aQvL4cdH2MG6Vy0XDYOJ3BfvM7IODrkcyltOGHreN0OpmcmmJkdGxNEGs0GlhYcOLz+fleOZLk8Pr3YhUjijUZEEmSUCqV6JVK9DodHo8Ho8HA9PQ07Z1dDI+M0tndTXdXFzMzM5w+fZr+/n5KSkqoqqpCr9dv/jdRIBAIHlJEECsQCKLC6qIOr9dLS0sL58+f54033qCzsxOn04kkSWQV5LOnspzfeu2LlBYXYTbHrRJCcAc0Qs9T3nQPX4SCAzW92cQfX/NrEF89ogA2RN9/M5ulcISFxOayNtW0voQ60AA/r0fjy4Atf6kQSd3TqmnbMIPhbEJeH9QT2jMo1uQ6MVtYk5kZ6WSkp7F/by1Xr9+kofEuf//P32N2bo7Jjg7+8i//koqKCmpqavgP/+E/kJGRQWJi4kpViigzFggEgnuIIFYgEEQFWZYZHh7m2rVrnDlzhnPnzjE+Ps7U1BRqtZrCgjyOHznMY48eJzMjneSkRLRa7VohgZzKrfpuMcwqhiTXb4AYjgA59NRokGvuzWmoZbrRDGVXR5/+bNrcmpWXQzUm2tnHKDyH/gga2wbKHkZyb6vGRBIMizW5msjXpCRJVO2poDA/j/376rhy9Tp37jbzwcef0NPTw8jICHfv3qW2tpYDBw7wW7/1W5jNZpGVFQgEglWIIFYgEESMLMt4vV6mpqawWq1cvXqVmzdvcunSJdrb21EqFKSmJFNaUkRBXh71+/dSWlxEfLx5032vEoRQGhiaJ78r8xdhBSH3nOXljLfL7cZutzM7O4fT5cK54MLr9SIjI7HYKVWlUqHX64gzmdDpdRj0+qVUkrRGvcS9/cvNre14PZ5VqiUUCgXlpSUoFBI2u4Op6WmcThcupxNZBoVCQqPREB9vxqDXYzbHBfhspZUzgufm5rE7HNgdDhyOBbxeLz6fDwlQLNluMhkx6PXEx5tRBTliafk57OsfYHp6Zq3tkkRmRjopKcnMzMxis9ux2ewsOJ34fD6QITc3G4NBj06rxePxLM2tA5vdjtvlxuly4fV48C3ZrlAoUCgUqNVq9DotWq2WxIQE1GrVUkOy5c4+i/+ZmppmYnKSuXkbnV09zM7OLepeNf82m52u7l7cbg963b0vd9QaDakpySTEx6Nben15r+Xc3Dw2ux3HwgIOxwI+rw+fvDSHCgVKpRKDQY9er8dkNGIw6Be7fQeZw66eXubn5tfNoYLcnCzi483MzM4xPz+P3bGAc2kOJUkiLzcHvV6HTqvhYVuT4bD8DBsNBvQ6HUaTEbfbjdFoxGa3MzQ8wsTEBK0tLXg8HhwOBxkZGeTm5pKTk0N6enqUjhsTCASC+xvR2EkgEITF+j8ZdrudS5cu8eGHH/K3f/u3zMzM4PF4UCqVFBbkc+zwI3zlS18kPS0NvV63KIN7/p9/vzFQzjAkC/2MiLzjbPQ0bl3X6m7PE5NTdHX30HCniTHrOMMjo9gdDrxeLwpJwmQ0YDKZyMnJYk9FOTnZmRTk562Rt9oRdrvdzMzO8h/+5P9kbt628rpCoUCr1fJ//Mf/DY1GQ2dXNxevXGNszMro2Dg+rxfNUqC1t66G/Lwc9tZWr5Uvg8w9291uN3ebW+np7aenr5/+/gHsDsdSybliMfCOi6OitJj8vFz21lVjMhrXHEGyejZ9Ph8LCwv83T99lyvXbq65R41GwxdfeYknTp3g+s0G2ju76OjsZmR0FKfThc/n45tf/23y83LJykxnZmaGyckpunv76ejqZnJymjGrFZvNhsvtwev1olGr0Wo1JCYlkp2ZQXqahcMHD2A2m1ee8dVze+nKNT45f4GmljY8q78gCIHkpCQeP3WCgwf2kZ6WujKHCwtO7ja30NHVzeDgMH39gzgWFnC5XCgkCZ1Oi0GvJz8/l7ycHEpLiigsyEOtVvv9/L1eL06nk//7v/8NzS1ta65Rq9V842uvs29vLTdv3aG5tY3evoGVOVQplfzu/+Nr5GRnkZ5m8XMXD+6a3PyPWQg6ZHB7PAwMDvLeBx9x/rNLXL52Ha/XiyRJWCwWTpw4wUsvvcSLL76IyWRaGSqCWYFA8LAiMrECgSAi2traaG5u5rvf/S79/f0MDw8zMzNDfLyZ7KxMXnnpBfJyc8jPzcGSmopGs8p5ZrMtdZKfn/zhryx2nZsq4zfwWZEeph/r7/JgzvK9n7fubHo8HhwLC7x35iMGB4cZGBpezBa6PbhdLrxL2T0vMDs3v5g1nZmho6uH+DgTNdV7qK2pIi8nG4XCf0bOH7Is89nFK9gdDhoa7zI3N4/b7cbt9iDLMh6Ph6HhxSA4MTGBgcEh9u+tJSszg+Vbl30yzgUnt+400tTSRlt7Jw6HA6fThdPlxOv1Ics+QMLr9eJwLDA/N8fd5lYuXL7CU4+fIiszg/T0tJXnJtSPrrWtA5fLxcVLV5mz2VhYcOJyuVayqouSFrOsb/7iHQYHh5menWXBsYDH68Htdi/Zt3iN0+XC7fGw4HQxMTFJS2s7txsa2b+vjvLSEooK82MSXPhkGYfDweUr1+no7KKjq2clcF0OyJczo167F8eCE5vdTkfn4hcPtdV7KC4qoK6mKrQjrFbR0NjE6KiVi1euYbPZcTqduNxuZNmHSqlc2uQKD9uaXCPC70MZgg4JVColGelpvPT85zh+5DAXL1/l2s1b3LzdwPT0NB9//DENDQ28++677N+/nyeffJLi4uKNWzIEAoHgIUEEsQKBIGQWFhaw2+309PTQ0NDA7du3uXDhAvPz83i9HvLzcsnJyqSkpIgD++pIs6SSlJjoV5YUlYzL2g170tpfF4OdNXsK/egMdf+bX7fX/z2s92u3ynIGdnZunoHBIdo6OhkZsTI5NRWw25DH68Xj9eJ0uZibm2d6ehqNVktCQjw6rXYlGAwFn89HV3cPNrud4eHRDe97ZRmv08mC04nd4cBkNJKVmUGcyURc3GLWyOPx0NPXT0dnN20dnQwODW/I6i/dLV6vF6/Hg8vlYnZunonJKfJyO/F6fSQlJqBWqxezsiHO3eiYFbfLxdDIKF6v1881LGaLZZnh4VEGBoewOxxBZXq93pXs5RwwPTNDfHw8arWa3JysFRujh4zL6aK7t4+Ozi7aO7oYHh0LYp+M1+vD7XYzN29DmpxCr9MhKSTSLKmkpVnQrMrKBrtXWZYZGh5hZmaW4ZFRv5/b4hxu7Jb0oK7JgEQoXJIkdDodGek6UpKTcHvcKJQKVColLW0dTE9P09nZicfjwWazodFocDgcWCwW0tLSYvC8CQQCwe5GBLECgSBkRkZG6Ojo4E//9E9pb29naGgIgHizmYz0LH7vm/+C8rISSouL/Ixe71z6qcFbu5XQ7yh/yGyM4yR55f/86AwoJcB7gfJ+wayUV13jvwlMOE1hfT4fHV3d/PJX7zIwMHSvLHVNlBC4fa7T6aLxbjNul4uRkTFe/cKLKFSqTaxY1Otyubh9527Aa1brdzgWuNXQSFJSIh6vl/p9dcDins83f/E2IyOjTM/Mbi5r6T58Ph9Op5MzH3xMb0kf2VkZpCQnoQ1x76Xb7aavf4C+/oEgZvtWyp0jxePxcquhkb7+Qer31RFnMqHRRtCIJ8Bn6PPJTE1P8eOfvsXo6GJ5c8gil+S2tncwPTPD3Nw8X3jxOZKSEvA7h+tscLvddHX3rpG34WmXfWtm8GFYkwHf3BjLb2rV6tfUahW11VVU76nktd94mV+8c5oLly5z9vxndHV10dnZyVtvvcXzzz/P8ePH+a3f+i2Sk5NFECsQCB4qRBArEAiCMj8/j9Vq5Wc/+xk3b96kra2Njo7F8kyTyciJY0eo2VNJTfUeCvPzMRmNAZv6rGVjQfGyTxlu1sTvNVIwnSFLWTUqmCX+SiBXl0tudJaDa1z7nizLNLe00d7eyejo2JpsoiRJpCQnUV1VSUFeLnq9Dq/XS2tbB0PDI7S0day5j/7BYZwuN8eOPEJSYiJGoyGIFffQabVkZmawt7Z6cW+mJDE/b+PK1euMjFmZmppeE7W0tXfgdrvZX1fD8MgovX0DDA2NbMhwqlQqDh7YS2b64vEjbq+HoaERmlpa6e0bwO12A4uZ5THrOB+ePc9Tj58MsPcSv0GgJC02nqrfX0e6xUJqagomk3GluVh2VgZ6vR5JkoiPN5OnyCE5KYnMjLSVxkg6rRZJkvB4PExOTmGdmODSlevYl8q5YXFfqWPBQWtrOwUFeWRkpANQXlqCJTUVm81Ge0cXN2/foW9gcM3+2Iz0NA7W7yMvJxudTrfyukatJjkpiYnJSQaGhhkZWdyHei+rKaHVanmkfj+ZGWmkJCXh8XoYGh6ht6+fu02tuJf0yMDU9AwNd+5ycP9eJEkiMTFh4xyuX7+yjKRQYNDrObCvloz0NJKSEjEZjSw3/srJylzZDwwP/prcYM9qcUESy6H8ZQQJSbq3H/3kiaNUlJXw5GOneO/Dj+jq7qW9o3Olgd5HH33EM888Q2VlJSdOnEClUomAViAQPPCIIFYgEGxgufnO1NQUvb299PT0cPbsWe7cuUN/fz/mOBNpllRSU1M4uH8fNVWVVFVWoFKpwt8LuMrRjGmZ3xYIya41F60uddx62bRvqZzTah3H4VhY857JaMRiSaWivJTiwgIMej1erweFpECj1dDd24/b7V7p/Gu32xeDMOvEYnfUEIPY5OQkcrOz2FNRRmZGGpIkMTs/z/jEJJIkLQaxq5icnEav17PgdGIdn2Bwaf/u6gBcq9USZzJRVlJMbnYWWVmZuD0eEsxmXC43o2NWPJ7Ffbeyz4fNbqezqwfboUU5qxs9reDn+TPo9SQkxFNeUkxWVgZpFgtxcaYNjr7P5yMrMwOLO4W0NAs5WZkYjYbFQFanQ5Ik3B4P4+OTDI+M0NXdy8jIKC63ZzG3J8t43B7GrONYVgXZCQnxJCTEA4sNfDq6ujfoNhj05OfmUFlehslkZH0E1t3by9DQMHb74pcAy+/odFoS4uMpLysmJysLS2oKXq+HhPh4NBoN3T392Gw2PF4vEuByuZiccmMdnyDebPYfxK5HkjAZjSQnJVJeWkJ2ViYpKcnExZl2rLHQTq/JrYkIbbAkSSiVSjLT00lMSCArM5Op6WnijCZ8Ph+jY2P09PTQ09ODXq9nZmaGxMREMjMziYuLwxjwC0WBQCC4/xFBrEAg2IDH42FiYoKf/OQnvPnmm9y8eZP5+XkkSUKv03H86GGeOPUoRw4dJCkxMUJHKfaRq9+mMduuZ+s6ZZ+PltZ2BoaGN7xXUV5CZXkZhw8eWPP64UP15OXl0NbexejYGDabfcXWxe7ALRgMelJSkoPrBhSSxImjhyguKqS05F6puNFo5JknH6OlrZ2WtnZ8vnsFpXaHg6mpGUZGx2jr6KS5pW3NsTKwmH0sLy3myOGD6FdlH+MqyigqzKe9qwuX241zwQmShN3uoKOzi/GJCVJTk4lb1aU1kO0SUFiYT82eCo4eeWRNd971SJLEF156LqhMlUpFTnYmiQnxzM/bOHv+szXdnL0+H0Ojo+QX5AWREgprn5vevn7aO7s2XJWbnU1pSSGHDx5Apbr3T/qeynJKiotoa+9iYGiIiYnJlfdkWaa9swu1Wk1eXk5AC1Y/1+VlxVSWl3H0yCNbyvI9KGsyom28W9Cv02rRabV89fXXmJyaoq9/kP/5d/9Ie2cXPb19/OxnP+O9997je9/7Hr/3e7/HgQMHOHz4cNh6BAKB4H5BBLECgWCF+fl5WlpaOHPmDM3NzTQ0NDAwsFjSmZuTzf69dVRWlLG/rmYpmxW36Xmvq4ntoRr+d91GS/ZmegJd4a9Xa9j6ZJmJqSnm5zfug8zOyiQ9PY3lEsTVerQaDQV5uczPzy8GsbK82LnW52N8YjJo86LlstzlktXsrEwslpQ1n7Usy5iMRhLi40mIj2dufn6xY/HSXXp9XiYnpxkfn2Ricmoxo7pqBlKSkyguKkSlXJvBXz6DNSU5ifn5eUYWrGtmbWJikvHxiU2D2OUxaZZUSkuLQzpf0+V2MzMzQ2/fICOjo9hsdubn53G53UvNnBYDcY/Hw9TUNNbxiXXTJuNYcIZ9lE4wZGBmdo6pqZk1r0lASkoSebk5frPSCoVEbnYmjgUHExOTa+Z+anqGmdm5kIt5MzMyKC4uRPKX/d7E9gdxTYZk05rK9q3pWT3ncSYTBXm5fOtffJW+/gFuNTRy9tynTM3MMDQ0xD/+4z/y/vvvU19fz5NPPklhYSFpaWkiKysQCB4oRBArEDzk+HyLHUwnJycZHR3l8uXLnDlzhqamJibGxzGZFkuHqyorOHzwAHU11RQV5oeXjVny36T1L/l5fStsJica7ura3jSBJPrbjxeKhYGx2x04Xa4Nr8ebzcSZTOuqaBd/UapUJCcloNEsNRhaPtZE9jFvs6/sN/XLKoGSBPHx5sU9kGsukdBo1Oh1WowGA3aHA/dSaS0sZpDtdjs2m21DGSyyjE+W8Xi9DI+MbDjyxefzIftklMtdiFdFBPM2O/NLmeVQiDOZsKQEb3zj8/nwer2MjlkZGR2jta2Dvv4B5ubmmJmZZcHpXBPEBmbxyKH1WeewWNdzSAIWFpxrvnRYfs9oNJKQkOC3jFqSJBIS4jEaDGvGwOLztOBcCPmJjI+PIyU5Kewn+EFek5vhb01GA41Gg1qtZl9dLVmZmZiMJqzj4/T1DzI8OkpT0126u7uZmJggLi4Ou92OLMuYzWZ0Op3/MnyBQCC4zxBBrEDwkONwOBgYGOBv/uZvuHLlCpcuXUKWZZRKJUlJiXzu6Sep37+PJ06diGzPKwRuoLINflSUiwjX2e1H4rp+VVHJMMssnk3qJ+jU6/XodGvPilw2QalUYIozrSkzZenIlIWFBTx+jpvxhyQtNphZX4q7rEehVGI0GZmcngGcK3p8sszC0tE7rvUBuCRx4+Ztbt5qCPhMrQkEV11jdziw20MLYpVKJXq9DtMmWduFBSdTU1P803e+z9DwCDabPcARQBtZ031WXrTbF+JYv/j5Ysftdq+Zw2WdWo0Go0Hv/zmTJIwm48pZoqvtdLlcuF1BvsRYhVKpxKA3bPgSI1IehDUZLrHK96ZZUrGcOsGRwwfp7evn3TMf8stfvcvg0DCXL1/mxo0bWCwWXnnlFV599VVqamo2XQsCgUBwPyCCWIHgIcTj8eB0Ojl37hytra189tlnNDU1YbVakSSJ8tIS8nNzOPXoMQoL8kmzWFYC2J3+Bj92xX9RUhAL4yRQq9QolcoN55w6XS5cLrffBlk+nw+HYwHf6jHSojev0WhQKtZmPwOx3OjL4/GsCWRX9Hh9LCw48fnW6pEkCY1ajUatQaVS+Q3C5aVgN9i0rf9Ils/ADQWFQoEihOd2zGrl2vVbjE9MsrCwsBLAGg0GcnKyKCkqJN5sRq9fbPDkdDrp7RugqaWVMet4yLZHikqlQq1Wr8zhclmu2+1mwekMoFzGueDE7Xb7PcZlzZcbAZCWug8HW/sP5ZoMhRg2rVv/WWi1WrIyMnj6icfITE+nu7ePS1eu0tPXz8TEBO+//z59fX0UFhby5JNPUllZSVZW1q74my4QCASRIIJYgeAhYdkpt9sX9/iNjo5y7tw5bty4wYcffohKpUSj1pCZkU7VngqqKst59qkn0Gq1ITm7EVhEJK5dRO6Wv1LDIFWH0SWM+wxwqQRotYslhOuDWIdjsSx07bhFQT6vD9u8DY9n7RhJktDptChVoQexDscCLpdrTRAryzI+nw+Px4NjYWFDqe3y8S9arQatVrshiNVqteh0ixnecKbdaDDcK5HeBEmSVgLqYMzMzNLS1r5hvvQGPUWF+ezfV4slNXWldHveZkOpVNI3MBA0iA3nvtZmftc+DGq1Go1Gs2YOJRa/xLDbHQGzxjabHafTtcEOjUaDWhO4ydVqFgOdjYHTajvC5j5fkyGN8bMmo8nqY5ZUSiXx8WbM5jhSU1Lo7evH4XDg8XgZGR2lo72d/v5+UlNTV0qKFQoFSUlJqNXqGP2NFwgEgtgh/moJBA8RXq+Xjz/+mM8++4zvfve7TExM4HK58Pl8VFVWULWngq+9/hqW1FQMRgNKf3sIg/liYflp2/jt/3LaarUTvl59zNJJYQgNcKkkSVhSU1hwLrCwsPaIna7uHnRaLaXFRatHAIslss2t7czOza0Zo1QqyUizYDKEdryOLMt0dvcgKRSUlRSteW92do6JiUmsVuua7sQAKqUSiyWFjIw0pmdmsNlsa4KtvXXVHD96mLLiwrCc6Fjs6Zubt9Hd04trXaCdkpTE04+fIi4uDrX6no0up4uOrm7m5ufDV+bHdllmqfHV8vysvSYxMZ7UlCRstrXNvUZGRmlv72RPRTnrthXj8/lo7+xidHRsg77UlBSSEhLCtz1a3OdrMvwx616Mwr352wIsSRKpKcmkJCdRV1NFU0srzS1t/ON33mBkdPFInv/yX/4LP/zhDykpKeHf/bt/R0lJCVlZWVszRiAQCLYZEcQKBA84Pp+Pvr4+Ojo6uHLlClevXqW3t5fJyQn0eh15udkc2LeXuuoqcrKzSLOkotfrUa33iJcJ5njt5qq0zWzbxbZLkkRuThYOh4PRUeua93r7BlAqlGRmZpCZnoZWo8Er++jrG6Cnt58x6zjOdeWmapWS/Lxc4uPNIemXZZk7d5tZWFjAZDSQlJgASDgWHFy/2UBnZ/eGAFar1WAymUhOTCI7MxObzU53T9+aIHZgYIjLV66jVatJTEwg3mxGo1EvNnzyeHAuOFcyjdbxxTNy5202Dh08QHJSYkRzGewevV7fin3LsYHNbqeto5PS4iJMJhM+n5fBoRH6Bwfp6Oxmfm5jx+hgKBQKNGr1hjh2YcHBwOAwBfl56HW6DUF9usXCVOY0Pb3992wGRsesyEBLWzuW1BTizXGL3afHJxgcGmF4ZJQ52/yaWEeSJLIzM0izpAaeD7ZhSdzHa3LLROve/FVuLFUeKBQKcrKyMBgMaLUaGhqb6Oru4cr1m4yPL/5d+Ku/+iv27NlDeXk5TzzxBGazGb1eHyXjBAKBIHaIIFYgeABZLvN0uVw4HA6ampq4ePEiP/3pT+nu7sbj8aDTasnMSKe8tJjPPf0kleVlJCwFNcFa0qw9NiL09zY7YCcqTvMaITIyUvCGpfcJkiSRlZnB+MQkSoUC76qGR6NjVhQKBW3tHSgAo9GAx+ultb2D7p4+ZmZn18hSKpXodDqyMtLDatTT3d0DskxGehperxdJkpidnaOxqYX+/oEN1xsMBuLjzcTFmUhPs2Cz2VCrVLjc7pVAcWzMis1mJzPdQkZGOi6XG4Neh3fp2Z2fX+xqPDU9Q0/v4r1MTc9QWV4W9SBWkiQUSiWS14vs861keu12O23tnZjj4kh0ufB4PbR3ddHT28/Q8EjYelRKJVqNZvnJXMGx4GRoeJjx8UkkFrs+w1JTJaOB1JRkZjLSUCmVeH2LwbbE4lE5TqeLtvZOnE4nHosFt9dDT28fbe2dTE5N43LdKydWKCTUajXpaalB5zBqy+UBXZMhs+7+Y3vTG+UnJSWSmJhAQV4ultRU7lhS6R8cZHpmlnGrlV/84he0trZSXV1NXl4e2dnZpKSkYDAYxH5ZgUCwqxFBrEDwACLLMlarlYsXL/LOO+/wzjvvMDMzg9vtxqDXU1ZSzDNPPc7TT5zCkpqKVqNFqVxVOhzE1wrm0/h7756oQAPXvuu/mDJEpHW/+N2bxsb72+UOtUKhoK6mCq/XS3d3L0MjoyvnkPp8PoaGR/jZW79aLP+WFus0vV6f32Ne8vNyKC4qICcna0O34WDM2+zcbW6lpa0DhWJxUuWljKm//Zg1VZVUVZajVCooyM8lISGey1euM2K1Mju7WN7scrtxTU/z5i/eQaGQkCTFSpUpLO8RlVc6/qpUSowGQ1TPYF3GZDKSl5tNT2//mi7Ak1NTfHj2PGfPX1hy6Be/IFqfeQ4Vo9FARkb64n7kVQnyqalprt24xc3bjSgkaeV5zM3J5l998+vk5eUQF2fiyrWbWMcnsC11Z5ZlGZvdzi9/9e7KHC7aKK8cG7Sa5KQkykqLyc/PC/5FQPBvpELnAV2TIbP+/rdP2RqUSiWP1O9n395aXnjuWc6e+5RrN27y6/fO0NraSnt7Ox988AGHDx/m0Ucf5etf//pSCX3ofyMEAoFgOxFBrEDwgLAcUCyXDn/yySe0t7fT3NzMzMwMer2OosJ8jj5ykPy8XPZUlpOakoJ+qcnHarbku67foxXm8A3Xb8GZDXgf61+/D5xltVpNdlYmx48e5txnF5mammZ+aX/k8mfvCRJ4qFQqMtPTqNlTSWlpUcjHJUmShFKpJDsrE6fTyfDIaNDrNZrF5mDFhQXk5easjDcZDRw7eoi7Ta10dnczMTm1EvyGGpQqYpgVSkpMpK6mCqt1Ys05r7LM0vmw94JBhUKx1A02ndGxMebmQy8pNsfFkZ+bjV6vZ2HBuUau1+vD6117FJHL6UKW5cXGPWYzx48e5lbDHfoHFrNpy4Qyh5kZ6RQW5FG/fy9GoyH4Wc/B5lqsydDZBcH48jpXqVSLzZwSE9hXV0NqSjIJCfG0tnXQ09vHxOQUjY2N2Gw25ufnKS0tpbKyksrKypAbqQkEAsF2IYJYgeABwOv14vF4mJpadELOnj3Ld7/7Xebm5vB5vej0ejIz0tlXW8OrX3iJjPR0TCYjMUl/bDo8TJ1hy4uMXeBrBmS5rC89zUKcyURvfz8KhQK3x43X68Xnk5eaAq0bA0gKBUrlYgazqDCfPZXllBQXhlwmKEkSKpWK4qIC5ubmmZyawuPxrpSsL6NY0hNnMlFaXEhBfh5ZmRkr72u1Wg7V7188o9bpxO5w4HZ7lrKaPpYzrmvvGUBCoZBQKJRoNOqVzqrRJikxgZo9lVy/cRuXy8WC04nP51uTZV4MyBXodDrMcXEUFxVgt9vDCmJNJhM52VkkxJtxLizOw3o9/pAkBSaTkcOPHMBmt+NaOlrH6/Hik30rz8DaMdJKF1qVSkV+bg4VpSXU1VShXLPnPcyssliTobPLbkChUKDX6agoK6W4sIDcnGw+OnsOhaRg3mZjaGiQ/v5+mpubOXz4MM888wxpaWnEx8cvHsulVIoSY4FAsCsQQaxA8ADQ0dHB3bt3+Yu/+AsGBgYYHx9nYWGB1JRkCvLz+PpXXicvL4fszAy0Ot2qrsOLzsjmJb/RJNo6Qx8fzCmO3Z1HzxVXq9XEx5v57ddfY3x8gq7ubu42tzI+MYnVOo7dsYDPt7hf1Wg0YjQYyMrMoKykmKzMdIqKCtCo1esCmM2RJInHHj2GWq2mtmYP127cwmqdYHxiAq/Xi1qtJiU5meo9FeTlZrO3tmZlT+dqGQajgePHDlN/YC/NLW309w/SNzjI4NAwDvti52Wfz4dKrUan1WIyGTAaDSQmJpKfm0tKchI5OVmkJidFZT5XYzQa0Omy+Z3f/jK9/f1cu36Lvv4B7HYHTpcLo0GPyWQiLzeb+n17SUpKYMw6QWdXT1h6NBo1CQnxfO3136Srp5ebt+/Q1z+I3b54VFKwWFahUBAXZ+JzzzzJo8eP0tjURE9PH0MjowwNj7CwsIDL5UahWDzaSK/Xk5OdRU5WJkUF+RQXF6DX6f18/tF++h+eNbnbNIajR6VSLVZM5GTzm6+8zMUrVzn36QXOfXaR8fFxfvWrX/Hhhx/ys5/9jGPHjvHKK69QWFiIVquN5S0IBAJBSIggViC4T5mdnWV6epqLFy/S3NxMW1sbnZ2dLCwsoFKpOHLoIEUF+VSUl1JWWkxiQgLGAI18duJ79YdFZzS1LmdADHodycmJgIxeb1gp/3O5Pfhk31JjIA1arYb4eDNpqakkxJvR63QRZ1E0Gg3xZjOF+XkolUrm523M22zIPt9iptdoJDMjnaTEBHQ67QY9y79r1GpUSiV5OdmY40xkZKYzPTOL2+XG43bjk2WUSiVqlQqNVoNWo8FgMJCclIjRaCAhIR6VauM+PZVKxf69dVhSV3XclUClVFGYnxfS3CqVClKSk1AqFaiUKkpLinC5FrPdGrUarVZDUlIiuTnZGPR6tFodx448Qllp8YocpVJBakoKmelpAfUoFAqSk5ORlsqSS0uKcbnceDzuDUFsYmICBoMepVKxkpHXaTUolQoK8/OIN5vJz89lZmZ2saTc413Jnms0ahITEkhIiCc1OQmjwYgqwNnAy2MOP3KAooL8dfOiXJNVjyb3+5rcbRrD0bP8matUKtQaDZXlZYvHb2Wkc/X6DQaHRhgaHqGlpQWXy8X09DRHjhwhLy+PioqKmFVFCAQCQShI8mY1TAKBYNcgy4slg263e2Xv65/92Z/R3t7O4OAgKpWKuLg4UpKT+NrrX6J6TwXVVZWbSYV7hzauey3w1SG9F7Azpz+dIZgYNjHOf/gVH+a9RUXnli4EwO12MzM7y3/4k/9zTXns8v7P/+M//m9krAnMQpC/pS5dmxFEf8zTXhEqCPuzE2syOuLvzzUZvritr0m3x4Pd4eDNn7/F1es3uXj5Gna7HVmWUSgUvPDCCxw+fJhXX32V1NTUlRJjQJQZCwSCbUUEsQLBfYTNZmNsbIxvf/vbnDt3jrt37zIzMwOyjFar5aXnn+XAvr3s31tHQvzimZu7q7tk8GN2tibjfiWG9xNGPOIJO4jdVhPv4499txsu1uRGdsealGJsil+9S1+UOhwOpmdmGbNa+cGPf0pzWzuNd5vR6/UYjUZSU1N5/fXX2bdvH08++aTYKysQCLYdUU4sEOxyfD4fCwsL9PT0cPfuXTo6Ojh//jxtbW1MTk5iSU2hIC+X/Lw8jh5+hKKCfNIsKaE7FTLI0nb5Sfe0yIC04qCFVQQXsfbd6WpHxyK/9xai6GhYEOnchjxmBz+4rT03kWVsxZrcSXbRmtyCKZHM7XLJutFoRKVSYdDrePT4UbKyMkmzWLjb3ILdbqe3t5dPPvmEoaEhJiYmqK2txWKxYLFYRDArEAi2BRHECgS7lNWlw1NTU3zyySf8+Mc/5tatW8zMzCzujdPpKC8r5eknHuP4kUOkWVLD36MUprMcVulicLWxrSr0c9pMbNRFUNYaA889UnHRMuVBdlv9ZcSidYxqIIViTW5JU2DJYk2GjFarRavV8twzTzFmHad+Xxd/+0/fobunl8GhYc6cOcOFCxf48MMP+Zf/8l9y4MABkpKS1nyBKgJagUAQK0QQKxDsUubm5mhsbFwJXJubmxePzPH5KCrI59Sjx9hXV0ttdRUmk3FLTXv8eU2BHClp3TWrX9vUkQ60xS8WDqS/fXHr0ltB1YZsU5B9ioHGR/Vet5a227IpMd33Glztlsotw41z1gdfsb5fsSY3ItZkyOqjI+geSYmJ7K2t4f/6f//vDAwOcePWbd78xduMjI7R1dXFf/pP/wmLxcKRI0d47bXX2LNnDxaLJXoGCAQCwTpEECsQ7CI8Hg8Oh4P29nb6+/u5dOkSly9fpqenm+mpKTIy0klLTWX/3jr27a2hpKgwsuzrevw4O6H4PyvXbOJc+n0ryoHH5mx0KoOK2pIDKCNtW47Jn7O8jQd6bBLNxSDGhJX3tpAODfd53W7EmvR7eeSINbkVS1QqJUqlgjTtYjMnkJmanqGnr4/2ji6GR0ZwOBxLx4DF093dzd69e8nNzSUhIUHsmRUIBFFHBLECwQ6z3FtNlmUWFhYYGhrihz/8IVevXuXs2bPAogNhjovj8CP1HNhbxwufewaVSoVCsdMFa0uEJCqIcxVqSi3qPtDW58G/hNg5a6FJXn9VaPcpAZJCscbZVCgUq74kWS8nNJmRENl9Roud2Kkp1uQiYk2GxzauyaX9sslJiSQlJlBRVkpXTy+/ePvXnPnwLCOjo9y6dYumpibS0tL4zd/8TV5++WWqq6s3HO8mAlqBQLBVRHdigWCH8Xq9OJ1O3nnnHW7dusU777zD6Ogodrsdh8PBgX11VJSV8uJzz5KakkycyYTZHAc8XI5AKC5fRAdpRMmX3J0NakJHlmW8Xi8jo1Z8Pu/K68uOa5oldZd1ul5L1OY/DEExPrhl1yPW5MOLLMv4ZBmXy8Xs7Cxd3b10dHXz1ju/prOrB5vdTkJCAjk5OeTn5/OVr3yFuro68vLygIfr3y6BQBAbRCZWINgBlr87slqtWK1WOjs7+eSTT2hubqalpQW9Xke8OY7a6j3U79tLSXEhZSVFaDRaVCrlemmsd9Vi2nQmbMJ1JcPZmLf2ff/7ACOpq1zaVhbGPG6693BzSwITwsCtOuySJKFSqcjOyohofEj6IzQylDkMV2xAUyR/7/u3wP/z5l+6WJNh6BdrMirEck0iSSglCb1Oh06rRaVSYzKZmJicIiE+nsGhYXr7+uns7GRycpKsrCymp6cpLS2lrKwMo9GITqeLQLFAIBAsIjKxAsE2snq5+Xw+zpw5w6effsq3v/1txsbGcLlcAFRVlrOnsoLf+cqXycrMwLSuFOu+IcaNYrZKbE2KsZcbQcZwq2xbNi1S73vVS9s0tfcfYk3GzgCxJgGJ2w13aGxq4W//6TuMT0xgtzsAyM/Pp7S0lH//7/89xcXFZGTc+8JMZGYFAkG4iCBWINhGfD4fXV1d3Lp1i/fee49r166tZGPNcXHkZGfy2MkT1O/bS3q6BUtKKhqNGqVyffY1EP49jag6hsGERVFRYFFhKomlV7w6vbbjAcFORCe7KCJaY0oM055h36ZYk1u9PCzEmtwBnWux2ezY7XaGRka4fvM2za1t/Pq9DwBQq9Xk5ORQW1tLTU0NX/nKV4iPj8dgMGy7nQKB4P5GlBMLBDFm+azX6elprFYrV65c4ebNm1y4cIHu7m4US/sNy0tLKCrMp37fXirKSjGb40J0QVZf5f/q+/E77sA2r35n8xnawkkXm2tZHSit+jHy4kvBZgSc29WTGCCAjcZch/Y8iTUZDLEmHyzWz63RaMBg0JOYmIAsy5hMJsas4wwPjzA5NUVTUxNOp5PZ2Vlyc3PJy8sjKyuLjIwMVCqVyMoKBIKQEJlYgSDG+Hw+rFYrFy5c4J133uHNN99kbm4OWZbRabUUFuTz5OMn+Y3Pv0CaxbL0j/jyaD//mIfsYQXe1RepqHAauYQqfDO7Fn8OLmxznaHmkKKWa1pn9/Kf2U12BgZVEtbsBxwT+W7IQCPv3Vu4n1sgowLnLtnUmpWrZZCkUO820F2uvyPwK0+syQh0ijUZjhT/1+/uNbnsXnq9XsYnJnnvg4+4eOUqH378CR6PF0mSiIuL49ixYzzxxBN87WtfIy4uDpVK5FcEAsHmiCBWIIgBy51e29rauHPnDj/60Y/o7+9naGiIsbExkpMSKSku4nNPP0ludhbZ2Vmkpaag0WgiOPN1G/MGwXym7a6UW/3CVvRvyfbIBsdmuiIvI4zcnq2XLsZ+LsJUEhWDxJoUa3K91Id3TcqyjMvlZmJykonJSW43NHL1xk3uNDYxODyC2WwmOTmZffv2sX//fk6cOEF1dbVo/CQQCIIivu4SCKKMw+HA4XDQ29vL7du3uXbtGufPn8dutwMyuTnZ5OfmUFu9h0MHD5CakrzYuMlP6iI0ZyKETNEmhOy0BLooAo8nIkdpZX6Wf5E21b+pSxdmlkUG7iX4Ns8Q+ctIxSaekgL8HN7I8IhcZ6SjQnPR1+Xx/MZUAUb7TZqJNRlcv1iT/hFrEkCSJLRaDZkZ6aSmpqDX60CSUCqVSJLE1MwMXV1dzM/PY7PZUCqVKBQKLBYLKSkpaLXaCL7cFQgEDzoiEysQRJn29nbu3r3Ln/7pn9LX14fVagUgOTmJnOwsfu+b36C4MJ+83JyVMaHuAVrrrK28EvrY8IdF7odHXiMXec4iTFujlXGIVE7Y43ba4EjFhvm8RWPP5FYIO3Er1mTwgYQ+eKcfcbEm/V8brTW57HLKsozT6eTMR59w9vxnfHL+M6amp5FlGYVCweHDhzl58iSvv/46hYWFaLXaKGgXCAQPEiKIFQiiwNTUFKOjo/z0pz+lqamJzs5OWlpakH0+NBo1Tz52itKSIsrLSijMz8dkNGIw6ANIC7ccLMreT8SedYzxa0os5yfc7Nv2sKUqTZmImvZupdnvtgUTYcuMtMZYrMkVxJoExJqMyAZZxufzLTZ8Gh1lYGCQ9z88S0dXFx2d3cTHx2OxWCgoKODZZ59lz549HD58WGRlBQLBCqKcWCDYAl6vl6mpKTo7O+no6OD999+no6OD4aEhDEYDltRUsjMzOPxIPaUlRZQWFwGbZF7XfOUdissQhlsRihciBfzFr7gwLYgcv0oinZ91E7FJTWNQLctjg8zt+reCfwzB3w1QTBnMwntjI/yggj6uy9cEGhuZyoC6wqw0DWBLmO64WJP+EWsygC1iTW72prRUTpyRnkZyUiIFeblMT8+g02lxuz0MDQ3T0dFBd3c3er2e2dlZ4uPjKSgowGg0isysQCAQmViBYCtMTU3xne98h5/+9KdcvnwZt9uNLMuo1WqOHznEs089zjNPPo5eb0ChWOWAxfgIga1/Y76b8hxbYWv3sZtmYTfZcr+wm+ZMrMllxJp8mPE3Z6tLjKdnZhgcHuGP/vf/D/0DA8zOzSNJEjqdjuTkZP7iL/6C/fv3U1xcvO22CwSC3YXIxAoEW0Cv13Py5ElsNhtxcXF8/PHHOJ1OvF4vLW3tmOPiAIlTjx7HZDSi1Wqib4Qfr2BLjpVM5OmB7WZTL3Jr97Hp6KhsOAtNfHjSAukPvRwztNLbWLrxWyhLXXo59ExblBFrMghiTQZ6/WFdk5Ik4fP5GB4ZobGphYtXrjE6NoZjYQGAxMRESkpKePzxx6mqqsJisUTjZgQCwX2OCGIFgi2g0WgoKytjbGwMSZLo6+tjYmKCublZRsfGaG5tQ6lUkpuTTZollcSEBIxGAwqFInrZ2K3UV/q7NKQhfr9P33xwoK2Fmw4NcEG4Uxht/y7gFESnnDRyUwPVUN7zIsOqYA3Y1SWWgVUYZanr5zAKj8qWEGsydMSafGjXJLKM1+djYcGJzW6npa2DW7fvcPnKNWbn5lEolCQlmSkrK6Ouro7HHnuMnJwczGbz1m9FIBDc94hyYoFgC6wug3K73QwPD3P69Gk+/PBD3n77bdxuNwpJwmw2U1NVyfGjh3n5xecwiwPdQ+QBL9jbUkeYLYzd7eyGzjOCADzgkyzWpH9isCZ9Ph8Tk1NcuXaD8xcucvr9D7Db7Xi9PnQ6HVVVVTzzzDN87WtfIz09HZ1OhyRJMd+OIxAI7g+EFy0QbIHlf0wlSUKtVpOamsqJEyfIy8ujtLSUhoYG7ty5w9joKK3tnczb7FjHJyguLKCmeg95OTkbSozD7YO6gQgG7YTvFZrO6Jb/bdd9bovOdUJD1hOuQSFevyvmNkb1w2JNrkasyYCINbnpmpRZ7ErcPzBIb/8AZ899Sm9fP30Dg9jtDpKSksnJyeHZZ5+luLiYiooKLBaL6EosEAg2IIJYgSBKKBQKjEYje/bsoaysjOzsbFJTU/F6vSwsLDA7N4e1YfE4gZqqSpQqJQaDgQSzGZ1eh3KpxHizCiwIw2nYcIF/t0ZafiuY0mBGhMOSni1/mS6vragLZE4o87lm9NKPWznCYtMquuXXo+hhhiwqyIV+59DP9RseKe7NVVQc5yACQvs8Nzdi+fNdrKLw4HQ5sdvtAKhVagwGPRqNZrH0PwSxYk0i1mQQnZFe+CCtSY/Xg8fjYXZ2jrb2Dm42NPLWr07jcDjw+WTi4+MpLCxk3759vPbaa2RmZpKYmLhVywUCwQOKKCcWCGLA8hl4Ho8Hh8PB22+/zUcffcSvfvUrpqamFjsYq1TU1+9nf10NL7/4PGmWVLSaVVnZXVWaFokxu+gGdpEpu5bdMEc7YIPP5+NWQyMfnT3HP333+wBUV1Xy219+jSOH6kmIj99R+wIj1uQDz26Yoyja0NXdQ3tnF3/7D99mcHiYyakp3G4P6enpFBQU8Id/+IeUlZVRWFiIWq2Obu8IgUDwwCEysQJBDFg+A0+hUKBUKjlw4ACJiYmUlZXxySef0NPTQ3t7O52dXdhsNsYnJtlXW0NuTjZVlRWo1apdVjq1ypEI5tSseW8XOR+7yJRdy2ZzFIEz6/V6mZ6Z5dMLF2lp6wAgOSmRNIuFp598DI1aHZ4NMcLn8+Fyu7E7HAAsLCx2GGf9V7y76jkSa/KBJwZrMuwxW/yc5udtTM/McOXadVrbOujp66e3fwCPx0NcnJkjR45QWVlJVVUVtbW1JCUlodPptqZUIBA8FIggViCIIZIkoVKpqKiooLCwkMOHD6PT6bh06RLj4+NMTE4xZh2n4c5drNZx6qqryEhPw2yOQ6vRrDR/Wv1t9Fa/GN/yF+vBBm/R4dlgW5jGhuzL7wQrBgSuEd1xG4MRwLBgFa9er4/p6Rne//Asv37vDADFhQXsqSjn8ZPHV4LY4Pe9q2cFEGsyrPGRi4o+D+GaDPVmtrImlyuRXC431vFxevv6+eWv3qW1vZPRsTE0Gg1JSUlkZGTw/PPPU19fT11dnWjaJBAIwkIEsQLBNqHRaEhMTORb3/oWr776Kv39/fz1X/81d+7coaGhgY8+Oc/FK1d58xe/5MXnnqV6TyUnjh1BoRD/qAsEAoHg/sCxsMCYdZxfvnOac59dpLO7B9v8PDJgNpt55ZVXePrppzly5AjJycmo1WoRvAoEgrARQaxAsE0sf8us1+tX/uF++eWXqa6uprKyksuXLzM9Pc3I2BgXLl1hYHAI68Q4e8rLSbOkkpyctKHxU0R2rH9hs1RDLFMR62SH0sAkGCtJFT/jdtxFWul2IwU0Jiwbd0mKKBomBJURZL42XruZMD+6JYmMNAtHHqlHvVT5kJ6eRnFRAVqtNjQZ4ancfLxYk9uDWJORyVg3X8utVRwOB/0DgzQ0NtHb18+1G7fo6+/H4XCQmZVFVVUVJSUlPProo1RUVJCamopGoxEBrEAgiAgRxAoEO4BOp0On0/HKK68wNjZGY2MjDoeD5uZmenp6uHrjJneamrjb0sKrL79ETdUeTCYTKrUK5dJe2aj9wx+g0+XKW1FQIwOSPwcvFr6L362Ca3+Kpuqw5UWoeNOOt0HHymz69UcIDvhmctZ36A2brT4j664NJaaQJImsrEyysjI5eeLYJiZtlBiTuEWsyS0h1qR/ERE9q5s8I6tLhycmp7hxq4Gf//JXtHV2MTs7i1qtxmQyUVVVxauvvsqxY8coKCjYZT0fBALB/YgIYgWCHSY5OZmjR49SVVVFb28vp0+f5kc/+hE9PT20tXfyf//3/0FSYiKPHjvC0088RkV5GQnx5nsCAngm4Tksa6+Ozs6we2P8O96hywx45SYiNt5RCI5jmHqkTa8JyRMNEICtm8OQxa91XUO6580ukZe/OAnsFq8WEVFcENKg0B/4DeGmv4xbyM+QfwPD+cjFmhRrcvnnHVuTQW7d71ub2GCz2ejtH+DHP/0Fza1ttLS1s7DgRKlQkJ+fz6uvvsqhQ4c4fvw4BoNBZF4FAkHUEEGsQLDDLHcxTk5ORqFQcPz4cbxeLx0dHdy+fZu+vj7GrOPcamgEJDo6u6iu2kN2VgZJiYlL51huTHWE4yZs7lJF4nQEHxOO6xrwuhAEROA6RqTHf7ZpE53LF/q5YBM3eYPekMPJcGOfDTb6lx3VjGRQR1taNbcBzPIrI8CiCPsZCmFIAFvEmlzWI9akX52hspU1GfIXNgF0Ah6PB6fLRWtbO4NDwzQ2NXOroZHRsTGcThclJSVkZ2dz6NAhDh06RHFxMcnJySJ4FQgEUUUEsQLBLmD5SJ6UlBROnjxJTU0NXV1d/PM//zNnzpyht7eXO3ebaGlrJzEhni+89AInjx/FYDCg02rXnqcXgZ8QWpYnQGrCr4DNvbLtcWfWuqvbolOG1b5aUJ1RNChkUeHqDPH6qM5toABWlpFlGa/Pt/QzrC1clpCkxfUkKRQolsOOIM7zskyfz4fX5wNAIUkoFEoUCmnDPnSJxSN5ZFnG4/WuvKZSqVb03JMpL+0XvGfj8t745TUbyDaxJqOqUqzJLSIjg7z47C8sOJmcmuK9Dz6iobGJy1evI0kSarWa+Ph4Tpw4wSOPPMKXvvQlVCoVSqUyipYIBALBIiKIFQh2GZIkkZCQQHV1NX/yJ3/Ca6+9RnNzM3/7t39Ld3c34xMTvPHDn/DR2XNkZWXy2m+8TFlJMbk52QFl+tuHFvy6EFNWEaRjQk06bDmzJ7PWc42ttvBV7jZ2SVOaYMzMztLa1sGVa9cZGByiq6eXeZsNj8eDUqnCHGci3mymoqyUvXU1FBcVkJWRsWkQe7e5hU8vXOIHP/kZAJXlZbz6hZeo37cXszluw5jbdxq529TC3/3zd5FlmdSUZP7o//X/JD8vl/h4M63tHdxuaORuSwsdnd3Y7HYWFpyY4+KwWFLIzc7mhWefIj09DUtqCmJNxkRb+Cp3G7toTS7ve/3g47M0NDbx8bnPGJ8Yx+l0AnD06FHq6ur47d/+bTIyMoiLi0Oj0eyw1QKB4EFGBLECwS5EqVSiVCrR6XT4fD5MJtNKA6ienh7u3r3LyJiVeZuNs+c+ZWRklKLCAsrLSjAYDGi12gAFZv5LzYJU0EWVQGWZMekv46ekL7SdY/cI14fcpJAvJCIdKa/JNkWwKTOY0hD2Fq7VHz2WM6R3m1sWO5/euUtrWzvWiQlGRsZwLCzg9XpRKBQYDXoMBgM2u53p2Vm6e3o5uH8fGelpJCcnBbwdp9PF1PQM/QODACQlJmK3O/AtZWbXPzdOp5OZ2Vn6BwaRZRmXy82C08ng8DADQ0N8fO5TOjq76O3rZ2h4hIUFJy63G4NBz8TkJBMTk+i0WspKi9m/t5aUpW7lYk2KNbmGXbAmZVnGah1nZMxKd08vFy5dpqunl/6BAYxGI1lZ2ZSXl3P06FHKysooLS1Fr9ejXjoDWiAQCGKFCGIFgl1OWloaFouFuro6rly5ws2bN/mLv/gLrFYrQ8MjfP/HPyUvJ5viogJ+71vfICszg5Tk5BXvZUPjDz/788Lzc4J5XcHdvUA6/ft50UlDbNCzVG4ZinPnt3tr2FpjNXKdy79mYAApkZoVQnYv2gHs8rEdXp+PhYUFfvH2r7nVcIfbDY0Bx7hci8Ho4NAwl65cwxxn4vXffJWTJ46RmJiwUr4blqkhlaIulg03t7bR3dPHP333+7jd7g1Xzc3NMzc3T//AILfv3OVQ/QG0Wi2HDh5YU44cWE8QI8WaDENrrEY+GGtyee3JsozX66W1rZ2LV6/x9q/fY2R0DI/Hg0KhIDs7mwMHDvCtb32LiooKzGbzJpIFAoEgeoggViC4j6iurqaoqIhDhw5x/vx5rl27xptvvsmodZyJySm6ev4jleWl1FZX8fkXnsMcF4dWq8FvCiRi1uY21r6yReGhOH1bZcVrXiU/0LyEU2MZRtfPUIu6gxMsZ7Z9BNyCGQ3ZskxTcwtv/OhNPrt4mcmpqbDGzs3b+OGbP2d4ZJS+/gFe+NzTSyWOYczZJp8tgMOxwNnzn3KnsZnO7m48fgLY9Xg8Hu7cbeK//vf/yZ/96Z9QWJCPwaAPzSa/Ri4i1iRiTS79N1ILZFlmeGSUWw2NnL9wkavXbzI9PcPc/Bzx8fGUl5fzuc99jieeeIKMjAySk5NDPlNZIBAIooUIYgWC+4DlDI3BYECn02EymXA6nZhMJmZmZujr62NkZGRNeWNSQgKZmRmL/0tP25DpCY3QszhbEhdTny+Ewsgwq/z8jg148cZ+usGd5xC97s2u9ysjwvrCIOOi+bGtVzMyOkZXdy8NjU1MTk6xsLT/LiU5GXOcibQ0CzqtDqVSiSz7sNnt2Ox2+vsHsTvsuFxuJqemaG3vQKfTcuLYEeLNi3v1wnrk1lwob3jb5XbR3NrOwNAQ8zYbhQX5mM1xmIxGtDotPq8Pj9fL9PQMk1NTjI5ZcbvdzNts9A8M0j8wiNkcR64h8L72tfrFmgyKWJMRiJPxeDxMTk1jHR+nobGJu80t3L5zl8GhYfR6PYWFRdTW1lJRUcGRI0coLy8nLi5OdB0WCAQ7gghiBYL7DIVCgU6n45FHHmH//v2cOHGC06dP88EHH3D69Gl6evvo7e3jyrXr1NVUc+rR47z43LOY4+JYPl8+dKcjys5JIHHrXo+u/xyOQ3nv8nD0R1awGaaeaExIpM7mNjmpq9XIssyNW7e5ev0GrW3ta66rqixnT0U5zzz1OJnp6RgMBjweD109vXT19PDGD35MT18/4xOTADS3tjE8OsKrr3wehSKL5KSkqBaXLiw4uXj56mJ3VnMczz37FNWVFZQUF5JmseB0Opm32bhxs4ELl6/y/ocfMz0zg9frxWa3c7PhDiq1KmhztmD6t4RYk0HfDcp9viaXy4aXf7Y7HNxquMO5Ty/wy1+dXtwXLsvodDqKiop46qmn+OY3v0l6ejo6nW7L+gUCgWAriCBWILiPUSqVZGVl8eqrr/LYY4/x7LPP8tlnn/Hpp58yODjIjVsNdHb3cPnqdar3VPDo8aMUFuSj27WlXxuzImvfianajQpCVLo1uyK5M39j/LTICUH01uZ1s1ZAkSPLMh+f+5Q7d5tWXstMT+fxUyd47pmnyM3JJj7ejEatRqFQoFarKC4sIDsrg7L/APJ8AADS6UlEQVSSYn7+y1/x6cXLtLS2IcsyCwtO3v/gY04cPczhR5KCaI4MlUrFS889y/Gjhzmwrw6jcfH4K7VajUqlQq/Xc+zoIbJzsqioKOX/+9d/w9TUNCDT3tFJmiU16jZFB7EmIx+z+9ekLMt0dvfQ3tHFT37+FsMjI4yPT2B3LJCekUFJSQn/4l/8CwoKCsjLy8NisYimTQKBYFcggliB4D5GkiR0Oh06nY7k5OSVhhtKpZKbN28yNjbGmHWxNGzB6USj0WCz20lNSSE9zbISAIRMzEsPN8mdbNATumMYkEi7g246ONRRkRge4pgQnf2d3MHnT7fX613s9js0zPj4BABarRaLJYX6fXspKiwgJXljIGow6NHrdZjj4qiqrGB6Zob2jk48Hg9ej5eu7h72VJRF/R5USiXpaRZKS4qpqaokPc2yZl0t/6zRaPD5ZCTAHGdifm4et8fD1PQ0s7NzkSkXazKMwaGOevDXpN3hwG6309c/QGtbB63tHTQ03sXlciFJCqqqqiguLqa6uppHHnmEtLQ04uPjY2iRQCAQhIcIYgWCBwSVSkVNTQ1VVVX81m/9Fm+++SYfffQRb7/9NsMjIwwODfHxJ+c5eGA/9fv38qVXv0BqSvLKt+pBS4yX/VJp8y1gK85XiF5YaPkLPy2VVylesSuEYyc2vLNGbJDr/L4T+AbX2L2u1UrAPEnQOdtsQle7voEzMSHsRgxwfaCR9+5t/ecWCv4+N6fTycTEJCOjY0xNzwBgSUmhvLSU5z/3dEBrYPE5VqlUHDvyCFmZ6fzq3ffxej14vF6aWlo5eGAfsixHuD98xeI16PQ6jh0+RG11Jfl5uUFlJCclEmcykpGWxvy8jYnJKcYnJpmamQl6X37NEWtSrMlw1uSq8uHh4VHaOzr5//3dPzA0NMzk1DQAKSkp5OTk8Ed/9EdUV1dTXl4exBKBQCDYOUQQKxA8YEiShEaj4cknn6SmpoaXX36Zn/70p9y9e5ebN2/S0tbG8MgIN27e5tSjxygtKebw0hEfAbOy0pr/rODPrZc2/LCJvZu8JgW8yp/OzdzvzfQHziCtfikULWvt9q8/gP8fkqWhXROOi7+ZxEBhxdqfAlWBhqgEYKXh0epjaioryigtKQ40ZMP8x5lMpFks5OflMjQ0wvTMDNbxcWZmZnE6nYtnKYcVyAYOz7UaDXsqy0lMTAxJhiRJJCcnMTJmZWJyavEcWafL731tZo5Yk4ElijW5dk3O22xMTEzw7pmPuH3nLt09vQwMDQESqampvPTSS+zfv5+6ujoKCwsxGo1hWiYQCATbhwhiBYIHDEmSUCqVpKenk5SURG5uLlarFbPZjNfrpb+/n8mpacbGrBhNBmbn5jEaDKSnWYiLM2EOpdukvyRM2PVv4Q4I5Xo/769J62wiYytbPOXVqmK3V3S9zliJDsZmuaet2uV2uZmdncPn8628lpKSTHJS4lI/m405wfU61Wr1Ypl9YiKTk9MwM4PT6cLpdOJyu9FoNJF1VZU3jlEolCQnJaHTht7sRqfTLR33Ax6vB6/Xu14RYU2iWJN+xz7sa9Ln8+F2u5mYnGJgcLET9uVr12lt62DMOk5ycjIZGRlkZ2dz4sQJ6urqqKysRKFQiK7DAoFgVyOCWIHgAUatVpOQkMDXv/51Jicn6e7u5s/+7M9obGykubmZDz76hHOfXuTNn/+SL37hJfbWVvPo8aNs6okFSdVsWvy34liudy39F8nd+zkSh0oGaTmT47+Mb41kv+mrjfi9fWntFfdOwIihI+hX9Kr7jML2xACS177IOj1bVOb2eJibn18TxCYnJZKYEM9ybkmWpRUnO5BOpVJBWpqF4ZHRldecLhfz8zaMBkP4hgWYSIVCQZzJiEYd+j+pGrUGtWrxetnnwyf71qmQ1j22Yk2KNRlU8toXl2xxezyMWsf52Vtvc+ajT+jo7MLlci0+s3FxPP/88zz//POcOHGCxMREEbgKBIL7BhHECgQPMKsdkri4OIqLi/nDP/xD+vr6uHHjBr/85S8ZGhpianqat0+/x9UbN7l28xbHjxwmPzcHiyU1bKdm49XrCkylQH7pPRdZ8vOzf6cvxD1pkuT3umAjl7N7Wz0BIyr5nxAG+g0sJNa/siX8ytk0UAqfVVv3Nr7HYrAV8uciy2sLgKUwxq7Tei+YDPH6tWaEpHfD2vAbzYWHWJNLsh+iNTlvs9HZ1c3H5z6lvaOLlrZ2rNZxFIrFpk0nTpygtraWAwcOkJGRsXLeqwhiBQLB/YIIYgWChwSNRoNGo6G+vp78/HySk5MZHh6mtbWVrq4uhkdGGbOOM2+zYdAbsNsdeLxe4s1m9HrdFsrLwh2z2tPc6E4Hkh04SIjMKZO24i0v20Sg4CBsY6JxSaQVqiGNk8IXH1iWQlran31Pmsez2JwpHPmyDC63G9+qUl2FJKFUKMMzSJZWlaWGYoGf4GxXxQZiTW7NktAGbvea9Hq9uNxupqamsVrHuXm7gc8uXqarp5e5uXkSEhLISk7m4MGDnDp1iv3795OXlxdeh3qBQCDYJYggViB4CElJSeHRRx/l4MGD9PT08NZbb/H973+fzs5O7jQ2cbephfh4MyePH+Wl5z9HbdUe4uPNEeuLKLgJc0D0g4TQBAa7t10Vt0D4cxrmuGjdr0atJt4ch3KVcz0xMcnU1FRYcnxeL6NjVmx2+z3ZGg0mkzE8x13aHZ9lVLPdkcgSazL6RHFN2h0Oevv6+fb3fkhjcwutbe3IsoxarSYtLY0vfvGLHDt2jBdeeAGlMswvcgQCgWCXIYJYgeAhRJIkZFlGq9WSnZ3Niy++SEFBAe3t7bz//vs0NzczNzfL1es3mZycIjc7m1Mnj1NSVEhGRjqKMMvONivdC8Whjna/lKhlDTeRvVZP7Lq+bFPbmm3RaTDoychIR6W6909Ue2c3qakpIeu02exMTE7RPzDI7NwckiSRmBBPXJxppaFS6GzPjIZSiBstxJqMttZwdEYPj8fDgtPJpctX6ejq5sq1G3R0dTM7N4daraa+vp7y8nKefPJJioqKSEtLQ6lUirJhgUBw3yOCWIHgIWW5i7HZbKayspKMjAxKS0uZnZ3F4/HQ29uLdXyCyalp2jq6MJmMyLKMjExSYuJiY5owGtlACNmRLXl6/pvQhGvL1rUHK1eMneMYlRLJXaJTq9GSlJiIVqtBqVTi9XoZHh1lcGiE2dlZjAYDKpVqjc7l+V8+C3NyeoqBpf3eTqcThUJBUlISJqNxTXAcGtszo6FoiXYwJNbk/bcml5/xeZuN+Xkb1vEJLl+7QXNLKxevXEWn06HXGygqyuLQoUPs27ePl156CbVaLTKwAoHggUEEsQKBYDFLlZhIQkICNTU1NDY2cufOHf7yL/+S3t5ehkdG+F//+G1+/vavyMrK4He/8XXKiovIyc5aI2fLDnaQwZvLXbtXL9RGOltnudVQwLdCf30H2EWmrKDTabGkppCTlcXc/DyjY1aGh0e403iXn731Ds88+TgZ6Wlrxqy+B6/Xy4cfn+PMhx/jdLqQZVCpVOytqSYrMyMyo3bJRIX7OIk16fet0F/fATYzRZZlPB4PH3z0Cddu3uL0+x8wPz+Px7O497u+/iD19fV861vfIi0tDYPBIPa9CgSCBw4RxAoEAoCVzpQKhYLc3FyMRiN//Md/zK1bt2hra+ODDz7AZnfQ09PH977/I4qLCykuLOTk8aOYzXEY9Prd4gMC2+MsB3GVl4wI8/UdYBeZssLis6hgX10NPtnH6JgVgDHrOO+cfh+X201xYQGV5aWYzWY0ajU+n4+JycnFrNTV61y4dIWOrh7kpWN6NBoNBw/sI3fdFy+hGxWtu4s+21WCvFXEmgyNQKb4fD76Bwbp6u7h1p1GbtxqYHhklPl5G8nJKeTm5nL8+HHq6+vJy8sjLS0NvV4vsq8CgeCBRASxAoFgA0lJSSQmJlJUVEReXh63b9+ms7OTsbExZmZmOPfZRXr6+unu6SMnK5OMjHRSkpMwLn3jH9Z+q23IgGw4e3K16i3oj2RYbG43PKnbswtwaxIkCSorypiameHilau43R5m5+a4ces2er2OsTErapUKS2oqOp0Or9dD/8Agff0D/Pq9M/QPDDI5NQ2ATqslId5MRVkpltTUHby73aJk520QazK0q2VZXuk67HA4aG1r5/rN25z56CxDwyPIgNFopKSkhLq6Or74xS9SUVFBXFxclO5DIBAIdiciiBUIBAGRJIkDBw5QV1fH888/zwcffMCFCxf47ne/y+DQMAODQ1y+ep09FWUc2FvHV1//TeLj49FqtSHruHd0SewIlnyJlf5ATqkUA5dZDp578mNDrFi/SzVyCZIkceLYEbQ6HU0trdy524TNtthl+OLlq1y+ep03fvSTxTuXJEBG9sn4ZBmv14PPd0///n11HDv8CIUFeeh0ushuje2JLbdjPewGG8SaXG9DADmyzPDIKNdu3OLjc59y7tML2Ox2vF4vZrOZPXv28PnPf57f+I3fID09HY1GI0qHBQLBQ4EIYgUCgV+Ws6nLnSyTkpKor68nLS2N5ORkGhoaaGlpoaenh57ePpxOJ16fl+LCQirKSikuKkCj0Wyald1phz1W+gPLjb7GnZ5D/ywFlrK80ogGlkqFFRKhWK1UKsnLyebVl19EkiR6+voZHh7B5/Ph8/nweIKP12q17Kur4cTRwxyqP4Bard71XVl3g3U7bcPDviZlWcbt8TA4OERPXz/nP7tIb18/3T29OBYWSElJobi4mFOnTlFYWEhVVRWpSxUJu/35FggEgmghgliBQLApCoUCnU5HRUUFJSUlFBcX895776FWq5mammJ2bp6JySkGBoeoranG6XSSmJhAvNm80mF2vXO1E1WTO1Opuf1ad+KInUDve31eZNYGsSFliqTFTFZ6moVnnnyczu5elEolc7NzuD1uvF4fPq8X36oAWSFJSAoFKqUStUZNvDmeI4cOcvDAfmqq90R6mzzIn+HDqHM3fp7LX/R4vV48Hg/TM7O0tLVz5foNfvqLd1hYWADAbDZTXFzMo48+yu/8zu+sNG4SCASChw0RxAoEgrBQKpXk5+fz9a9/nddee42PPvqIM2fO8O677zI0NMS5Ty9w6fJVfvbLX7F/by3PP/s0JcWFi1mCJRlhu5BR8jl3ylneeF5kbJ3o7brPzfTIPh92u2OlayqAWq1Gr9Nv2uRn+W2lUoler+df/+43GJ+YpKHxLhcuXqGvf4COri7m5uZxezwolUrizXEkJMRTvaeS+v17KSstoaSwALVavaX7XM4qb3lmwxARJY0hmyPW5O5Yk61tHTQ2NfNP3/s+ExOTzM7N43K5yM7Opry8nH/zb/4NhYWF5OTkoNVqRemwQCB4aBFBrEAgCIvl82WVSiVqtZra2lp0Oh0FBQVcuHCBrq4u2tvb6R8YwOv1YrPZObCvjtycLCrKStFqteF3y7xvK+SkVf8f6JX7hAh8fK/Px/TMDC6na+U1jUaNwaAPuVXtcgZfr9ORnJRIZVkpBp2eqZlpJiYmWXA68Xl9SAoFep0WvV5HeloaOdlZpKakbFpiKUkSGelpHD38CFqtBoCMtDRKigvR6lbv7b4nIyszE0lS8K9/9xvIsozJZCInOwuj0bjJzSz+R6FQcOrRY1SUlzJmHUer1VBcWBDo8pix8bmMcPB9xe5bk7Ozc0zNTHPt+i1a2zvo7OpheHgEJImEhASOHj1KaWkplZWVVFZWkpiYKLKvAoHgoUcEsQKBIGKUSiUlJSUUFhZy6tQpMjIy+OSTT5iYmGBqaorJqWYaGu8yODTEvroaUlKSSU5KQqvRoFIt/vlZG2BsR05EEIig8x7BB+L1ehkfn2DBubDymlarxWQ0hNn2ZhGDXk9Bfh4F+XnhGxMASZLIyswgKzODR48dCWlMTnYWOdlZPFK/PyKdSqWSJx87uWq+d/MTL9ZkLJBlGZ/Ph9vjYdQ6Rnd3Lz/4yU/p6x9gfGIStVpNamoqOTk5fPnLX6aqqory8vKdNlsgEAh2DZK8uuOGQCAQRMBy856FhQWmp6cZGRnhb/7mb7h16xbXrl1DrVaj02oxm80889Rj1FTt4enHT6FSqVAsNfmJipO8Roh8r0Pow+KBr7v/7StG9c/I6Bj/6c//K7cb7tA/MAjA555+gidOneS5Z55Eo9HE0L4YEGh+o1pp7F9YMBWyHDixHey9IAe7INZklAjwzMzOzjE6ZuWnb73NtRs36ezuwWazoVAoMZlMfPnLX+bEiRMcOXKExMRE1Gr1yhd/AoFAIBCZWIFAEAUkSUKSJAwGw8oexmeeeYbCwkIKCwu5du0aU1NTjI6NcePmbSYnp7Db7VSWl2NJTcGSmhKdrprS2l8kv68/wEgBf4m1MuDemZYOxwKDQ8N0dvfQ0dnF7OzcyjWJCYnkZGXen3v5As1vVB9d/8KCqQi2dIIvq2AH3UTpCRJrcgWfT8ax4KC3t5+m1lZ6evu5duMWvf0D2O0OCgoKKSsrW+k8XFpaisVi8dsYTyAQCB52RBArEAiiilarRavV8oUvfIGJiQk6Ozv5r//1v9LY2Ehrays3b9+hqaWNazdv86Xf+AK11XtITEhAqVSsBDYbHLYHNGvzoNzWcvDq9nhxOZ2MT0xw8cpVGu7cpbWtfaXzqkqlwpKaQkFBftAg9kGZlw08SDf2IN3LKmJxW4ulwzIul5OJiUk+u3SZX7//AW3tHTgcC6hUKuLi4jh06BAvvvgiJ06cIDk5+f78okcgEAi2CVFOLBAIYsbKcRHT0/T29nL+/Hm++93v0tvby/zcHEajkcTEBGqr9/D8s09TUVZKZkZ6mFmHSNzOGLiqO+TU74ZYYmR0lF+/9wFnPjxL38AgPp+XhQUnLpcLu8MBgE6r5eiRQ7z68ks8ceoECoUi6Oe8U91yt05khvgbFVRSlB/7sPVHqiiqY7ZfZCRqZ2ZmaWxq4q133qWlvZ3+/gHsDgcKxWJPgRdffJHDhw9z4MABTCYTOp1u0/UhEAgEDzsiEysQCGKGUqlEoVBgsVhQqVS43W7m5ubo6Ojg7t27dHV1MTZm5W5zKyaTafGc2eo9ZGdmkpiYEOL5spE4ekHGROr47pC/uW1bYIPg8XqZnZtjZGyMoeHhDe/r9TpSkpI5VH+A7MyM8LtTh0JM7z2cyd3sefX/oj/pEVUCRzgmbP2rEGtyo1qPx4PD4aCjs5uBoSFu3GqgsamZ4dFRnC43JSWlZGdnc+jQIQ4fPkxZWRmpqaki+yoQCAQhIoJYgUAQU5aD0OTkZI4cOcK+ffvo7u7mJz/5CT/+8Y/p6uqis6ub7p5eEuLj+dzTT/DMk49TtacC07ojSyQpkp624Rq8xfE7FUyu0rldJoSiR5IkkhITKSzI54XPPU282RyS7N2Vg4q8vN3vZbvr5raMWJNLapYK22RZxrGwwMjoGD/75TvcudvE7Tt3kSQJjUaDxWLhc5/7HMeOHeO5554TWVeBQCCIAFFOLBAIto3lLsZut5uZmRk6OjpoaWnhO9/5Dnfv3mVqagqT0UhqagoZ6Wm8+LlnqKuppiA/D4VCCu7oxdRR3Vx4eOp3Te1rVBgYGuLNn/+St945TV//AHqdjpSUJFKSk9lXV8uBfXspLS4kKysTpUIRk2xTaDMaw3nfguj1Q8MVtfb65X/SIzu8Z6u2BBUWVXbfmnR7PCwsLPD+Bx9zt7mFc59eYGJyCqfTicfr5cSJE9TV1fHlL3+ZtLQ0zGYzJpMJ8NMHQCAQCARBEZlYgUCwbSx3MdZqtStdN00mE2NjY1gsFnp6emhtbWVkdIyZmRlSk5OxOxxYx8cpKS7CaDSg1+kCCI+d3SvHgiz9tvb3cNQvO8rhXR0tgh63Emy/ZNBjWkCv01NSVMjJ40cZn5hAq9GSkGAmPj6eitISSkuKyUhPR7VZl9WAp9ZsPhOb7a6Vl66K2WOyBcGRPUubXL80ZVuVten4YB/NQ7Aml7+YG7OOYx0fp7unj0tXrtHZ3UNPXz+JiYlY0tIoKyvj8OHDVFRUUF5ejlarjU1ZvUAgEDwkiEysQCDYFTQ0NHD79m3+/M//nP7+fqanpwHISE8jPzeH3/vWNyjIzyMjPW1lzGbZi2jnaqIjJ+qhaZTlRU5sLIleo6TYjN6eZ2hnPuXoa31Q1uTq0mGv18tHZ89z+doN3nrn18zMzuL1epEkicOHD3Pw4EF+//d/n/T0dAwGQ1h6BAKBQOAfEcQKBIJdgd1ux263MzAwwGeffcatW7f48Y9/jMfjRpIk0iwWSouLKCsp5jdefpHEhHiM6/bMbs5O7BaNgs51Ina2dFkGOUiKL5i6TUwJvyR444iYfMLbGUGu6IpQ6dpq4siUb2vEfH+uSZ/PR3tHF3fuNnHu0ws0t7UxPT3D9PQMqRYLZWVlfP7zn+fQoUNkZGRgsVhQq9Ui+yoQCARRQpQTCwSCXYHBYECv15OQkIDH48FsNmO1Wunv72d0dJSe3j5cLhdzc/NkZqSTk51FZmb6UpmqCoUido5wSC7vmotWFzpGoYR1SwKiPS+b1KhG+t7mbwPr5zO8yD7i0EWKbaAV4NGJjGiYuQNNwsJlJ9akLMu4XG5mZmewjk9w7fotGpubudVwB+vEJHq9nuKSEmpra6msrOTIkSOUl5cTFxcXgTaBQCAQBENkYgUCwa7E6/UyPT3N6dOnOXv2LG+88QZOpxNZltFptdTVVnP08CN86dVXMMfFoVItZjhWlxjf82H9u7wbk1aRpRE3O2Pz3q7MreRPQxm/XitLmqMRSstL0tdns4Kl/sKbs831b9S+2ZhQQ+PVTwoEem62mvnd/PkKlC/cSjAZyZOz2boJ93neqOf+WJOrXSRZlrFax7l87TofnD3Hhx99snIOstlspra2lldeeYUvfvGLK3v+BQKBQBAbRBArEAh2JbIs4/F4mJycZHx8nMuXL/Ppp59y+fJl2tvb0et0xMebKS0uprK8lPr9+ziwrxa9Xr9eEtuSS9rxlNVm4UEsNW6n1gDEUP2uus8HgvtnTS52U/fQ3tFJc2sbv3r3fUZGx7COjzM9M0tGRgZVVVW8/vrrFBQUkJeXR2pqKhqNRnQcFggEghgiyokFAsGuRJIk1Go1aWlpJCcnrziFKpUKpVKJ1WplzDrOvM3OvM0GgMGgx5KaQnJyEjqtdukol+CZtICE6wCvuTbKe2LDNGBr2kIPhqUgvwWWGorkUCWt+jlccWGYEM59blXXFgdtke1/VnfzmnQ4HNjsdnr7BmhqbuHO3WZu3m7A4/WhVqvZs2cPxcXF7N+/n6NHj2KxWCLYpy8QCASCSBCZWIFAsOtZ/WfK5XLx7rvv8u677/LOO+8wPDy80gm0rqaag/v38vKLz5GXl4tOq12WQLjlrmHZ50dKTFoObeqHx2Bj6KbXh9BJKAax0Wa3vzWVq0ulo1lOHEiP/1eiVYwdyhcIm+vdSqY/tBUS/PXwiMaabGvvoLmljf/+N3+HdXyC2bk5ALKzs6moqOCP//iPKSoqIjs7e2WMyL4KBALB9iCCWIFAcN+wcibj2BjDw8P09/fz1ltv0djYyM2bNzHo9SQkxJOVkc7hQwcpKynm8MED6PX6qO1P28p+wJ0mnFAi3Gt2K9ti+/08QbFmG+YmmmtyYnKKMauVX51+n46ubvoHB+np6UOlUmE0mfj85z9PTU0NdXV1lJSUrDSkEwgEAsH2IsqJBQLBfYMkSUiSRHp6OikpKRQXFzM9PY3RaMTtdjM4OMjE5BQDg0NICgWzc3PEm81kZWYQZzIRF2dakeOXEPxgadX/h+83byGTF7GPfm+gvya7oYhcO26zzGssopYwZa5KpIaUGNtM/KZ11SHaF/Cy3RwFB7AtVJO32tl5G9ak1yfjcbuZnJqmp6+P7p4+zl+8xNDQMFPTMyQlJZGRkUFubi6nTp2isrKSysrKRa0i8yoQCAQ7gsjECgSC+5LVf7rm5uYYHx/nr/7qr7h27RqfffYZAGq1GpPRyG+8/CJ7a2t46vFTKBTS9jieuzkuiYhI6pAJc0yY4re7e9UD95nuIDsxrwH02Ox2RkfHeONHb/LZpct0dHbhXdr3ajab+cpXvsITTzzBiRMnMBqNa/5+iCBWIBAIdgYRxAoEgvset9uN0+mkra2Nrq4ubt68ubJfdnp6mtzsLNLT06iurODY0cPk5WSTlZmxygGN0IuO7bY+5FAziZHIJkjfG3/vbwNRSGwHfD2Wc7k1trCPOdjQzbfzRoeYPSixXZM+n4+5eRt3m5q5fO06nV3dNLe0YR2fwOV2UV5ewZEjR9i7dy/79u0jIyNj5dgcEbgKBALBziPKiQUCwX2PWq1GrVazb98+cnNzycrKYmRkhNbWVjo6OhgYGmZkbIyRkTH0Bj0OuwOVSkmcKQ6tVrPkmEagONCY9QHUJpcHFB9VX3mtF7+hynN9mfEORLHB2w35iU9CnH+IbC5X9MV0LkIQHMZ9BnwvVvZHTe4mD2SobDJXXq8Xl8vF9Mwso1Yr12/e4pPzn9HV04vL5SYuLo6MzEzq6+t54oknOHz4MGlpaUudzgUCgUCwWxCZWIFA8ECx3PzJ7XbT29vLBx98wN///d/T2dnJ7OwsCoWCeLOZ/fvq+OIXXqJmTyUWS+rDlV0JkKXbkWrZ7coYbicxvodoiY+Jmf6y4LHQEyEzs7M0tbTy/R//lLtNLfT29SPLMlqtlrKyMl577TVOnDjBgQMHUKlUK38XHqq/DwKBQHAfIIJYgUDwwLEcyM7PzzM4OMjNmzfp6Ojgk08+4fbt28zNzZGSnERJcRG5OVkcPlhPZXkZGelpqNXqrTusu8lrD5VdYHPUyokFoRPjkvjdgMvlYm7exuWr1+nq6eHGrdt0dHYzMzOLx+tl//79lJWV8dRTT1FaWkpGRgapqQ/ZF1sCgUBwnyHKiQUCwQPHchdjs9lMXFwc2dnZ9PT04PP5sNls9PT0MDk1zaUrV2lqbsHr9aFULO51S05OQqPWoFIpV2SFxiqvPwa+b8yPwtkF/nrYJgTb1Ov3lejxwMR4kZQqR8h2ztnyF1kOh4OZuTkGB4f59OIlmlvauNVwB51Oh8FgICc3lyNHjlBfX8+LL76IUqkUpcMCgUBwHyAysQKB4IFm+U+cLMt4PB56enpobm7mr//6r2loaGBsbAylUkliYgIZaWl89fXXqKuporAgHwi3jDCIm76bo56dtC0qumN0A7vpM9tNtmyFbboPj8eD0+XirXdOc/N2A+9/8DGOhQV8Xi9IEk888QT19fV885vfJCEhYc1Z0iIDKxAIBLsfEcQKBIKHitnZWSYmJrhx4wbXr1+nvb2djz/+GJfLhUqppHpPBWWlJRQVFnDsyCMkmM0YjcadMzjaTn8kJ+XspH6BIESWs6/dPb309PVz+85dbjU0MDQ8Sk9vHxkZGeTk5HDs2DH27t1Lfn4+tbW1aLXalQBWIBAIBPcHopxYIBA8VJjNZsxmMwUFBRQVFdHQ0EBPTw9DQ0NMT09z/sIlunt6yc/PJT3NQk5WJhYL6HU6FArF9mdptrRJ1E/EGHaL5FD0hPpeBPpDlSt4aJFlGa/Xi9vtYWFhgaaWNm7cus3p9z9ganoGAKPRSGlpKfv27eN3fud3yMnJwWQy7bDlAoFAIIgUkYkVCAQPLR6PB4/Hw+zsLB999BGXL1/mH//xH1lYKjvU6XSUlZVQvaeCb3z1t0hMSMBgMMTUps1CtfstlNuN9sbUph244S18pRAbtlmpz+ejo7Obqzdu8u6ZD2m824zdbsft8ZCZmUl1dTWvvfYaJ0+exGKxoNFoduYLKYFAIBBEDZGJFQgEDy0qlWppP2wie/fuJSkpCYPBQGNjIx0dHbS2ttLX14/T6USr0VJYkEdxQQGVFWUrjvAGthiFBnWr5VXnne7G6NAPWz5nNZyxIV4b0y24UbY1FALO8ernJRqEehzSNjyXsixjdzgYGhqmu7ePS1eu0dXTS2dXNwtOJympqZSWlnLixAlKSkrYu3cvqamp6PX62BsnEAgEgpgjMrECgUCwhMfjwWq1cvr0ac6ePcvbb7+Nw+HA4/Gg1+mord7D4UfqefnF54g3x6PValAqlSsZnZjFlasFh6gk1ltZQ+6WHIHtW7VtJ4mGLfd7n61Y2b/srvh8PtweD6OjVq7fvMX5C5d4/8OPcTqdi+dAx8dTWVnJs88+y+uvv05aWhoajSYGFgkEAoFgpxBBrEAgECwhyzI+nw+n04ndbufmzZu89957nDlzhuamJpAktBoNBQV57K+r5YnHTrKvtnrHszsRBZTRVhADYn6sUBQt2U2B9G4h2kn05b2vjU0t3Gq4wxs/epPJqSlsNjsul4u8vDzq6ur41//6X5Ofn09aWhp6vV6UDgsEAsEDiCgnFggEgiUkSUKpVGIwGNBqtZSXl+P1eklLS+P8+fN0dnbS09PDwOAQkiThdDqxjo+Tm51FcVEhRoNhR7qchuKeS6FeGKmCGBDyfcWczbWIEGkj4czJZtfOzMwyNT3NjVu3aWvvpK2zi+GREZRKJUlJSRw6dIji4mKqq6spKysjMTFxZ7uKCwQCgSCmiCBWIBAI/KBUKsnJySE7O5uTJ09SUFDAmTNnmJ2dxWq10ni3mTuNTXR293Jgfx0mk4msjIyVEmMI/7zJkDNXMsjSgxM4RSuLuaVsc7h6YqsiZtxPti8fmePxeBgeHaW9o5O//+fvMTI6xvTMDCqVioyMFAoLC/nmN79JaWkphYWFO222QCAQCLYBUU4sEAgEQVj+E2m325mZmcFqtfK9732Pq1evcuHCBRQKBVqthjiTiSdOPUpt9R6eevwxdLoYnT15P0UhsE323m+TsosINHW7YEonJqcYHhnhjR/+hJa2dvr6B5mbn0On05OQkMDXvvY16uvr2b9/PwkJCajVatRq9c4aLRAIBIJtQWRiBQKBIAjL2VSj0YhGoyEuLo6TJ0+SmppKeno6N27cYHJykuGRUW7faWRubh6320NZaTEpyclkZqSvkRM264OJrQQWO7En1k/H3KgFRyuypACvR1nNNhJVnSF2U15z2Tad87RelMfjwbGwQHdPL+0dXfT09tHQ2MTI6Bhz8/MUFRVTXFxMaWkpx48fp6ioiPT0dCRJEvteBQKB4CFCZGIFAoEgAqanpxkeHubP//zPaWho4NatW/h8PjRqNWZzHK++/BK11VWcPHEMpVKJQrHsYEuBjz2JJDgIVlq8LC9Yh+AQjwSKpFQ3nPLoQBfKy8fEBLhm+R+w+/Is1DWfS5jn4UT4rKz+EDdVufqCGLYtXnZDZFnGZrczNmblJz//Jec/u0h7ZxcejweVSkVcXBxf+tKXePrppzl58iRGo9H/MVcCgUAgeOARQaxAIBBEgNfrxePxMDk5ycDAAA0NDfzDP/wDPT09jI2NERdnIjEhgbLSYl783DOUlZRQkJ8bWrYoouhvVXDib3iQYDfSo23Xvh7ZOUBBbQp0I1uJpvwM3+LRvqEPCEtQBPe55UAzDAEBzqWFcG2Q8flkZmbnuHr9Ju9/8BEtbe0MDg1jdzhQKBTU1tbyzDPPcPToUfbs2UNcXBwGg0F0HRYIBIKHGFFOLBAIBBGgVCpRKpVkZGSg1+vRarUMDw/T1tZGY2MjXV1djI1Z8Xg8JCUkLjajmZ0hJzMTc7wZjVod2AGPyC/fZFCQRlCbqQvNnAiM3qw5ld83I0o/Bh0e9TAo0olehYx07/JQY8st3sganSHo2mBWmPrdHg/z8/P09PYxODTM5as3aGxqZmh4BCSJkpISsrOzOXr0KIcOHaKqqoq0tDSRfRUIBAKByMQKBAJBNFjuotrT08Ovf/1r/uEf/oGuri5sNhsAiQkJPHr8CJ9/4TmqKitITExYu9U14ozSLujAs8JusiUaRPt+HqT5iexeVrscc/PzdHZ188aPfsKdxmbaOjoB0Gq15OXl8aUvfYlHH32UEydO7MjRVQKBQCDYvYggViAQCKLA8p9Sp9PJ7OwsnZ2dtLW18dZbb3Hx4kXGx8cxGg1YUlJIT0/jqcdPcfDAXgry8lCpVFEOYrcSLIUzdic6RW0jD4CZu+0WXC4Xs3PznH7/A5pb27hy7ToTk1O4XC4UCiWnTp2irq6Ol19+mdTUVOLj4zGZTKJsWCAQCARrEOXEAoFAEAWWnWydTodWq0Wn05GQkMDs7CxKpZLu7m66uroYHBpmYnKKhHgzsuxjcnKagvxc4kxxGAz6SDQD63ekri4LDTeM2eza1XtvpVU6w9ESXkAS80As0D7Z5Z5GfvobxdqmcOQHuy70TzP8Xc2h2rh83uuYdZzx8Qk6unu4ev0Gnd09dHX3kpycjMWSRkVFBcePH6eqqoo9e/agUqlE6bBAIBAI/CIysQKBQBBjlvfJ/uVf/iWtra1MTEwAkJyUSGZmBt/46m9RvaeS/LzclTEbM08hhwysD2yjE3DJm+6Z3KgnwpJTP6MCN5EKJiOyRkXhNAreUs47oJ7VnxwEu5PoBJurOzL5vzrcRsUrd7AUwLrdHn793hmu3bjFL975NQsLC/h8PhQKBY899hgHDx7kD/7gD4iPj0en020iXSAQCAQPOyKIFQgEghjjcDiw2WwMDAxw7do1Ghsb+eEPf4jdZsPr85GelkpxYSHFRQV84aUXSElOIt5s3iFrN+lyvGWpW5UcQRfkzQ2KLRHpuu9Pp8Xn89HU3MLd5lY++fQCHV3dTE/PMDE5SW5uLqWlpXzhC1+gpqaGjIwMMjMzRfZVIBAIBCEhyokFAoEgxuj1enQ6HcnJyahUKhITE+nv76enp4fR0VF6evtxOBaYmpomJzubvNwcsjLTSbekoVIpt9mpl/z8FE2pIUreJJ7acri1nVuQN9EVzZNxNpxyE/0TiYJfL8s4nS5m5+aYmJzk2o1bNDa1cO3mLebnbWi1WkpKSti7dy979uzh+PHj5ObmYjKZIjdSIBAIBA8dIhMrEAgE28DqP7WyLONwODh9+jSfffYZf/d3f8fCwgJerxelUkltdRX1++r4nd9+nXizGZ1OS6jhROA85daimVBkrS7hjejI0CBaI8u/hleCHUkOOrxZXX/1ZkXCgWYx2o27Ni8nDtV2n89HX/8gl65e41fvvs+1G7dYWFgAwGKxUFNTw1e+8hWefvppLBbLyjjRuEkgEAgE4SCCWIFAINhmZFnG6/UyPj6O1Wrlxo0bXLx4kVu3bnH9+nUMej0J8fGUlhRRUVZCbU01hw/Wo9PpUCii7+zvZAfb8HVHy9pY3vVu6wkcW5a/lGlt7+RO410+PvcpI6NjjI5ZcTgcZGZlsX//fl588UXy8/MpKCggJSUFjUYjgleBQCAQRIQoJxYIBIJtRpIkVCoV6enppKSkkJiYiEajQafTMTc3x8TEBNaJCaamp5iemcHl9pCUmEhqSjKJCQno9boNJcYhZSoDvLFpM6YA4yLfnXrv6mg0ggpqWEAizJ9uJnt1W+Mtsbv3xC5//72wsIDN7qC3r4/bjXe5dv0WV67dwOfzodPrKS0ro7y8nOPHj3Py5ElSU1PRarUxvAeBQCAQPAyITKxAIBDsIKv/BDudTi5evMg777zD6dOnaWtrw+v1olAoKC0u4uCBfbzwuaepqqxY1cF1N2X9dpMt0SDa9/PgzM9y1+Gm5lYaGu/yP//+n5icmsJudwCQl5dHbW0tf/zHf0x+fr4oHRYIBAJBVBFBrEAgEOwSvF4vExMTDA4O0tfXx5kzZ2hoaODmzZsoJInExASyMjPYv7eO8tJiDtUfwGyOQ6VShRYeRRpDhTBuu8KzzQ/6ibX+KNxnmEKiubc5GoyNWRkeHeO9Dz6ku7ePgYEhOru70Wi0JCQk8PnPf56Kigr27NlDRUUFRqNRHJsjEAgEgqgiyokFAoFgl6BUKrFYLKSkpFBeXo4syxgMBhwOB729vVjHJ+jrH8BmszMzM0NiQgJ5uTnEmUwYjUaQlrNcIdUNQ+ArN47ze2GgsuBwhIfH5gFsbIO8qEgOU0jYnZ1jgNfrxePxMD0zS2dXNx2dXXx49hzW8Qnm5uZJTEwkMzOT/Px8nn76aUpLSykqKtoRWwUCgUDw4CMysQKBQLDLWP6zvNwwZ3p6mv/xP/4Hly5d4uzZs8iyjFKpRKfV8vKLz7Fvby3PPvkEanXsztgMus+WjW9Gpztx+Pt7I1UiS5vs793w4uoOwtHqwRyb6wONDkXO8jXTMzOMjIzyT9/7ATdu3aaruxefz4derycxMZF/9a/+FUePHuXw4cOo1er/P3v/Hd3Ilt+Hvt9CzoEEcya7yW52s3Puk8+ZM/GMZjSjkRVmRh7Llt6S5PXsd5fs5XDv071+4drr6un6Xct+V56xR3GS5kwOJ8yZkztHNtkku5lzQE4FoFDvD7CqwQyQIAmQ389a7AaBQtWuQhW4f7V/e28IgsC0YSIi2jYMYomIilgqlUIymURPTw8GBwfR3d2NH//4x5icnMTs7CyaGxtQXVWF9oMHcPH8GTQ11OPggbYdDyAKEVMW61BGu16uXGe9WW9lWH3ZtQbnkgFIqRRC4TBu3LqDu/cfYHB4GL0P++H1+ZBIJHH69GmcOnUKx44dw5kzZ1BdXY3KykoGsEREtO2YTkxEVMR0Oh10Oh1Onz6NlpYWdHR0YGZmBr29vUilUhifnMLk1DT6Hz2GRiMgEonC7XbDarXAoNdDq9XuSECx5hbyiAALNYttPnJ5126EY8Kav+TwfB7LCVmHTlksnU5DTCTgDwQwMzOLK9dv4IMPr2FweASCIMBut6O6ugYXL17E888/jwsXLsDlcm1bFgAREdFybIklIioRyoiwqVQK4+PjuHnzJv7sz/4MAwMDmJubg1arhdPpwJHDh/APPvdZHDl8CI2N9bveKraldFn1l43XUspjCcvyFmfmWa2wm9yBQDCIW7fv4tuvfh/3H/RienoGUjoNo9GIs2fP4nOf+xyeffZZHDp0CHq9Xg1ed/s8IyKi/YNBLBFRCQqHw5iZmcGVK1cwMDCAK1eu4ObNm4hEInA67Djc0Y76ujqcPNGF40ePoKa6CiaTiYEGrUoURXh9Pty4dRfDI6O41/0AfQOP4PP7odPpcezYMXR0dOCll15CR0cHGhoa4Ha7eT4REdGuYDoxEVEJsi2OSFxXV4ehoSFYrVb4fD6MjIzAHwjgnfc/hN1mw/zCPIx6AzQaDSorK9QUY2D9lrOc+mTuFcW4f5ssUz4Daikt+3FRRCAQxKPBYbzx1tvofdiPR4ODMBqNsFgsaGxsxDPPPIMLFy7gYx/7mHr+EBER7Ra2xBIRlSjl6zudTiOVSmFqagoPHz7E17/+dbz99tuYnp6GVquBw25HdVUVfv3zn8X5s2fQ1toMrUazIogtxlhuL8tvnODCSySTiESiePUHP8Ld+934xdvvQBQTkGVAr9fjk5/8JC5cuIAvfvGLsFqtMBgM0Ol0bH0lIqJdx5ZYIqISpQQTWq0WGo0GFRUVEAQBv/7rv46mpiYMDAzg/fffRyQSweTUNN74xS8xPjGB5qYmnD97Gp7yMjgdjifrW29jm4mzGBWvS1jl0XaTZRnpdBr9A48xNjGB+w96cOdeN6amphGJxNDY2Ij6+npcvnwZp06dQmtrK9xut3qOERERFQMGsUREe4AgCLBarbBarWhqasLBgwdx//59zMzMYGhoCF6vF+99eBW9ff2oq62BzWbFoYMHodfrYTRk0o3XbWHbTJy1DbHZrk93UwTr2dS2ZRmSlEYqlUQsHsede/dx6+49/Oz1NyGKIgABNpsNnZ2dOH36NP7JP/knKC8vh8Vi2aUSExERrY3pxEREe1AqlUIqlUIkEsH777+PW7du4c///M8RDoeRTCRgMptwsK0Nh9oP4nd/54vweMrgsNt3u9gr5BP4bXmE32238yMsK9LpNO539+DWnbv4yc/fwOOhYURjUSQSSbS2tuLYsWP4yle+gq6uLpSXl8NsNm98Y4OIiGiXsCWWiGgP0ul00Gq1MBgMOHLkCOx2OxKJBLq7uzE0NITe3l6MTUxAFEV867vfQ0tTI5qbGtB1pBNGo7FoBu/JJ4Qq/nhr4wLmOJtQTmRZRigcxvTMLIZHRnH12g08Hh7B8OgoxEQC5eUeHDp0CJcvX0Z7ezuOHDmCyspKmM3mrW+ciIhoG7EllohoH5AkCcFgED/+8Y/x7rvv4pvf/CZisRhSqRQ0Gg2Odh7GqRPH8A+/+BtwOZ0wmc3Q7sT8nwUJ2Lap/bKY+vTmWJbswb4kScLo2Dhu3r6LN3/5Dt778Cri8Ti0Wi3Ky8vR2dmJz33uc/jsZz+LqqoqtrwSEVHJYBBLRLQPKNOpxGIxhMNh9PX14ac//SneeecdXLt2DYIgwGg0oKGuDqdOHMPTly/h6UsXYDavN7dsdmS1fpRVuHhwlTUVU7C5WSv2YXM7pUyZ86CnFzdu3cHff/9H8Pn8iEQiSEkSWltb8dRTT+F3fud30NDQoKYOa7VaBrBERFQymE5MRLQPCIKgDv5kMpkAANFoFOXl5XC73RgaGsLY2BjGJyeh02mRTKYQi8VQX1eL5qZGuFxO6FakGD8JemQI64ZcWwmPloZzwsrnt7kRdkdiZGHZNmVBTY/eaPvKvWifz48Frxd3ux9g4NEg+gYGMDE5BZ1OB09FBU6fPo329nacOXMG7e3tcLlcMBqN27hTRERE24MtsURE+5goinjrrbfwk5/8BD/96U8xOjqKZDIJAOg4eBDnzpzCK5/4KA53tMNkMqrTrOx4q10ukeS2pibnMSjTlsuRtYINRqtSWtglScKD3j7c636Av/hvf5lpfY1GodVq0dDQgCNHjuCP//iP0dbWhrq6uq0UjoiIaNcxiCUi2sdkWUY0GkUwGMTCwgJeffVVfPjhh3j77bchSSkYjUY47HY8c/kijnUdwcsvPAe73Q6drrgSeXZ/6p0tlCCPty5fdGZ2DhMTk/irv/sWBoeHMTE5jUAwAJvNjoqKCvze7/0ejh49iqNHj8LtdsNgMBTdZ0dERJQv/iUjItrHlBRjs9kMt9uNS5cuwWKxwG634+7du1hYWMDk1DTuPehBNBaDLAMdB9vgKS9HbU11QQcDyjsMzHrDRt1Jt2P6HWGd33KXQ8GW7WcimUQ8HsfwyCgePR7C4PAIunt6seD1IRKN4uDBdrS2tqKjowPnz59HU1MTW1+JiGhPYUssEREtEQ6HsbCwgD/90z/FjRs3cOXKFaTTaWi1WhiNRnzmlY/j1PHj+OTHPgK9Xp9jIFuAtlJlFbs0kNOWA+HNZCovvpb9p9ofCGJmZhZ//Y1v4drN23j0eBCyLGdazR0OfOUrX8ELL7yAZ599FgaDgQM2ERHRnsMgloiIlpAkCZIkYXZ2FpOTk+jr68NXv/pVdfAnl9MBt8uFlpYmvPKJj6H9QBsOtR/cVCCbyzObVuBgt5Cry3ddmSmSQnj3gw/x9nsfoK9/AJNTM4jGYhAEAc899xyee+45XLhwAQcOHIDdbofNZlMH9CIiItpLmE5MRERLaLVaaLVa1NfXw263w+l0YmRkBP39/bh//z6GhoYwMzePSDSKCo8H8wtexGIx1NXWwmG3wWRaa1qelc/l8sym5buqDSLL3FenNJ+u/aZc15VMJuEPBDA+MYnJqWl8eO0G7nf3YHxyEgaDEW1tbaitrcULL7yA8+fP49ixY3A4HOoAXERERHsRW2KJiGhdyp+J4eFhvPPOO/iP//E/YnBwEH6/HwDgsNtx9Mhh/Oavfx5HOw+jsX5p/8uCtAQuCQjlJVPQFJLyB3HVVW9ry27mNxnI5C0vCgSDuHHzNr71999Dd08vpmZmAQBGoxFdXV34whe+gOeffx4nT56EdsUUSERERHsTg1giIlqX8mdCFEUEAgEMDw/j8ePHeOONN/Daa69hfn4eBoMeVZWVqKmuwrNPXcLlC+fR3NQAo9G4uSB2jYAx3/lbtzJY1GpPrtYvttAp0XFRxMKCF6+98Qs87H+EW3fuYn5hAWIiAYvFihdffBEnT57Eyy+/jMrKSrhcLlitVqYNExHRvsF0YiIiWpcSHJlMJhiNRrhcLlRUVCCRSCAUCmFwcBAjIyMYG5/A/PwCLGYTjAYjAsEgmhob4HDYYTaZlqxr02VZ4/FST4LIvIPLjV5Wpm/NWnTl3LD572M6nUY6ncbc/AIWFrwYePwY127exuPBITweGkZZWRnqK6tw5MgRPP300zh+/DiOHz9e0NGhiYiISgVbYomIKC/ZfzbGx8fx4MED/Kf/9J9w7do1zM5m0l3tdhtqqqrwxd/4As6fPY221pYlgwzlMCDvKs+t/HetN+ffFrravDzZTy17Xf11862u2atIppKIxmL47vd/jNt37+Fnr7+JVCoFANDpdPjYxz6GCxcu4A/+4A9gsViWzPXKIJaIiPYbBrFERLQpsixDFEWEw2GMjo7i9u3b6Onpwd///d/D5/MilUqhtroabS3NaGluwiuf/Bhqqqrgdrt2u+hFQZZlpNNp3L3/AH39A3j7vQ8wODwCv9+P+QUvOjo60N7ejs997nM4ePAgqqqq0NjYCI1Gw4GbiIhoX2M6MRERbYogCDCZTDCZTPB4PLBaraisrMTY2BgGBgYwMzODoZFRBEMhTM/Ooq6uFm0tzaivq0VlhQc6nW7JYES5tWmu3yt2W6aQLfSATrKMWCyGcCSCBa8Pt+/eQ3fPQ1y5dgOJZBJGoxEHDhzA2bNn0dXVhRdeeAHl5eUwm82FKwQREVEJY0ssEREVhCzLkGUZqVQKr732Gq5cuYI///M/RyQSQSKRgCAIONTRjqOHD+H3f/cfwuMpg8Nu356yYBuC2QJtJ51O4153D65dv4nv/egnGBwegSiKAIDGxkYcP34cv//7v4+zZ8/C4/Go72PaMBERUQaDWCIiKhglkJ2ZmcH8/Dzu37+PK1euoLu7G++99x7MJhMcdjsOtR/EoUMHceTwITx16QLMJtM6rbJZowOv8fxOWbu/7gbvk2UEgyE8GhzC3fvdeO+DK5icnsbk5DTSsoy6ujpcvnwZL7zwApqbm3HgwAG43W4Yjcbt2REiIqISxnRiIiIqGGXwppqaGlRWVqKhoQEWiwUOhwNTU1Pwer1Y8Pnw3odXsODzIRKJoqaqCp7ycjicdlgtlsyIu0vXunJDMlbOdbP0xWWPts+apVgM6OOiiGg0iuHhUdztfoD3P7yKq9dvIiVJsFgsaGlsRGdnJ1544QV85CMfgcfj4ZyvRERE62BLLBERbQvlz4ssy0gkEnjw4AFeffVVvPbaa7h16xYkSYJWq0VdTTXOnTmFl154Ds9cvriFvp/bELJuYZWZga8SuNf9AFdv3MTffuM78AcCEBMJAEBraysuXbqEf/bP/hmamprgcrnUlGGmDhMREa2NQSwREW07SZLg9/sxMjKC4eFhvP3227hz5w66u7uREEWUl7lRV1eLc6dPof1gG04e64LHU75kKpndk38kOzM7i6mpGfz8zbcwPDKK0fFxDA4OZwa/qqrCpz71KRw4cACHDx/GkSNHYLPZYDAYtqf4REREe0wx1A6IiGiP02q1KC8vR1lZGTo7O2Gz2WCxWCCKIh4/fozZ+QWMTUwiGAxhfmEBVosFMgCbzQqL2ZxJMRYE7EY/WHV7G2w6lZKQklIIBkMYHBpGX/8j/PS1N+Dz+RGNxeB0OtG4mDr8mc98Bs3Nzaitrd2RPSAiItpL2BJLREQ7RvmTk06nIYoiQqEQvvrVr+Ldd9/FW2+9hWQyCY1GA4Nej4+8+DxOnzyOT33sZdjttu1tlS1AbDw1M4OxsQn857/4Gh4PDWNqehqSJMFms8Pj8eCf/tN/ijNnzuDs2bPQ6XRZgTkRERHlg0EsERHtCkmSkEwm8eDBAwwODuLhw4d44403MDY2hpHhYTQ21qOmuhqH2g/iwtkzaGioQ8fBA+rgUcUgkUggFI7g+s1beNDTi8dDw7hzrxvhSASSlFbnej127BjOnTuHqqoqVFVVAWC/VyIios1iOjEREe0KrVYLrVaL06dPo6OjA+fOnYMoirh9+zYCgQAmp2YwNT2LB719SKVS6Ap2wlNeDqvVAr1eD51W+yQQ3LAlVQZkYXPz4yx/y+Kow6IowucPYHp2Fm+/9wFu3LqNoeER6HR62O12lJWV4ZlnnsHTTz+NS5cuwbyYFk1ERERbw5ZYIiLadUpgmEgkMDk5iQcPHuBP//RP8ejRI4yPj0Ov18Fut6OlsRG/+eufR+fhDrVVdqdJ6TT8/gDeevsd/PS1N/HgYR+8Xi+klAS9wYBnnnkGn/70p/Hiiy+iqakJBoNBnTKHra9ERERbxyCWiIiKSigUwvz8PN5//308evQIt2/fxrVr1xAJh2E0GnDs6BE01NfhWNcRHO86iqqKClitlm0PEEVRxPTsHO7df4Dh0VHcvnMPA48H4fX54XA40NXVhfb2dly6dAmHDx9Ga2sr7HY7W1+JiIgKjOnERERUVOx2O2w2GxoaGjAyMoLm5mZ4vV4MDQ1hfn4ev3z3fdhsVgwOj0Cv0wOyjNqaGuj1uk23eK6VVSzLMtKLLcSBQBB9AwP48c9fR8/DPoyPT0Cv18NqteLgwYP4+Mc/jmeeeQYnTpxQy0FERESFx5ZYIiIqOtmjGCeTSczNzaGvrw/f+ta38JOf/ATT09MQBAE2mxWVFR584uWP4IXnnsbBtlYYjcaCtcrG43HMLXjx3e//CN0PenDl2g2IiQQAwGq14pOf/CQuXryIL3zhC7BYLDAYDNDpdEwbJiIi2kZsiSUioqKjBIFarRYajQYVFRUAgE996lMoKyvD48ePcePGDczPz2NqegYfXruOSCSCluYmnDxxDNWVlXA6HUvWlat0Og1JktD/6DEmJqdw9/4D3LpzF1NTM4hEo2hubkZdXR0uXryI06dPo62tDWVlZZwyh4iIaIcwiCUioqImCAJMJhMaGhpQX1+PEydOoKenB8lkEjdv3sTs7Cyu3biFh30DqK6uRDot49TJYzCZTNAb9NBg40A2u+U3kUwiGo3h2s1buHOvGz977U1IkgSNRgOr1Ypjx47hzJkz+L3f+z04HA4YjcYdOApERESkYDoxERGVDFmWIUkSUqkUwuEwrl27hrt37+K//Jf/goWFBYiiCIvFjLaWZhxoa8Xv/PZvoKa6Cm6Xa8P1yrKMazdv4e69bvz4Z69jYmoK0WgM8XgcR48eRVdXF/7RP/pHasur1Wpl6ysREdEuYEssERGVDEEQoNPpoNPpYDKZ0NnZCZvNhnA4jAcPHmBkZAQ9PT0Yn5hELB7HD3/yM7Q2N6OxoR5HOg/BaDRCr3vyp0+WZfgDQczOzmFweBg3bt3G46ERjI6NQwZQWVmJQ4cO4cKFC2hvb8fhw4dRVlYGk8m0eweBiIhon2MQS0REJau5uRmNjY04e/YsXnvtNVy5cgXj4+MIhcNY8PrQ1/8InYc70HWkE1WVFSgrc0NjsUCj0aituhOTU7hx6zZ+8JOfofdhP0RRhEajQWNjI44ePYovf/nLePrpp1FZWbnbu0tERERgOjEREZU4JRU4Go0iHA5jaGgIP//5z/Hhhx/iF7/4BTQaDYxGA2qrq3G86whOnzyBC+fOYGh4BFdv3MIbb70Nr9eHcCQMjUaD5uYWvPTSS/i1X/s1NDY2oqysDGazGTod7/sSEREVA/5FJiKikiYIwuJ0OzaYzWYYjUaEw2E4nU5otVoMDw9jamoKo2Pj0Gg0iIsifIEApqZn8LCvH2OL873W1zegq6sLBw8exIULF9DR0YGysjIGr0REREWGLbFERLQniaKIGzdu4NVXX8Xrr7+Onp4epFKpFctpNBocOHAATz31FP7oj/4ITU1NcLvdu1BiIiIiygWDWCIi2pPS6TRisRj8fj/m5+fxgx/8AO+++y7ef/99xGIxOJ1OVFdX4w//8A9x6NAhtLe3w+PxQK/Xs/WViIioiPGvNBER7UnKvK5msxnl5eW4dOkS5ubm0Nvbi8nJSZSVleHo0aM4ffo0mpubUV1dvdtFJiIiohwwiCUioj1No9HAZDLhxRdfxPT0NLq7uzE7O4vW1la88sorOHLkCOx2+24Xk4iIiHKk2e0CEBER7RSNRgOtVrvbxSAiIqItYBBLRET7ikajgSAIAKD+T0RERKWDQSwRERERERGVDAaxREREREREVDIYxBIREREREVHJYBBLREREREREJYNBLBEREREREZUMBrFERERERERUMhjEEhERERERUclgEEtEREREREQlg0EsERERERERlQwGsURERERERFQyGMQSERERERFRyWAQS0RERERERCWDQSwRERERERGVDAaxREREREREVDIYxBIREREREVHJYBBLREREREREJYNBLBEREREREZUMBrFERERERERUMhjEEhERERERUclgEEtEREREREQlg0EsERERERERlQwGsURERERERFQyGMQSERERERFRyWAQS0RERERERCWDQSwRERERERGVDAaxREREREREVDIYxBIREREREVHJYBBLREREREREJYNBLBEREREREZUMBrFERERERERUMhjEEhERERERUclgEEtEREREREQlg0EsERERERERlQwGsURERERERFQyGMQSERERERFRyWAQS0RERERERCWDQSwRERERERGVDAaxREREREREVDIYxBIREREREVHJYBBLREREREREJYNBLBEREREREZUMBrFERERERERUMhjEEhERERERUclgEEtEREREREQlg0EsERERERERlQwGsURERERERFQyGMQSERERERFRyWAQS0RERERERCWDQSwRERERERGVDAaxREREREREVDIYxBIREREREVHJYBBLREREREREJYNBLBEREREREZUMBrFERERERERUMhjEEhERERERUclgEEtEREREREQlg0EsERERERERlQwGsURERERERFQyGMQSERERERFRyWAQS0RERERERCWDQSwRERERERGVDAaxREREREREVDIYxBIREREREVHJYBBLREREREREJYNBLBEREREREZUMBrFERERERERUMhjEEhERERERUclgEEtEREREREQlg0EsERERERERlQwGsURERERERFQyGMQSERERERFRyWAQS0RERERERCWDQSwRERERERGVDAaxREREREREVDIYxBIREREREVHJ0O12AYiIiDZLkiRIkoR4PA5ZljdcPhaLIZVKQZZlSJKEWCyGUCiEdDq97vsEQYBWq4XFYlF/JyIiot0hyLn81SciIipCPT09uHv3Lv7kT/5kw0AUACKRCEKhEOLxOEwmE2w2G6xW64ZBqd1ux8mTJ/Gf//N/hlarhUbDRCYiIqLdwpZYIiIqWU6nE3a7HQsLC4jH45Akad3l0+k0JElCOp1GLBaDKIrw+/0bbufw4cMwmUzQaDRshSUiItplDGKJiKhkVVdXo6GhAXq9HuFwGPF4POf35tJyq6ivr0dzczODWCIioiLAfCgiIipZGo0GLpcLH/vYx1BTU7Nt27lw4QIuXbq0besnIiKi3DGIJSKikiUIAsxmM44ePQqXy1Xw9Ws0GlgsFtTX16O2trbg6yciIqL8MYglIqKSZrFYcP78eZSXlxd83Xq9Hm63Gy0tLWhoaCj4+omIiCh/DGKJiKikWSwWnDhxAm1tbaisrCzouisqKvDJT34SHo+HIxITEREVCf5FJiKikiYIAiwWC2pra9HY2FjQgZdsNhuOHj0Km80GQRA4qBMREVERYBBLREQlTQkuDx48iJMnTxY00HS5XLh8+TKcTmfB1klERERbwyCWiIj2hGPHjuGpp54qWNpvZWUlmpubcejQIVgsloKsk4iIiLaOQSwREe0JFRUVaGhogN1uh16v3/L66urqUFdXB4vFAq1WW4ASEhERUSEwiCUioj2hsrISLS0taGxshM1m2/L6zpw5gxMnTmy9YERERFRQDGKJiGjPsFgseOGFF1BXV7fldZ09e5ZBLBERURFiEEtERHuGwWBAZ2cn3G73pteh0+lgt9tRV1dX8Cl7iIiIaOsYxBIR0Z6htMTW19dveh02mw0dHR1oampCRUVFAUtHREREhcAgloiI9gydTofq6mq0tLSgra1tU9PtVFRU4LnnnoPD4eC8sEREREWIQSwREe0ZGo0GFosF1dXVaGho2FQQ6nA40NnZCZPJtA0lJCIioq1iEEtERHtOZ2cnnn322bynxhEEAdXV1XjppZfgdDq3qXRERES0FbrdLgAREVGhtbW1IRqNQq/XI5lM5vy+1tZWtLa2ory8HDod/0QSEREVI7bEEhHRnlNeXo6mpibYbDYYDIac3iMIAhobG1FbWwuLxQKNhn8iiYiIihH/QhMR0Z5js9lQXV2N06dPo7q6Oqf3CIKAp556CqdOndrm0hEREdFWMIglIqI9RxAEGAwGnDt3DjU1NTktr9Pp0NXVhba2th0oIREREW0Wg1giItqT9Ho9jhw5ktNcrzqdDlarFY2NjaiqqtqB0hEREdFmMYglIqI9yWw246WXXsLBgwdhNBrXXbaqqgpPPfUUqqurYbVad6iEREREtBkMYomIaE8SBAFWqxV1dXU4ePDgutPteDwenD59GmazeVNzyxIREdHOYRBLRER7ktIvtrq6GgcOHFh3tOGysjIcO3YMJpNpB0tIREREm8EgloiI9rTDhw/j5Zdfhl6vX/V1k8mExsZGPP/880wlJiIiKgEMYomIaE+rrq7G4cOHYTabV6QUC4KAtrY2NDQ0cG5YIiKiEqHb7QIQERFtJ4/Hg3Q6Dbvdjmg0ilgspr4mCAI6OjrQ2NgIg8Gwi6UkIiKiXPGWMxER7Wl6vR52ux3PP//8ijlgtVotXnzxRZw4cWJ3CkdERER5YxBLRER7miAI0Ov1OHr0KKqrq9XntVotzGYz2traljxPRERExY3pxEREJUKW5U0/t1PL57NMId6Tq2QyiY6ODty8eVN9TqfTwWw2o66uDk6nc0macaFtdtqejd632uvrvWc7l+fUREREtFMEeTtrDUREVDCpVAqJRALJZFIN+MLhMCRJUl+XJAnxeBwAkE6nEY/HIUkS0uk0ZFlGPB5HIpEAAEiShFQqBVEUIcsyZFlGLBZbsnwymVSDu3Q6rS6fTqcBALFYDKlUSv0dgLqeZDKZ874lEokl691IOp2GKIpLjsVGy4dCIczOzmJ2dhZApiXWYDCgs7MTRqMx5yDMaDRCp9NBp8vtPrBWq4Ver4fBYMhpG4IgQKvVwmQyLRmIShAEmEwm6HQ6dQAqk8mkrlej0aity8p2lMGslPXo9Xr1dWV5k8mkrm/5vmm1WthsNnX7er0eer1efd1gMKi/M4glIqKdwiCWiGgdSjCnBIjKTzqdVoNA5XclmFP+Vx4rv2e/P3uZZDK54vXlyyjrUbaniMfjauCnvE8JHmVZRiKRUPcByASLqVRK3bf1llf2W3k9e5+VbSaTSXX/s4miuKScG8k+TrlQAmxJknJuGVYCcCXIV4JFu90OjUaTcxCm1+uh1WpzHslYCSJzDXqVAFOv1y/ZhhJEarVatawGg0ENIJX3ZQfLBoMBGo1GXY8SuK+1/PJ902g0MJlM6uvKfihBsfK78pzyu7JNZR+UdWYvrxz/7Pdmvy/7PdnLrbfutaZRIiKivYVBLBGVvFxSXjf7uxJARqNRNQBKJBJqy2EkEkEymUQikUAsFlvyv9KKGY1G1WXi8ThEUVRbKpPJJMLhsNqqKIqiup3ly2zl6zrfVrLtXn475FIG5RhKkrQkuMv1fbsp3zJs9/LZNBoNjEYjTCYTzGaz2mJrtVphMBhgNBphNBphMBhgsVjUFmWDwaAuo7Qq6/V62Gw29bHRaITZbFb/1+l00Ov1cDgc6naU9VssFrVMy8+Hrf6+0fNERLRzGMQSUclTWguVYDAWi6mPo9EoIpEI4vE4IpEIIpGIGnwqgWk4HEYsFkM8Hkc4HEY8HlcfZ7c0Kq2TG/0orYnK40K9ZzXZKaHK70rlPzvlVGn5yk45BTIVciWFVFleCTqU1rrVUk6zWxa1Wi0sFsualXultTC7BXE9Sitbvum3ynbWMz8/j8nJSfzlX/4lzp07h89//vPrBrLL06xzJYoiEolEzoGhJElq6/Vq71Fa4EVRVMullEk5Z5SbK8r6lOWV9S1PFU+lUmqquNIKn90aHo/H1SwBWZYhSdK6/YaV8yX7R2nhVn4ArHgul/ettczy7Wo0GjXgtVgssFqt6mObzbbieavVCovFAqPRCJvNBrPZDJPJtOSx3W6HyWSC0WjMq8WeiIi2Dwd2IqIdpwQGiURCrWgrFWilBVNJ/VQeK8GkJEnq+5THyutKC2h2S6cSkCqtoMsfK+9TyqCsQ3mcnSqbHdRpNBo18MtOi8xOf8xOdVz+fPZr2evJTsVcnk6pVNKz+x8qrytznGannGYHpdnvVwLdtZZXWreyg4PsPqPK8kpKqZJyupbs9ecaxCqpobkGDNkpqOsJBAJoaGjA3bt3cezYMRw/fnzDbciynFd/XeBJ2nY+QWx2wLja60rq+fIyKdeTcq0AS1PFlfUpy2cHpUrQqwS12WXO3gclUM4OirMDaKV82Wnxyu/LU+yzf89eTnlOWWd2qv5q68lO689mNBqXtODq9XqYTCa1pVd5rPQPVpZXHhsMhiWPLRYLDAbDkv6/yvmpXPfKY+Xmi/Kc8ljZhtL6nMu5SkREa2MQS0Sblu+otgqlMhoIBBCNRuH1euH3+xEOh+Hz+RAMBhEOhzE/P49QKIRoNIpgMIhoNIpYLIZAIIBYLKY+zq685yqf1pTs4FWpkGZXipUKs9VqVSuuymsWi0UNCpWWHaVCvHwZnU6nthBlp0hmp1Eqy2QHnbIsb6p1aK33bXZ922GjsuRS1uxllJsnU1NTaGtrQ0tLS0HLW4wK/Xkq13Y8HlcDXyVlPplMIhKJqDeClB8l60G5ORWNRtUbTsoyyvuUm1lK1oRyYyuZTCIUCqmPldT8eDy+JFshe30b7UO+lBZai8UCh8Ox4rHNZkN5eTmsViscDgfcbjesVivKy8vhdDphsVjgdrvhcDg2zDTY7GtERPsB04mJaNPS6TT8fj8ikYgadIbDYYRCIXi9XoTDYQQCAXi9XkSjUQQCAQSDQTXdN7t1JbtVZflASctbbLJ/stMvldY4s9msBoNKJVMJFpXHVqtVbW2xWq1quuDyx0qQarVal6Q4Lk93VFo410uJXG2Z5cvl+hjIvSJbqCCmmILbzVKCHa/Xq6aNUv42SodfnhK/1u/Zz292meyBz7KDX6ULgRJEK4Gz8lgJppVMDKXbwfLH0WhU3e/sazg7qyL7Z7WMjOwMC6WVVunXa7PZYLVaUVZWpv5eVlYGu90Ou92uBsV2ux0VFRXqTTAiov2MQSwRqZQUQyXNVqnELX+spOomEgn4/X7EYjFEIhE1oFUex2IxBINBteVUCXCVdF8lKFNaIZVUu+x0PeX57Iph9qik2SObLh8IJjt1UEkRVNIIlX5wSnCrtH5mP589QI0yLUmhgri9EBCWKiUAWv55budnws9765TqyvLjqKRCK+nTy7sVKN0HlO8tpf+70mVA+b5TAlvl+ezH2SOGr/c4u+uD8jj7f+V55ftLCWDNZjOcTqf6e/Zjl8ul3oArKytTv9OU7zIlM2T5Y+V7T+lKwPOPiPYSBrFE+0Qul7okSYhGo5iZmYHP58PExARmZmbg9/sxNjaGubk5+Hw+jI2Nwev1IhAIqH3qNkNpkXC5XHA4HLBarfB4PLDZbGrandPpVFPzzGYzzGbzqo+VAVpyHW1WOSas2NFyO3VelNL5t1+PSfbAXspNOWXE8WAwqLb2hkIh9Uad3+9XM0+8Xq96U0/pPhEMBrdUJiWTpK6uDm63G1VVVairq4PL5UJ1dTVqa2vhcrlQW1uLiooKWCyWvKZ3IiIqBQxiifYJJdVuYmICfr8fMzMzmJychN/vx9TUFKanpxEMBrGwsLDqIEvLB1zKnq/UZDKprQTKKKDl5eWwWCyw2+1qS4LSuqCkcdpstiWDoyyfHzK7lXW1AZGWD36U68BBxVZR3mnFvP/FUrZ8yrG8zy2wf4OB5fuf63Esls99OWV/VuvWoAx6tXzu6OVzPS9/rKQ0x+NxhEIhtd+/Mi5AJBLBwsKCmtWiBMLKKOrAk/l+lf9XG0xKGWXcbDajpqYGlZWVcLlcqK+vR0VFBVwuFxoaGuByufKeK5mIaLcxiCXaI5RLWUnzXT7dTCwWQygUUgPX2dlZTE1Nwe/3Y3p6GjMzMwiFQvD7/WrQmD2iZvZjZcoWpcKk9DtVglilf5cSxCoDmij9vUwmE6xWK6xWa84tBLns/073ES20Yi3XdtsL+70X9qHQeE2uvj4l40UJYsPhsNpyqzxeWFhQpwfz+XxqQBsOh9X0ZOVmYvZjZVAr5bEgCDAYDKiqqlID17q6OpSXl8PtdqOurk7ti+twONQ0ZeV7WklNLsbPhoj2NwaxRHuEcinPz89jenoad+/exejoKAYHB3H37l3MzMxgYmIip2lC7HY7bDYb6urq1Lv3tbW18Hg8cLvdqK+vR1lZGdxuNyorK5fMMZovVo6I1rYTwV2xBpB71VaqXcrNyIWFBTWrZvkNyenpafVxLlNDKTciu7q60NzcjObmZhw/fhyNjY1oamqCx+PhdEBEVHQYxBKVKGXOyMePH+Px48cYGhrC9evX4fV64fP5EAqF1MFMlMGURFFUp4HweDyoqqqCw+FAZWUlKisr4XQ6UVtbC7vdvuQuvDJgiJKmlv28Mk1EvpXg3Wil2S+V9UJMS1OI7RTLOotFsbdM8prcPoWaKkpJY1ZaX5XMm+zpi5SuH0raciQSUbNtfD4fpqen1WnNxsfH1bRoZfogs9ms/g2wWCxoampCbW0t2tra0NXVhaqqKjQ0NADgTUgi2j2cJ5aohCiVl7m5OXXU397eXvT39+PRo0f48MMP1eBVGZnSaDTC4/Gojx0OB+x2OyorK1FbWwun04mqqirU1NSo/aWU+U63U77ztG5kvUrgaiPR7oTVylSISvtG87tu1B+xUMdhO47nWsdrt/tWbtTXNZftFvqcLzRek4Vdb/bzhbgmlWl9lK4euUwPpYwcPzk5icnJSXi9XkxOTmJ+fh4+nw81NTWIRCLqYFWJRAKBQADT09PqGAj19fWoq6vD+Pg4QqEQ6urq4PP54PF41JGUc90HIqJCYUssUQlRBmH62te+hnfffRe9vb0IhUJL0tOU6WAOHz6MhoYGtLS0oKurC7W1tWhtbUVZWdmOj1S5260tuVSmd7MMVDyWD9K0U1Pw5KKQ2y/mfeE1WTjrVfGUkZfn5uYwOzuL+/fvY3R0FCMjI7h37x5mZ2cxMzOzIh3Z4XCgrq4Ov/Ebv4HTp0/jox/9KAeFIqIdxyCWqATEYjEMDAzg+9//Pm7evImenh7Mz88jEonAarWioaEBdXV16OrqQk1NDaqrq+FyudSpZ5xOpzqYksFgWNF/db2K+3bZje0UU6V1L8xJWkzHsxByTencq+ftXt63XOy3a1Kp/ildTZQpgLIHmfL7/ejp6cHExASGh4fR39+PZDIJvV6v/t05efIkvvjFL6K1tVWdT5uIaLsxnZioyKXTaUQiEdy8eRNvvfUWbty4gVQqpQ681NDQgAMHDqC1tRXnz59HfX09amtr1QnuV7O8orPW4+20lZS+fJbd7n3bbOV0O49zoVu4tjstuVjk0uqazz5v5ZzmNbl5vCbzK5My/oGSFqwQRRHRaBTV1dUYHh5GRUUF9Ho9fD4f/H4/Hj9+jPHxcUxNTeHMmTOwWCxoaWnJe1+IiDaDLbFERU4URdy/fx8vv/wywuEwNBoNjh49ik984hO4dOkSzp8/D51Ot2r/sr0WZND6Chl0FFMLGVGpKuVrUqkeZv8fjUYxNDSEt99+G1//+tcxNjaGcDiMl19+GU899RT+zb/5N/zeIKIdwZZYoiI3OjqKgYEBRCIRAEB5eTm+9KUv4dixY2hqaloyh99+qTwU+yiv2yGfgYMKMcjQbgyiVOzry3ede+Xcy8V+PC57/ZpUBlRTup/Isgyz2YyGhga89NJLGBsbw507d/D++++jr68PFRUVBdkuEVEuNjexIxHtGJ/Ph7m5OSSTSQCA0WhEU1MTXC4X9Ho9kskkJEkCsLX5B0tJsY/yuh2KcZ8LvZ1iX1++69wr514u9uNxKcZ93q5rSBkEKplMQqPRwOVyobKyEm63GwAwMzODmZmZgm6biGg9bIklKnImkwlmsxkAkEwmMTIygi996Us4d+4cjh8/jldeeQUNDQ2oqqra5ZLuX3ulZQnYmX3h8aLttpc+l2K4JiVJQiKRwNWrV9Hd3Y3XX38dN2/eRDAYXLIOIqKdwiCWqMhl93VV+r5GIhH09vZibm4Og4ODqKyshMfjQXt7OyorK1FVVYW6ujoYjcZtn++Viq9laSuV3u0auGiz2yh2e2lf9pJi+1xK6ZpMp9Pw+/3w+XyYn5/Ho0ePMDs7i4mJCYyPj2Nubg6jo6OIxWLqe3Q6Hf/WENGOYhBLVAKyg1iDwQCdTodAIID5+Xncu3cPdrsdLpcLly9fRltbGw4cOKCOYGyxWKDX66HVaqHVaqHT6aDRaNR5/Yqtsrfd9lILzVpKNXWxGO2H82W37YdjXGzXZDqdhizLSKVSkCQJ6XRa7ZqSSqUwPj6OyclJDA8P48MPP1Sn10mlUhAEAQaDAXa7HalUCn6/X/37QkS0UxjEEpUQl8uF1tZW/PN//s9x/fp13L17Fx988AHi8TjGxsbw7W9/Ww1QtVotXC4XqqqqcOTIEdTW1qK1tRVtbW3weDyoqamB2WzedxWPvV5ZpsLi+bL9eIx3XjgcRjAYxNDQkBqwdnd3Y2xsDBMTE/B6vUilUpBlWQ1y0+k0amtr0dTUhDNnzuD06dN49OgR/t2/+3e7vTtEtA8xiCUqIYIgwGg0oqOjA06nE0ePHsWlS5cwOzurphZ7vV51Hj9JkhCPxxGLxWC323Hnzh2UlZXBYrHAbrfD7XbDYrHA6XTC5XLBarXC6XTCbrfDbDbD4XDAZDIxTYyIqMgpAWckEkE8HkcoFEIwGEQ0GoXP50MoFEIkEoHX60U4HFafDwaDCAaDmJ2dVR8nk0lYLBa4XC40NDSoNz6bm5vh8XhQW1sLs9mMubm53d5tItqnGMQSlRidToeGhga0trZClmUkEgkMDw9jaGgI77zzDkZGRjAyMgIgMxBUPB7H0NCQeiddSSMDgIqKCrhcLtTX16O+vh7l5eWor69HVVUVnE4namtr4XQ6YTabl6Qfr/cYeNKystuDkRDthv18Xu7nfS805Xta+c5e/qM8n/3dnkgkMDc3h2AwiJmZGUxNTcHn82FkZARTU1NYWFjA8PAwYrEYEomEmrmjZO9oNBrodDrYbDZUVFSgvr4eZ8+eRVtbG7q6utDW1gaj0QhZljE8PAyj0bjLR4mI9isGsUQlzmAwoK2tDS0tLXj66achSRIkSYLf78f09DRGR0fR09ODqakpjIyMYHh4GKFQCIFAAHNzc1hYWMDQ0NCSyowSmGo0GhgMBphMJtTU1KC8vFwNbt1utzrNgsPhgMPhQEVFBaxWK+x2e94V2ezKb64V4Y2WyWU9W61071alfTPHa7vtRpkKvc1CrGMz86VutN3d+Ix5TW5+u4UogyRJSCaTmJ2dVdN/Z2dnEQqF4PP5MDk5qY6NMD09jVAopKYBrxbgZv8oWT21tbWoqalBVVUVOjs71Rua7e3tMJlM6hgMSp/X/db9hIiKF4NYohKWPeATkAlogUwFymQywWq1wu12o6qqCsFgEF6vF16vF9FoFIFAAIFAALFYTE0hi8ViCAQCiEQiEEUR4XAYgiBAp9MhFothZmYGZrMZg4ODsFgsMJvNsNvtMJlMMJlMsNlsMBqNMJvNsFgsMBgMSx4ry+n1ephMJnX05OWPlSC6UMdHsVrFcqcClkLL3m4xBLDA7pSp0NvcyWO5XtmXn6s7fUNgo/Jt1n66JpWBk1KpFGKxGERRRCqVQjweRzweVzNlRFFEIpFANBpVf49GoxBFEfF4HOFweMnjeDyOaDSqfmeHw2GEQiH1eWUAP5vNBpvNBpPJpHYTUbqP2Gw29e+D8lp1dTVcLpd6c1IZBJCIqBgxiCXaQ5QKoSAIMJvNMJvNqKysxKFDh5Ysl0gkEIlEMDIygoWFBYyPj2NsbAwLCwsYHR1V+0bNzs6qd/WDwSACgQCATHqbsj3lJ3v7Wq0WZWVlcDgccLvdqKiogM1mU1tvrVYrXC4XHA6H2u/K6XSqj5XRlJenJa+WprzRMtsdCBRLK+hOWm+f9/Lx2My+bdc0RNtRls1+blspS7Fck9lznGZ/n+Xy//Lnsh/HYjHE43F4vV61f6rf71dvFvr9fgSDQYTDYczNzam/z83NIRqNLpnGRjleyr5ld99QfpR5xS0WC6qqqlBTUwO3243GxkbU1tbC4/GgubkZlZWV6nftXr1eiWhvYxBLtIfkWhnR6/VwOp3o7OxEOp1WU5DT6bQatCr9q5SBP6anp+H1euH3+zE1NaVWtubn59WWXK/Xq07RMD8/j4WFBYyMjKgB6fJU5ey+tNnPm81mmEwmuN1uWK1WdSAqpSV3eeuvUnHLbgm22+0wGo2wWCywWq0rAuOdPua7YbsCyu0IhDZSqsFxocpciJbZ7Tp++ax3Jz7HzaxflmV1EDxRFNWWzVgspj5WBksSRVFtAVVaTZXHsVgMXq9XzXARRXHFeATLHyuBryRJK14HoH7PORwOlJeXw263w+l0oqamBg6HAx6PB1VVVXA4HGpwajAYlvRzVVKBlT6vyncuEVGpYhBLtAfl0uKizPW33jrS6TRcLhdisRgqKyvVES39fj8ikYhawYvFYmpFLpFIqJW/ZDKpVuwSiYT6WjKZRCKRUNPrlNeVQFqv18NgMGBubk7tl2U2m6HX66HX65c8VtKTlXTl1R4rqcpK/y6dTqe+X6vVLnm8fBmlwqek6GVXADUajfq+7Iqikt6920HXbm+/kIphX7bSZ3WrwVsx7H++1ksVzmV/lGBOuTGmfD9kz2uqLKO8rvQjVd6jfK8kk0n1eeVxKpVS/0+lUmpar5LmqzxWvsuWP87+Lst+rHTHiMfjSKVSAACtVguTyQSdTgej0ah+z2R/lyndLrIfKzfiTCYTLBaLetNOyWZRbtgpA/Ap/yvfQUREexW/5Yj2oEKkBSppwcqgTVVVVRu+V5Zlta+WMhiJ3+9f8tjr9SISiSAYDMLn8y2Z5kGpCAJQg9zs9a/2OJffgUzqXXa/3ez+Ykr/MJPJpKY4Ky2+RqNR/VFafJUKqMFggM1mWxIsGwwGWCyWdVMlV3s+1+fyeT3XZfJZjlZXiM9qNYVuuVzt2ij0Mmu9ls/z2f1JlRthSpCpBJfhcFgNQpXX4/G4GkRGIhG1D2k4HFZbS5XHyvNK/1Ml4FxuvRbwjV5TBkUym81qZkl2VwqPxwO73Q6r1aq2pirft8pjm83GVlMiomUYxBKVuHwruestX4gBVZQAsLy8fElLSvZjpZVXeZzdwhIKhRAOhxGLxeD3+xGNRtVWXiWlL/uxMidiLBZTK6/ZqX5Kn7J0Oq1WdLPTmJf/v9b0Qfn+ZLfsKq0tBoNBbWlRntPpdGprsxIIK63AVqtVbdnNXkf2SKEmk0n93IxG45KWYK1WC6vVqn42SuCtvJ7dAp2rYknrLZZyrKaYrsnlJElCIpFYErCFw2FIkqS+rswvrZQtHo+r1ygAtZUSgBpoKjedlB+lxTMSiagtl0pLZTQaVd+XTCYRjUbV15TlIpHIqtPK5PqzPF03O203O103+zUA6nWl3ODK7rKgtIAqN7OsVqvafSG7W4PSGqoEocpNMKU7Q3b3CiWLQ3le+Q7KzvjYjv7RRESljkEsUYnLt/Ky3f3ilMrZZtLZlEBTCTaVlGWl4pud3qe0yGSnLSstuUrwqjxW0g6VVhulgq08VirUy59X0g/X6zesPK8EAQqlQqrX65cEl0rQaDKZ1AqzEthmv64Et0pFVwlusyu3Siq00kqTPRUG8KT1WflclPUqry9fXgl0sweOye47l13RXu135T35fPbKNnNdNjsIyGX5XAMBhfLZ5mq1z349yjmTi+ybPcrv2X0nlfUpP4pkMrlkcKHsdSjXQXYZYrGY+n5lWSUjQpYzc1FnB3rZrZbZKbzZP9nBcPb1pYzOq7yutLQqyyg/ShCtyP4slfM4++ZTdlq/cl4vv542el65qaPcNMq+4aTcZFJuJimZGcufV9J+jUaj2p9fWWcx9EkmItorGMQSUdHQaDSwWq1q62EhyLK8akphKBRSW3FDoZA6vYUy7VA8HldTnJWWJ+UnHA6rrUhKwJ0dCCjbXa1Va7P7sBMEQVDn+FVak5XWXwBqYJ3demSxWNQgVAkwbDZbTttTghIl/TqX5ZXUzFzSK5V+39mtzxsJhUJLgsSNKDdXcqEEhMsDtLUo508kElHfnx0YAljSeqksEwwGlwS8ynm7UwpxY23556sEgkrLpxJAKueow+FQHyutpcqc1as9VlpOlVReo9Godh/Q6/Vb2n8iItp+DGKJaM9T5rR1Op1LWq6W/6w2Qmh22mH28wBWpCtmp0jGYjH1sdIarLQUK61PyvPZgUg0Gl3SYpXdB1BZVtmW0mdYGUk6lUqpwVcsFluRxr1R8KQE/IrlU3oorV5rvb7aMhvZzPLr9Tfe6vL5tKoCWNJCmQvlXNns8qtNa5X9+2pl2qh8Smt4dqv98lRzJWBcPoq48thqtaqtmtmp8dlZCMoo4dlZB0pLpZKRsDw4Vd6nnCOrjW6+/PfsZZaPjJ79k51JkL0MEREVPwaxRPtAKfaZKlSZlYrqdstuec1OmcweCVVJm5QkSQ1gs0dIVQJdZT3K8stHU1WCUqV1LTuAzk75VIJYJRBSgt7VpvFY/vtqaavZAZUy8I7yeHnfwrUs306ux3V5oLaefJdfixIA5XoeZgdMuVgefG207uw07uUBV3a66vLXV/s9e9+U35UWdyUlV0nZBaD2xc4O+JSgVwlol6fHK/8rzyuj5mb/KM8pga7SErp8mZ34/irW78mdKFex7jsR0VoYxBLtA6VYOSm1MiutWUpFvJAp0YWmBLRKQA1ATZvO7kMZjUbVYDC73yIAtdU4uwVbaf1dz/L0140owX92P8+N9i27FXorlMAs11RkJQDLNR01Oz17vfNdCRKV9Wan1ipBqMViWTIwkNKqCUDt72k0GtWgVFl+J27wlIpi/c5Zq1ybCTzXek+x7jsR0VoYxBJRTvKpMPGufnETBEGdDkgJDC0Wy4o01ewgMDutOvv1tZZfS64tttnLr5Yyu558U3zXks+AUNnL55PqnOs2spfLTptVZA/Olcvy+e4b7axcvkM38/nl8h5+fxNRKWAQS0Q5yadSs9sVoEJUwvZyRS6fQGu3bPfx5zmys3i887Ob+1nIll8iou3CEQyIaFNyaenazlF111v3ehWtXAe8YWVtdxUi4Nns+kv1HOE1SduJx5+IigmDWCLalFzn6dyN7edaEd7sOmj7bfX4b3Tu7cVzhNckbScefyIqJgxiiWjPKdSoxjthMxXD/VCZ3Ozxz/XYlNI5sheU0vHmNbk6nu9EVEwYxBIR7aLtGpyl0EqlYs+KNm0Vr0kiouLHIJZoHyjFikspljkfxbp/a5WrkBX7Utv3Ut9WoZRimfNRrPu3n69JIqK1MIgl2gdKsXWqFMucj2Ldv50oVyns+3ZX6ov1GKynFMucj2Ldv/18TRIRrYVBLBER0TKs1BMRERUvBrFE+8xqLUy7kUpW6HLs9vQixa4U972Uylzoc5fX5N5XivteimUmor2JQSxRiStEpWI3Wp0Ksc3sfd/t6UWWK5bKnlKOQu37Tu5XKU23UuhUZF6ThVcs58xevSaJiHYSg1iiEpdvpWK3A4Nc54vMRTFXqIqlbIUux17dr0LiNVmciqVse/WaJCLaSbrdLgARFZ4sy0U7TcR2bWOz+7zT69wusiwjHo/D7/ej7+FDzM3OIhKJIBqNQpKkJYGK1WrFxz/5SbicTlis1l0s9d6hnCuyLCORSODqlSu4c/v2kwUEATqdDl3HjuHpp5/Oeb28Jrd/nUREVHoYxBLtQVut5JViRXG18mYHFsUa1BeCLMuQZRlerxdjY2O4dvUqhoeH4ff54Pf7kUqllgSxZWVlOH/hAswmU8kEsTt5TiaTScSiUSRTKcjptPq8VquFxWqFXqeDRqtd8h6lbLIsI5VMovv+ffzwBz9YsozRZIJWq80riFXwmlx7naWkFD9HIqJixCCWiFbYK5UsZT/2yv6sRZIkiPE4/tt//a/o6emB1+tFejH4yicdtZgr2DtZroGBAXz7m99Eb08PIpGI+nxdfT1++4tfRGdnJ8rKy3esPMDeOYf3yzW5lnz3u5ivSSKi3cQgloh2paK0X7a5E6LRKIYGBzE7O4tgMAhJkpYuIMtAkQ2yU8zS6TQSiQTi8Tji8bj6vBiPr0jN3i775frYq9dkofDYEBGtjkEs0T6RXVlcXnFcXlHaiYrletss1PY32s9CbGu3KuHZ241GoxgaGoI/EIAoiuoywmI/TL3BAK1GowayNrsdWq12W/sr7tRxKfQ2CzWysMlkgt3hePIcAIPRCKPRuGRbvCb35jVZLMF5MZaJiKgQGMQSlbhcKyYbVRzXWnan5FM+xUb7vhNTfOxWpTB7u6IoYnZmBslEYskyDocDl596Cs8+9xxaWluh02oBQYAgCDCbTBA0hR2gfjOfYbFtsxDng9liwW/+9m/j137911e8btDrV90Wr8n8ltnO9xdiu8USLBZjmYiICoFBLFGJ288Vk/28716vF0ODgxgZGcHM9DT6+/oQjUaXLCOKIoaGhqDVatHT0wOtRgO9wQCH3Y4XP/IRxGIxBINBvPfOO0ilUur7DAYDLFYrnnv+eZjN5iXrlGUZvb29mJudxeTExJLX2g4cQGVlJZqamyFJEgKBAF5/7bUlgyNptFqYzWZ87OMfhyiKCAYCeDw4iHA4jGgkgrQkQa/Xw2Q2o7GxEWVlZaiprc3pmPj9foRCIUyMjyMcDiMWi2XSgRfTqc1mMywWC2w2GxoaG2G322Gz2QAA01NTePjwIebm5jAxPo7JyUkkkskl6w+GQnj/vffwaGAAFovlyfEyGnHo0CHU1NbC7XYjmUziQXc3+vv6lrxfq9Ph4MGDOHnq1KrlV1qB4/E45ubmMDM9jXA4jGAggEQyiXQ6DUEQYNDrYTAY4HK7UVFZCbfLhfLy8hU3JZRBph49erR0pOTFstTV1eHS5ctYWFiA3+/H2OgogsEgEokE0uk0zGYzrFYrGhoaUF1TA0dWy/Ja9vM1SUREO4dBLBFRCVqYn8fVK1fwizffRCAQWHWZeDyO3p4e9Pb0qM/ZbDbU19fjueefRyQSwcT4OP7y619f0vfTZrOhorIS586fXxHEAsD9u3fR3d2NKx9+uOT5j3/ykzh+/DiampuRSqUwPzeH//61ry3po6vT6VBWXo5nnn0Wfr8fI0NDeP311zE9PY25uTmkkkmYzWaUlZXh8lNP4WBHBzwVFdDpdGumnsqyjGQyiZnpaUxMTODqlSuYmpqCz+dDwO9XWwfLysvh8XhQXV2NS089hfr6elgXR2eenJzE66+9hvv37iEWi616PIOBAN76xS9WPO9wOPCrn/88jEYjXC4XkotT7Lz63e8uWc5oMuGVT3961SBWCWBFUYTf50Pfw4e4f+8epqamMD42hkgkglQqBY1GA6vVCpvNhpbWVnR2dqK1rQ02ux16vR6axUBWOVbJZBL379/H17761SXbMxiNuHDxIs6dP4+J8XEMDQ3h/ffew/j4eGZbySTKyspQUVmJS5cvQ6vTwWw2r/k5EBER7SQGsUS0r+zFfmEyMn0u13oN67y+lu08QqIo4gff/z4G+vvR3d0NMR5HOp1GOp1WA9JwOIzp73wHjY2NGB4cxEc//nGUrzIicEIUMT09jW984xt4NDCA+bk5tSVR+VFMTU5iZmYGD3t78cH77+Oll1/Gb/7Wb8Fut69e0BwHxCqEVCqFSCSCv/ubv8FAfz+GhoaQXGx9lSRpyX4kEgkEAgFMT0/j+vXrsJjNuHjpEi5euoQTJ09Cp8vtT/vkxAS+8+1v4xdvvIG5xeMmSRLSsgzIMubm5rCwsIDBx4/R39eHo11d+NQrr0C7bHqhrdqL1yQREW0vBrFEtK/sxcryRnuUdwC72G92O6TTaYiiiPv37mFmZgbhUEh9TQnGZVmGJEmIxWKYmZ3FvXv3cO7CBdisVhhNpsyyiy2Xvb29eDQwgEf9/Zibm1syJc5q206n00ghE0jHY7ElwWE2GTtzrigtyfPz87h96xb6+/owOTmJcDi8fEE1oFaOT0qSkEgkkBBFPHz4EHa7HTq9Hl1dXSsC2eU3OiRJgs/rxZ07d1Y9bjKyjlcqpaalv/DCC5kW2ay+vVu1F6/J5XZjoDMior2MQSwR0RbtRsVREARotVroDQbodLoVrY4KrVYLTVZQqtfrMwHILlV00+k04rEY7ty+re6DRqNRg7nl0wP5fT7cvnULc7OzKC8rU4NYINN6ee3qVdy6dQvDw8NL3qcE4tnptUrgK8uy2r80e3mdTge9Xo9kMrnmVDrKqM7Z79Xr9Vsa7TmVSmF8fBw//MEPMD42tiS1O3ubEARg8Tgp+6C8f6C/HwAQjkTQ0dGxorV0ecmkVAoLCwtYWFiARqNR04TX+hxGR0YQj8UQ8Puh1WoLGsRuh2IL5nZqtOXNbqfYjhcR0UYYxBLRjij2StJWyrcb+9XU3Ix/8Ju/ic989rMYHRvDL3/xC1y7dg1+n09dxl1Whpc/+lGcOnUKNTU1mbIuBiz69YIQQSj4yMXLGY1GnDx1CmfPnkXHoUOIRCKYmZ7GX/3VX8Hv8yGZNahSOp3G40ePYDKZ4C4rAwAEg0HcvXMH3d3dGFkMYLNbGxsaG9HY2IgXXnwRbrcbVosF0VgMgUAAXq8X165eRX1Dg/rZdR45gqamJiQSCfT19eGHP/gB+vv7EcsaLKu6pgaf//zncbCjA26XS31eWOynasoKsPNx++ZN3L59GyPDw0sG2NJoNPBUVOClj3wEhw8fVgeNunvnDgYGBvDB++8vCbSHh4bg9Xrx/PPPo7auDm63e93tajQaGAwGfOqVV9Da1obWtjZMTU5iaHAQ3/rmN9W0bCBzfYiiiO4HD3Dk6FFYFvsSb6dSuya3y07sSy7bKPbvcCLaXxjEEu0RxV7BKGTZ8tnXzUxBVIyW74der4fT6YTT6UQsHofVas3MBYsnwZxWq4XD4UBFRUXOI/xi8b05VWqRZ6ryYkqsVqtFa1sbOjo60HH4MBoaGhCPxWB3OFBXV5dJr52bW/LWYCi0JMU2Ho/j8ePHCAQCauAnIBOYOZ1OHDp8GEc6O9G2OOiRyWiEKIqIRKOoqKwEANTW1sJgMEAQBBiz5nCdX1iA0WiEZtkx0Gm1cLndqKqsRLnHs+ourpWevPYhkTE+Po7pqaklgTsAeCoq0NzcjK6uLjQ0NsJms2XSiFMpmM1m9Dx4gEgkgsTi1ErJZFIdrMtqtW4YxNpsNjQ1NeHQ4cNoam5GTU0NzGYzBEFAbW0tpqenl4x4LUkS/H4/xGUtxcp+7PdrslDLbkWht5O9vmL/PIhof2EQS7RH7KcKRj77uleOS177nMMyq6XK5ruOvI+sktJsMODS5cs4dvw4Ojo6AAAWiwUOpxMdhw5BkqQVQWx4WRAbjUTQff8+Qll9aoFMcN/Y1ISnn34aFy5eXPKawWiE3eFAdXU1Dh48mG/pt83g4CDGx8dXPN/W2oquY8dw+syZJZ//iZMnUVdfj3feeQcT4+NqEAsAaUlCf38/3GVlaG5pWXe75eXlePrZZ3G0q0sdNKu2thaCIODQ4cOIRKNLgth0Oo2A3w9x2XzEAK/JtShBYCFaOnMJUAt9bPfKZ0VEe8/25osR0Y7ZKCjZ7LI7pVTLX0xl2Uh2WdernAqL6cTKEoXeR71Oh5OnTqGurm7Fa06HY8kcrMqWk8nkklRbMZHA2NgY4sumwzFbLHjm2WfzanneTbIsY3p6GvMLCytea21rw4E1gm2DwYCjR4+uGLFZSqcxMTGx5rRL2VxuN86cPavOlavQabVwuVwwLEs5l2U5k2K8rL+s8lqxKKaybBQE5npNLn+9mPaRiGg3MIgl2iO20hKSXSHaqcrR8u1sV0vOdu/bVgZS2S5rrblQ/QvTi4MKbXYPNFotnE7nqn1IdTrdkkGJsgPp7GOWliREo9EVAxBptVp4PJ5N9U/drcAgHo8jIYornrdarbAuCzAVGo0GDqcTBoNh6QuyjHg8viI1GVh6XgiCAIPBAJfLpY5krOy/IAjQ6/Wrni9pWV71c+c1ubl1F7rPL4NbItovGMQS0YpRWnd6mzu1nWJIjcsOFLaLkNnQ5t6svG+d90upFNKSlH9/WGSCL51WC6vVuiIAU/rxalYbVGpx7lJFWpaREMUVfVC1awV3Odit8yOZSKwadJpMJpjXCMY1i4NJLR8lWBmAKbvVWpF9XiiDOtlstiUjOC8+yIxWnMPnsBn78prcQ9+rDJSJqBgwiCWiPWG9itVuVbq2a7u5rFfOZeAcrFLpFQSk02kkU6k1W1pDoRDC68zHuvrGFgeH0WigXZzOZdVllJ8NaDQamEymFQGvJEnw+XwQV2nZ3E5b+awNRuOqQXcsFlvSJzVbOp1GOBTKBL/LUlJNJtOKeWKzFgCQaQ3XLJuGZ7XltoLX5MrnGQASERUGg1iiParY+5gWunwb9fHMd5uFsFqZCtFSktPIruu8prY8aTSrtnpKkoREIgE5nV6awptOI5lMIhAIILxsQKVcZQfO6w5is8F6tBoNbHb7k2BtsZypVApTk5NrBn/5ljHn92zhc7VYLKumPweDwTX7tqYlCV6vd8VIwYIgwGq1qiMtr1deZT83c33wmsxtHcv3c7vTgLfjeG6l6wcR0XZhEEu0R22mj+lOVCg3k7pXqEoTK18ZynHQarWrzhebSCQQDoUgLQaxyk8qlUI4HMbY2Bimp6dz3+AmzquNPimDwYDa2loYleBvcZ/i8TiuXb2K2ZmZJWVf7yfn3QDUvsCFulYEQUBFRcWT6XCy1js6OvpkDtxlZU4kk+h7+BA+n29Jq6lGo0FVVRXsdvsaO7Gy3Lwmt99OjSq8Hcdzv3xGRFRaOMUOEal2orJS6hWi7Gkuin1u3o2YzWY4nc4lAykBmZbYaDSKX771Fto7OtDR0YFwKISR4WF88MEHmJ2ZWTGg0ro2e4wW55Vdjc1ux+nTp+FdWEAoGFSfTyQSePzoEX7+s59hZGQEFy5ehNPhgNlsRlwUEQ6F4Pf7cfPGDTQ3N+Pk6dOwWq1LWqQ1Wu2qqcqxWAwPHz5EfX097Ha7OsfsVh06dAgJUcTIyMiS/X3Y24tIJIKa2lq0trbC4XQilUqh7+FDPBoYwMjICOLZLbGyDK1Wi66uLtTU1Ky+sU20ROY9H/AOK4VrcjvLWAr7T0RUaAxiiUrYTgxIUsyW73+uFbitVPSKbVCa5XIJOJT91+l0MJlMsFqtSCaT6nyjSqvrw95eJBKJTAtsMIjh4WE86O5GNBpVj73SrrfhkVgnIF3TOsubjEa0tLbCXVaGubk5NZiTZRnhcBhDQ0NIJBKw22xwOp0wWyyIx+MIhULw+3y4e/duJuA7fnxFq6pOq4VlWWALAAlRxNjICPr6+hAOh9V+rHqDAU1NTZnBkDaRhlxXX4+5uTmYTCaIoqiWJxAIQDs5ifv37yMajcK5GMT29vRgeGgIkUhkSdlNZjNcbjeqa2pgdzjyKkeh8Jpc3UZlLOb9Z2BMRMWIQSxRCct3WotSqYjkWtbly+S6f3u51SKXvclOJzaZzWhra8PQ0NCSFOF0Oo333n0X77377pa3t7jRXJfMic1ux9lz59QA79HAwJLXJ8bHMTE+jmtXr665jrq6ulXTgs1mM+rr61cMthQOh3H9+nVcv359yfNVVVX4f/+H/4CysrK8pvZRtt117BjS6TSuX7uG8fFxNSBPp9OYn5vDd7/znZzW19DQgMOdnWhqbt7UFENryeeT4zW5OcW8z8VcNiLav9gnlmgPWq1iXkoVkWKYjiLf/pL52o15YpcTBAFGoxEvvPQS2js6Vu0fm81kMqG6pgaHDh1CU1PTpueJLRSNRoPnn38en/3VX0VHR8eKfqD5lk/5TJwuF44fPw6nywX9JqbqyVX2zYTm5mb89pe+hM4jR+CpqMhrPTqdDkeOHsWzzz2Hj33iEwVLc94Ne/WaJCKiwmJLLNEeVKoV2GKy3cdw2+eJzZFWq0XbgQMYHx/H2Ogo5ubm1BRipVVMq9PBarHA7XajobERWq0W3oUFCCMj+RWsgEGCcvwaGhthMpkw0N8PvcGAubk5RCMRJJNJpFKpJX13dToddDod9Ho9rFYrXG43tFrtitGSTUYjqqqq0NDYiEQigYX5eSQSCUiSpM5LW6h+osrowE6XC0eOHkV/fz/0ej20Gg1isZia5p09H65mcVRpo9EIk8kEm92OziNH0N7RgZaWltXn2d2kYuoPW8rX5HKFanHery3XREQMYolK1HYODrLd9kLFq1SP//LtaDQa1NfX4+Of+AROnjyJV7/7XYyPj2NqagrJRAJmiwUulwvnL1xAR0cHzp0/j++9+ipiW5jCZq1ybYbBYEBdfT3+L3/wBxgeGsL4+Dg+/OADTE1OYmFhAf5AAHI6DUEQ4PF4UFFRgZraWjz19NOoq6uDY5W+ozq9Hk6XC1/+8pcxNDSEN994A0ODgwgEAohGo0in0wUP7HQ6HZxOJ7705S/D6/Xi/r17uHvnDqYmJzE6OopoNIpUKgVBEGCz2WCz29HW1oYjR4+ira0Nhw4fXjFAVz7WOv9K6Sotpmtyo/dmv5bvdrKX387vjL3wPU1EexeDWKISlWvlYrP9S7dTMVeMdut4bWV9Ho8HL738Mo4dPw5RFNXnjSYTGhoaUFZevuZ2lN9tNhvqGxrwmc9+FtFoFLFYDOl0GlqtFgajEZ7ycjgcDhgMBly8dAmdnZ147oUXlqyrtq5OnSpGr9ejpqYGf/wv/+WSAFWj0cCw2IK4vByCIODU6dNoaWnBU089teT1qqoquFyuFfueXZmvrKqCzW6Hx+NBLBaDKIpIJJNqC7DScmk2m1FRWQmL2bzmvKGyLMNdVgaD0Qin04lwOKy27i4PuE0mE8rKytQ0XqPRiJc+8hF0HDq0ZDmtVou6+vpVzzFlmxqNBg6HA0eOHEFtbS1isRgikQikVArprAG5dDod7HY7nC4X7DbbkhblbAajEecvXEB51jkAZEZgrvB4VhxHALDb7bhw8SKaW1oQCYfV53U6Haqqq1FVVbViO9upFK/J7ZyuaLe6WzCoJaJiwiCWqMQpFYs1W1L2YKVjo33ezLoUu328NrNPNpsN7e3taG9v3/Q2jUYjjEYjnF1dGy7f3Ny85nqy+3k6nE688OKLG25beY/SKlxfX5/fDiyy2Wyw2WyorKzMeZtrvSYIAiwWCywWCyry7KOq1enQ3tGBg+3tmwpmjEZjJlisrs5ru6utT6fToampCU1NTTm/z2g0orm5ec3PeTW8Jotzm5tZz376W0JEpYsDOxGVuJ1IKys2m9nntdJVt3LctmMgmN34HAu1zc2sZ7umBNnsNgtRHl6TueE1uf3bLJZrkoio0BjEEtGujMq509tUWokKvc7N4kio22cr/RiLBa/Jza9zs4rp8yciovUxiCWikm5pKPZtrqWYykIZxfSZ7JfrY78fcyIi2hwGsUS0L7CVhai48JokIqLNYhBLRHvCVvpB7sT2aWNbOYa7ffx3e/vFiNdk6eMxJKJixSCWiPaE3U4F3O3t7wU7NaXJdtjt7Rej3T4mu739vYDHkIiKFYNYIiIiIiIiKhkMYomIiIiIiKhkMIgl2ud2s8/TXuhvtRf2gYoLr8mt2Qv7QERE62MQS7TP7Wafp73Q32q9fdjtyvRub7+QdntfdnL7vCa3htckEdHexyCWiPaE7MphsVQUdzsg2O3tF9Ju78tq2y/Gc66YFOPxKcbziIiI8scgloj2hOzKISuKtBN4zq2Px4eIiLYLg1iifawYWkeKoQxExaIYrodiKAMREdF6GMQS7WPF0DpSDGWgJ3YigGGQtLZiuB6KoQz0BK9JIqKVGMQS7QPLKyirVVh2shKTy/a3Wp6tvD/f9+az/E6uezPHIN8ARpblvMuYzzaUdW/H+VmIc2Sz6+A1ub3v5TW5/dckEdFuYhBLtA8sr6CsVmHZjtaXtSo7uWx/M+XJ3t5W9iff9+az/E6uO/v37ap4CoKwbfufXbnejvOzEOeIIAgFCUx4Ta6P12TuduqaJCLaTQxiifapnbibvtOVnVy3l29LRa7rLGalVvEspdahQh1bXpO8JosZA1giKia63S4AEe2O/VwZKbZWPVppO1vHitVe2IfN4jVZ/Hg8iaiYsCWWqIRtV0tDsbdgZFuvrGu9Vqz7V6zl2m673R+0kHhN8prcC/bSNUlEexODWKIStl13xkvpjrtS1tUqWGvtx27sXy4VwFI57psJUtazU/1B87WZAXx4TfKa3A375ZokIlIwiCWiPaHYK1jFXr58rLcv+2U/t7LsflHsx6TYy5eP/XJNEhEpGMQS0RL7NWVsv+43sLv7XizHvVjKsZpiLtt22q/7DfCaJCLaCAd2ItpHchldcj/ctV9+HEpp1E1ZluHzxRDwxzA9HQIA2O1GNDS6YbUaoNPlf29yvX1PJFKIRpMYfLQAMZGCAKCh0Q273QiH07TZ3dhw25v9TDb7vt36/HlNZuzmNRmJJBAJixh8vAAZgF6nRVOzGza7EWazPqd1FLq8u/mZF/qaJCLaDgxiifYRVkAyCjH/5W6RZeDqlVG89cYAvvYXVwEAZ8414N/+ycs42lUDZwECy2wLC1H0PJjBP//D72FiIgBBAP7V//gRnLvQiMtPtRR0W9k2+5mU0mcJlF55t8tuXpPDw17cvjmBf/5H30M6LaPcY8H//P/8OE6fqceBgxU5rWM/fI77YR+JqHQwiCXaI/bTXfLV9rXQ+5/r+vbLcZeX/V/qduJ82S/nBrDHrsk1TvJUKo379yZx5YMRvP3WYwDAseM1ePnjHTh6tAamHFttiYho6xjEEu0R+6WyDKw9cmYhK825rmc/Hfe9ZCeCq/10buyHa1KWZczPR/CgexpvvNYPAEilJJw8XYeUlN6WbRIR0eo4sBMR7Rn7KWig4sHzbm08NkREtB3YEku0RzB1cW/tf24D3cgAct/njY7Raq+7XGYcPVqNf/+nn0IsmgQAdB6tRlm5Jeft5rqtQnyG2evYyXNiP5yT69nv+79Zm7kmc3lfocrCz5CIihWDWKI9ohQqGoWqkO2H1M3cBrrJb583Mwqu2ayH2azHxz5xOK9tbaYshfgMs9exk+dEqZ6TvCZ312ZHpt6OY8vPkIhKCdOJiUpU9lx+hZ7Xb7vmCdzJChmQ236stsxa79vOY77XlMLxyeezz3d9vCZXx2ty9/D4ENFewiCWqERtZ4vTXrn7nst+5NP6sFutfKWoFI5PoVueeE1ujNfk7uHxIaK9hOnERFRQ6bSMdDqNWDSJZCqNVFKCJMmQZRlpWYZGECBoBGg1AnR6LXQ6DYxGHfR6DTSa9e+rJZMSUqk0YrEkUqk0pFQa6fST1gWtVoBWq4FOr4XFos881q2/znRaRjyWRDiSQEJMAQBsNiPMFj0MBi2kVBrJVBrRSAIpKQ1JSkNOA4IG0Go0MJl00Bu0MJn0EISlFcV0WoYkZcqbTEpIJiSk0zJkOfN+vU4LnV4Dm80IrVbYcP9zIUlpJBIS4rHF45+SIC8OnKrRCuo2rVYDtFoNNJr1K7aSlEYyKcHnjUFaHIHV4TTBaNDBaFr5JyQtpRGPpxAOi0gkpMzxtBthNi8eT0lGKiVljmcqDUnKnC8QBGgEAQaDFgaDFiazHjqdJod+wWuXO52WEY0mkEqmF7eVhiwDMjLnoVargVb75DM0GLQAdrayL8sy4vEUxMVjBgB6gxYupxl6gwaAkPk840mkkhKSyTTSsgwsHgunywyr1bBiveq5F00imZLU6yV7/zUaIXP9mXTQ67Tq57nR/meu8exjm1l/plgyBI2weJ1nrhGtTgODPrN+jSZz3NcSjSQgiilEIgkAgFarQWWVDRqNkPP0OvPzESSTEtKSvHht6uB0mlcsl+v6kgkJ4UgCwUAcC3MRRBfLBgDxeAoL81FMTgRgsaz8HIxGHQxGHRwO47rfDcs/H0HIOoaL32N6vRZGo65g3xVERKWMQSzRPrITg3REowl4F6L40fcf4PHjBQz0z2FyIohoNIFYNAm7wwSr1YCycgsOHa5Ec7Mbl59uQWubBy63ed11j4368WhgHj/9cS9Gh30YG/PD74tCBqDVCKiotKG6xoH2Q5V45VeOoLHRjdo6x7rrDIdEvPnGAP766zdw9cMRAMA//N1z+JVf7cLJU3UYG/NjoH8O3/nWPYyP+TE9FUQknITFqkdZuQUvfqQdx0/U4rkXDsBs1i05vvF4EhPjAfzkR7142DuL7ntT8PmiSIgpWKxGHDjowcH2Cnz5K2dRXW3fcP9zEQzEcfPGOF7/eR8eDcxjcHABsUgSaVlGuceC9o5KHGz34Dd+6xQqKmxwOE3rrm9uNoyHD2fxx//sh5icCEAQBPzxv3oBZ8414MLFphXnUyAo4q03H+G/f/Uqbt0YBwD83h9cwic+dRgnTtZhciKAoUEvvv3NOxgZ9mFyIgC/PwajQQeb3YjjJ2px4lQdXvpIO5pby2A0Pvkzlc+5GwjEMTsTwve/242BgXmMjvgwNRWEGE8hlUzD7jDCU2FFXZ0Tz794EIePVOHM2QZotTvbWiXLwPvvDuHdtwfx1f/zCgDg2Ila/Ns/eRmHO6ug0Qi4d3cKb70xgIH+OfT1zSHojyORSMHuMOFf/duX8IXfOLFiveGQiPn5CL7/3ft49GgBjx/NY2oqiHgshYSYgs1uhNttRmOTG08904qOQ5V4+tnWxWBx/TLHogn4fDG8+vf30d83h+EhL0ZHfIjFkkgkUjCb9bBYDLA7jKiudqC+3okjXdW49FQLKiptKCtbe1Cwn/2kFx+8P4xv/t0dyGkZ9Q0u/OjnvwuHwwSDceMqSyqVxh/9/nfxsHcG8/MRHDtei2efa8O/+NcvLlku13MplUqj58EM/vrrN/CNv72tBp+Ka1dGcfPGOLRr3Ay6eKkZ5y814f/2x88teT4SETE3G8EPvv8AD3tmMDbqx9ioP3ODLinBbNHDajXAZjegutqJ5hY3Dh3OfEZl5Va4XKt/V3AgJiLaLxjEEu0j29nPTZLSuH51DH0PZ3HvziT6++fg98Xg9UYRCSfU1oZkUkIoGIffH0PAH0Nvzwzu35vCb335DI4fr4XTZVpSzlQqjUhExE9/9BAPe2fw6NE8hh57EQzEEQrFEY+nFvcNSCbTCATimJsNY2Y6hNbWcly41ITTZ+rhXKvSh6zWy8V1JZOZFpI3X+/H3TuTuHdnEn0P5xAKxhGOZFqforEEIpEEfvHGAAYfL2B42IvP/moXKipt0Ok0GBr04tHAPH7ywx4M9M9jfj6C+bkw4vEkJElGLJZCWkpjbjaMWCyJ5184gDPn6lFT69ywdXStz+DKB8OYmgzizTcGMDLkhc8Xg98fQyopQZYzLdkJUcLEeAAL81FcuNSEEyfqcKDds2brWOb4ZFoL4/EUIGQ+k3R6jcry4rkgitnHU0IslsR77wzh5o0x3Lszhb6HMwgE4giHRYjxFGLaJCLRBO7cnsD0VBD9fXP4B795Eo1NbtTVO3Paf0EQEI0mcPP6OG7fGsdA3xz6Hs7B54siGIwjHE6orfeJZAqxaBI+bwzBYBw3b4zh5vUxfOrTnfBU2FZt3dwuUlpGMvXkeIliCpKUxo1ro5iZDuON1/sxOuKDzxuF1xuDKKYgp2Xo9NoV85MmkxKuXx1Dz4NpdN+bQt/DWfU8UPZfaV2PRhMIhUQE/Jn9f9A9hRc/0o6GBhesNsOKzzeZlDA5EcT77w7h7p0JdN+fhnchikAghmBQRCqVybpIiBIikQQCgTh83hjGx/x49GgejwbmceJkHX7tH5xY+1hImZbPeCwJWc60dGZaJ3OXSGRatuOxFEQxhWRKyuPdK2XOlyefz/LX0gkJyTXeKyYyN03U38UUpqeCePP1AfQ8mMaD7hl4FyIIBkWEgnH12lJao/0+LXzeGCYn/HjYO4vBxws4d74Jn/x056rbYwBLRPsFg1iiPW4n7swnkxLC4QSufDiCD98fxju/fIxUKr1sqcx0MEowFAqJmJsNAwCuATh/sQmtbeVwukxquQEgEklgajKEH/3gAXoezGB0xLdmOQKBOAKBOCYnguh5MIOW1jIkEik0NLpgNOlgMulz2p9USkIoJOKDdwdx9cNR3L41seo+x6JJeBeiGB7yYmTIi7PnGmA262GzG9HfN4erH47gW9+4g2QyvWJQFSUtemoqiMHHCzAZtSj3WFBVZYcgaPL6zNKSDDGewvWro+h5MIPXfta36nKhoIhQUMToiA+9D2YQiyWh02nQ0ORaTFPcnhTFVDKNUFDE7VsTePsXj3BzsYU2myRJSCQkDIW9GBn24dbNCRxs90AGUFPrWJGqrVDOb0EQIMZT8C5E8d67Q3jztX50359a5TzMiMcyQY7XG8XoiA9Olwn3702h41AlNBoNzOaV6eGFstE1mU5nPs+b18fR2zuDH32/Z8UymRsdmbRiRSKRQigo4sMPhvHeO4P48P3htfc/nkI8nkTAH8fYqB8WqwEPe2dQU+OAyaSDxVoGYOl0RcmkhIH+Obz+Wh9+8cYAIuHEqutOJDKfZTSShN8XyzzZC4wM+5BISOsGsXuZkjre/3AOP/lRL65dHV2SmpxNOYYRAD5fDONjAQgCMDrig9GoU4PYnWp5ZQsvERUbBrFEe9xOVMKvXRnFaz/rw9/9zW21NWGVkmxiO8Cr37mHH/+wBx+8N4xEMvcWlXRaxtCgF3/xX64gFkviwqUmfOZXu3I6HvfvTSEUFPHTnzyEGF+rjeWJgD+Ge/em8Nf//SaOdFXj3PlG/Nn/9jYe3J9W+4Wut4+xWBI//EEPentm8Jd/91uw2Y15pbVOTwXx6nfu4+1fPlZvDGy0TVFM4Yffe4ArHwyjqsqOtgPlqKnduMVzM7rvTcHvi+JHP+iBKK5szVo6362MdDpTvv/jf38XL73cgcOHK2F3mKDTrT/gz89/9hAfvDeEv/nLW0gkUpCk9drvls6xGwzE8TA0g//7v/kZnn/xAP7Fv34RZrN+W9KLNzoH52bC+N7fd+Pddx5jejq05nLptKy2UMqyjA/fH8Yvf/EIf/nfbiAcybS6blAS9VE0kkBf7xz+/f/rFzh9pgH//v/zCkwmHXQ6rbqt2dkw/sd/9VNMTwfXDGD3l/zmaZakNEZHvPjX//LHmJkJLwtg81uXIp/v960EogxgiajYMIglorwpFRpJSmNs1I97d6fw4fvDCIeeBLBV1TZUVdnR0lqOyiobTKbMwD5KC0MsmsDsbBh+fwwjwz6YzPolVbhEQsLDnhk8uD+Ngb45JBKZtEKtVkB7RyXq6p2oq3fC5TZDEIRMJXsmhKnJTCrq3GwYqVQaopjCjetj0Gg0ePrZtkzfusUBfNYyMRZAOJRAWkqjpbUcTc1utLSUwWTWQ2/QIhIWMT8XwfhYAPfuTSIeS0FKpXH//hS83iimp4KYnAhCp9fgxKFatB3wwO22wO40IpmUIMZTmBgPoLdnBhPjASQSEoKBOCYmghgcXEBDoxsejzXnzyMYjOPunQkEA3FYrQYc6qxEc3MZXG4zrDYjUkkJopjC5EQQ/X2zmJwMIhQUkUik4PPG8POf9uGll9tRXeNY8vkWysiIDz5fFKlUGs0t5ahvcKK1rRwWix4Gow7xWArBYBzz8xFcuzKCcDiBZEJCMCBiciKA+/emcPJ0Pex246rrTyRSmJoK4eb1MVy7Mop4PAmNRgOrVY/2jgpU19jh8dhgtxuh02cGGopGkgiF4vB6Y7h3ewKBYByRcAJTU0EM9M/j2pVRnDnXAIdj/T7D2yEUEnHn9gQC/szneeRINeobXXC5zLDZDNBoNdBqBBhNOnQdq0EqlcbkZAB3bk/ig/eGEY4kIKdlmEw6tHdUoLLKjupqO2x2I/R6LfR6DaLRJCKRBBbmI3jQPQ2vN4pQUMTsbBiPH8/j2pURdB2rRUWlDQDg98UwPRnMpL9HkxAEwGI1oLW1HE0tZaipscNg1EGvz1xbyYQEUUwiHM6kFc9OhyDLMiyW3LIhMnZ/ShiNRkBNrQMf/+Rh1NQ6MDzkRV/vLLrvTwMQ0NzixsnT9WhqcsNgWFmlamh0oaHRBQDwLkQxNRnC3GwEYjwFQSPAatGj/VAl6uudqK5xwGDUqjcOEmImHTocTsDni2JhLgJZlnPOKFmOgSgR7SUMYokob8odfUmS0d83h3t3J9WUW41GgF6vRUtrOY52VePZ59vQeaQaDqcJNpsR4ZCIaDSBhfkoHj6cxciwDx+8NwS73bSkL6gopnDzxjge9s5gfDwAIDNKp8Wix6nT9Th9th5nzjagsbkMGo2AVEpCz4MZ3L09gbQsIxJOIBwWkU7LuH93CjqdFtOTwcxooRsEsdPTIczOhuHxWNF1rAaXn2nFM8+2qCPBzsyEMNA3h+vXxjA64sNCKoJkMo3+h3MYG/Gjt2cG4ZAIj8eKi5eb8fwLB9HcUobaeidi0Uyl/tbNcciyjFAoExDHYpnU5IH+eVithryC2HA4gd6eWZgtelTX2PHc8wdw+ekWNDS5UVVlRzyWRDAYx61bE/j5T3ozI8tGEot9XZN47ed9aGh04dJTzRuO5rwZE+MBTGkEuN0WHO2qxvmLTXj2+TaUlVtgtxsR8McwPh7Ao/55jI/5MTkRgM8bQyIhYW4ugju3J9FxuHLNIFYUUxjon8PtWxO4d3cKAGC16lFWnjn+Xcdr0N5eieoae2aUZKMW8/NRTE9mbhpEIyJGhn2IRTPptcNDXrz/7hAOHa7clSA2Ekmgt2cGNpsBNTVOPP/iAZy70ISGRheqqu3Q6TRLUr/FeAqPH83j7p1JNVXbajXA6TLj/IUmHD5Sha5jter+my16LCxEMT8XxkD/PNJpGY8G5hEJJxAKipgYC+D9d4ZQW+tcGsROhRAKi0gl09BqBXg8Vpw+24Cnn2vF8eO1sNszo3rLcmbwp2AwjtnZCMbH/OjpnsHoiBfuvAYv2/2gS6vVoKbWgZpaB156uR2/fOsRvv/d7sUgVkZzSxl+9fNdePrZNthsq5+fCu9CFDPTIYTDImQZ0Os18FTYcOFSM86db8Sx4zWw2Y0wmXSQZSASFhEKiZiZCWNk2Iv+h3MYGfbCucFgbGthSjAR7SUMYon2uO2ouCjrE8UU/vrrN9DzYEZ9rfVAOc5faMIf/V+fRmWVDUajTp0qRRAAp8sMh9OEyio72g9VQJJk/OPfuwCzWQ+d/knFPBwS8c2/vYXhoSd9YC9easLTz7XhS79zZrFVKTMtjyAAsqzD6dP1ONpVjc98rgv/87/9Oe7emcTD3lmk0zKmp4L45t/dxpe/chZ2e8W6+6fTaeDxWPFn/8dn0HrAg5paB/R6rTpya329C9XVDpy70ARJknHj2ijee2cIopjK9EsMxfGl3zmDs+cb8YlPdcJg0GZaz7QCDIbM/lfX2OGpsOHUmTH8r/+PNzODXqUk3Lk1gcpKG9o7KvP+XH73n5zHuQtNeOa5Nuj12sWpOATodEZYbQZ8tMKGc+caMDTkxR/+/ncxPxtGJJLA8OACHnRP4/atCZw8Vae2phWKMk3Kv//fXsHBjgrU1jlgMOig0WTOJU+FDWXlVhzurIKn0obXfvYQX/3/XQUA+LxR3Lw+hld+ZfWBbGRZxsJ8FP/t/7yKwUcLmRZCiwH/6B9fwMc/dRgH2j0wGLTqdELKeVhTY0dVlS1zo+W5Nrz5xgD+0398D0ODC5iYCODV797Dr/7aMdTWFT7FOpdrUhCA3//Dy7hwqQlnzzUu+TyXi0YT+MuvXsf9+9MAMgH8Zz/Xhd/60mkcbK+A0ZS5BrP3v6rKhooKK9o7KvD0s624fWsc/8v/9BpGR/zweqP47nfv4/IzrTjUWQUA6jQ/SuOo1WbEP/sfnsXxk3U42F4Bvf7JNQ4AZrMeLrcFDQ1unDhZi4994hDSkgztNtwk2T1rf4arfcZiIrUknb683Ir/4V8+h1On69HUXLbkexIAzGYdysqtaGh049SpusUpvmQYsq7PfL7ft/J3gAEwERUbBrFEe9x2VTySCQmRsIjhYS983igAwGoz4ODBCrz40kFUV9tXHeE086sArRZPgqVljY5Ky+HUZAiRSCIT/DpN6DhciYuXmuBym1cEWoIAaAxaaBfnnb38dAsEQUDfw1nIcqaiP9A/h0hk4z6uVdV2HGyvQNsBDyoqbTCbl6bvqfPR6jQ4dKgSM1PBJ6/pMvO+dh2vxdFjNSuOwZP916ClpQyxaAI6nUYdlXR+PoJodOMyZjOZdPBUWHGkqwYdhyphsejX3Ka7zIJUKo2Ll5pw8/oYBvrnIUkyFuYjGB7y4tjxmoIHsTU1dhzsqEB7RwUqqmwr5tPMHM9MsHvwoAd9vW44HEaEwwkkRAnzc5E1ByhKJdMIh0U8ejSPUFiE0ahD55EqHOjwoLHJDbvduOo1oGxTp9OgTGdBY5Mbx0/UYmoyiEgkAd9CDH5fFOGwuGELW742uibNZj1qah04dLgSbQc8Kz7PbKmkhGg0icHHC/D7otBqNeg4VIn2jgo0t5TB7jCuOmDXkv0v06C+3oUTJ+rg88YwNxuGbyEKny+KUDAOmz1zE8TlMqtBtCzLmRbFxbTllfsIdVk9Cns+lYLVPi+73QSnMzP6uixn5toNhzL9Yo2rTB8kCAKeTAe7+jHcqcCSASwRFZu9dEuUiDawfITcrYiLqUw/zrEAAoE4BAEoK7PgyNFqfPxTh1cNYHMViSTg9UYxNxdBPJ6CVqtBVbUdR7uqcfHy+imvmZZHDZ5/8SDOX2qCVptpqY1Gk+jvm0c0koAsy+sei8amTD+32jonbGuksAKZil3HoQo0NLrV54xGHaqqbDh+shaHF1ux1lJX78Shw1VqK6+czgST0Wh+g+ZYbQa0t1fgyNFqtLaVr7us0ahDWZkFL3/sEJpbytTnFxaieDwwn8NgQE/kdj7JaGopw8lT9Whocq+bnqvRCGhscqO+wYVyjxVarQAxkcLCwtpBrCimEAyIGB7yIhJOwGjU4fiJWtTXZ6aJicdTiMWSa/7E4ymkUmm43WacPFUHs0kPKZVGKCRiYSGKYCCe8/EoFJvNgKNdNWjvqEBDg2vd6yiRkBAOiRge8cHvj0On06DrWA2aWspgsxsz/c832P9kMg2LxYCTp+vhcBgzwVU4AZ83Ct/i6MIulxmVVZl+r1qtACmVxvCQF/PzmWs0kZDUabTS6cwNmY2us/1ElmWUlVlQUWFbzEIQkEhKGB5cgNcbXfUYKscvn2PI401E+wVbYon2kULeTZ+fC+PRwDykxXkqtVoNnnm2FYePVG25X+XsTBijwz61QmYwaPH0s21oai7b4J1PVFba0NTkxqHOSgw+WkA0lsTEeACBQAzxeGrV1iNFQ6MLx0/UQLPByLSCAHgqrOq0QECmsn/6TMOS1ru1UvEEAdDpM6m2MzNhiPEkotEkkhuMaLxcebkVz71wUC3HRp+z0aTDpaea8c4vHy+mYgPehQgePVrYYETf5eXP5XwS0NxShuMna3Oe/9Zi0aO21oHpqVBmep6QCElKr3ocR0f9ePw4068TyAyK9M1v3MEPf9Cjtm6tVrHPfkqWZXUQsOyg1e+LIeCPb0tK8XqcLjMuPdUMp3Pj/qNTU0H09c+pNx8SiRS++537+MmPH6oZBLnsvySlEY+nEA6J6vPBgAifL4qGRhdsdiMam1z4nX90Dr98cwAPuqfxjb+5jbfefITqGgdOnKxFdY0DNTUONLeUoaLSiqpqx7aM7lwIO50eKwgCHA4j2g568JV/fA4//2kfhgYX8Nd/dQtv/eIRqqodOH6iFrV1DlRV2dDckhkQz1Nhy+sYssWUiPYLBrFEtCmimEJocYASIFN5qqi0weEwbbkiFRdTS9J+NRoNKiozaai5rFsQBGh1AkxmPcrKrBjV+QA5M5qyKEpIiOsHsSaTbs001OV0Ou2SdE2dTgO7w6j2b9uonIIAGAw6aDUCZGTKmM6zNcVg1KGi0ppzGrBGI8BuN8Ji1cNo1KmtQJGIuC0tOWazfvF45ra8VptJCRc0gCzJ6o2S1Y5nNJpAJGuqkkyKprgYjD2Ztme5XHYzmcy0jO00vUGLMo8F+g0GIAOgBp7K/sgyEA6LCIcLsP8pSZ0iSqMRYLEacPmpZsiyDHeZBY/65xEMigiF5pBMSnC7zXC7My22TpcZHo8V1TUOlJdbUFvngLvMUvBU9c3ajWBPo9XA4TTh8jOtEMUUqmvseDwwD+9CFIFAHAkxBXeZBS6XCZVVNrjLLCgrs6Cm1glPhRVVVXaUeyzbNp8zEVEpYRBLVKKyWxIK3aqQy/pEUUIkklSDHkEAyj3WddNvcyWKKcRiTwITjUZAWbkV5rym58i04Ho8FuiyKs5iPIV4PAXHOo1rBoMOZothxbAty4+5UjZN1rHSajWwWg05tzoKEKDTZwbdgbw492eecaTBoEW5xwq9LrcAQRAEGI06WMx6WKyGzIBUSQmxaDLvbedUPqMWZmvun51Go4HeoIMAAfIGxyQeSyK6rJ/zk2Xz2ZmV83QmkxKSqdyD2EJdk3qdBm63ZUlGw1rrE8UUIpEE5Kx93dz+r5RKppcE8RaLAR/5aAcaGl04dboOf/uXt/D48QImxgNYmB/LCqRl6Bb7pl+41IyuY7V47oU2HDteow6wlZuNy7/aNVnMnE4TPvqxDtTW2PGwdxbf/NvbGBiYx+xMGHOz4SXHUK/XwmzW4+LlZpw6XY8Ll5phs9fCZNLncQyf4OBMRLSXMIglKlFLB+7ZntGHN5JvpXGtStRqzxeuPrrKvmzycC0/5qVQac5VqVZtpfSTltqtyW61VIIi5BUHFuqaFDRCZuTtHNaXVvZ/G05FWf1nqZbWctTVu3DmbCMiERGhUAKPH89jbjaM2Zkw+nvnMDERwOiIF1c+GMatG+P49jfv4LOf68KZs/X45KeP5FiC3LIuVjyWi2GG2fUd7KhAU0sZLl5uRjicQCgUx+DjBcxMhzE3F0Zf76w63dR77wzi+tVR/M1f3cSv/fpxnLvQiBdeas97mwxgiWgvYRBLtEfs9F12rVYDg0G7ZJuRSGLJFBLLrVW+5c/rtJolqZSynJnXVGkVWj3oXfmclEojEkkgndXPU6fXQF8C03ws35/VP99MwKXsp5ReP5hT1qH0gUwkJSQSKcjyYuunXrtj0Wyun+FG9DrNknl/jUYdDnVWwuOxwr6FOV4FAAcOeuAus+S0fKH2R92+IOT0WWi1msyUK4Lyu4DOI9UoL7fAlWPZ13LkSBXKV5mv2GjUwWjMpNwnk5mUY7vdAL8vBq83hro6J2ZnQhgfD+D+3SkszGfmir1xfQx6gxZnzjXCXWZZfb5mIRPEPyGr/aFzlVgcHKmYmUx6mEz6xWOY6Y/tcJjg9Ubh92WO4fRUEJOTQdy7M4mFhQjGRv24dnUUFqsBR7pqUF5uLei8zoU+h4mIthODWKI9YqcrGiaTFna7Ua08y7KMuZkwQoF4Vorx5spkMutgsz6ZhiWdljE/F0Z0se/j6oMkLQ34AEBMSJibCy9JiTSZdDCZ80tLzl3h2n9WTk202rHMPJdISJibDSOZXL/i/iTtEogtpuFGwpljajBoYbVufkTpfG30GebKbNHDkpWq7HAY8VtfPIXLT7ei41D+c+1uVqH2J18mkw42mwHC4rlgNOrwhd84gfMXmnDqTP22b1+v10Kv166Y1ziZzIyK/L//6Tu4cW0M8+8O4cP3h5BMSDh/oRGnzzbAYFg5cJVGkz0XbiaNXBSlnAYcy4zkmxmJPB5f+2baVhT6ExUEAQaDFgaDdsX5mkxKCAXj+NP/8DauXxvDzetjeOeXg9DpNDjaVYPzF5ug0xnWWPPmypLLc0RExaD4myOIqCh5PDYcOOBRBxmRJBkfvD+Mvr7ZLad3VlTY0ND4ZGqRRELCBx8MY2wssO77sltrFhaiGB/zo//hHGKxJAwGLWpqHXA4TOsO6rQ1u1Ph83qjeP+doZyngxHFFK5dGcXkREBN2y4rs6CltaxoR5NdS12dE01NT0atjsWSeO/tIUxPBtd5V2HtZlp5ZZUNrW0eNfBLJtP48L1hDA8t7FqZgMwAZ1arAb/126fxwksHF58VMufqu8MIBcVV32c06rLmZc5kGUxNBtWbLevx+2PofziLgD8GMZ7fXMu5WhpkZ24IbdfHnxkkzoTf+cpZXLrcrD4/Mx3GB+8NI5bnfNJERHsJg1iiPWKnK9Imsw5OlxkuVyYoTMsyZmdDGBn24WHvLBIJadNlslj1cLrMsNoM0Ok0kKRMRXZ8zIexUd+qQXJ2qmw6LaP/4SweD8wjGk0gnZZhNOpQW+uA2ayHRrPxyMGlJBpJYGhwAVOTAXi90XWPe2ox9fj2rQnMzITU5+0OI2rrnJsaMGY3Wa1GuFwmuNxm6PVaJJIShgYXMDLiw+REQJ16Z7lCXi9r9Y/eiWvSbDbA6TLB5TLBaNQhnU5jeNiL4SEfxsf8ec37ux6/L4bJiQBGR3wIBuPqPLCK5fsqCJlgz+E0wmp50lqYUOf9XX3ALPPiYGPKDaHk4ny0wawMj+WU9Pi52TDu3J5AdJsGKAOwYmCqdFpe/K7b+L3ehSgmJgIYGfEhEhY3nANWEARotRo4nOaswD4zIrXXGylQX3AiotLEIJZoj9j5dGI9XC4TDrZXwFNhBWRgYT6K61dH8Vf//QYCgfhiK4Wc1w8A2O0mVFTYUFfnhM1mQDotY3I8gOtXx/D6z/uQXAyQl79PeZxKpfHdb9/Daz/rU4MYm92I4yfrMinQe0woJOLevSlcvTKKB93TANY+7vFYErPTIXz7G3fQ93BOXUd1jQNHumqgy3GE42JhtRlQ7rGivaMCdocRCVHC/fvTePftQbz91mO1P+V658tG52MudisV02LRo6zMgoMdFSgrt0CSZPQ8mMEH7w/jjdf6ERdTeV+Dq+1/f98s3v7lY/z0x70YHvSq19X6xzPznRAMPskQkFJpRCOJNdODXW4zPBVWdTqmeCyJt996hLEx/xrbyKwnkZDwoHsGf/X1m0u2V0iCABhMuiX9UBOJFAL+ONLp9IbnTXf3FN5+6xF++qMeTEwE1WOw0WcwPxdBKGv+3lRKQiScyHsqLiKivYR9Yon2kUIP0mEw6vDZz3XhJz/qxfhiqu/IsA9+fwyhkIhDhytx+kw9WtvKYbUZYbHoEVvsrxbwxzE0tICpqSDu3p7Epz97FJ2dVYsVWAFWqwGf/swR/OynD3H75gQA4Ma1MYwM++D1xtB5pBqHOytRVe2ARiNAktIYGlxA38M5fPDeEN56cwDz81EAmWCistKGT/3KEVRU2vbsYCXf+JtbuH51FIOP5nHiZF1mjk6PJTMdUlhEb+8M3nt7EHfvTGFyIohEIgWNRkBtnQPtHR4c7aoq6EAxO8VdZsFvfvE0vv616/AuZD7zd375GL29M3jQPY3OI1VoO1CO5pZyWKwGmEy6zJzB8RSisSTCQRH+QAyzM2E87JlFMinBZNLhH/z2SVRXO3Z4b/IPTMwWPb7wGyfx6t/fx9RiGvXtm+MYG81kRRxs96DzSBWaWspgsxpgsRqQSqWRSEiIRpIIh+MIhURMTQTx6NE8IuEETGYdXvn0ERxorwCQ6Zc6Mx3C3/7VLfzw+w9QW+vE08+2orHJjdo6B6prHNDrMq2UoZCI2dkwRkd8+NY37qA/62aJyaRHba1jxaBOyjXZ0OBGwB+HTqdR+9X+8hePIcvA8JAXz73QBtdilkY8nsLcbBjjYwH84HvdeNg7i77eGSTE7ZnbVxAEVFTYYLM9uRE2NurHT3/Smzm+zW6Ula89j2s8nsLYqB/f/sYd/OwnD1Fb58Tlp1vQ3FKG6io7qmsc0OoECIKAUFDE1FQQoyM+fONvb2Og78kxtFgMqK1z7Pi1ule/N4moNDGIJdpHcqmA5FNR0WoFHO6sQt/DOVTX2DE7E0YslkQ8nsSN62PweaMQxRSmpkKw2Qwwm/WIxVIQ40kE/HEMD3szQeydSZy/0IS2tnJ13QajFsdO1OJB9wweD8wjGBTh98cQDou4+uEIAv4YfN4oqqrti0GsjKHBBfT3z+HqhyOYmQ6rIyVXVdvR2OxGa2sZzBb9HqqIZUYnNhi0cDhNmJkOQYynUF5uQTSaRHW1HWXlFiRECZFIAr29M7h2dRR9i/2EgUwfxM6j1WhodMOxhdF8N70HBagYm016HO2qRmtbOSYnApieCmFhIYpgUITZpIffH8PMTAiTE0E1iE2l0hDFTJAUDsbhD8QxOxNG38NZCALg8VgRj23P4EDry20Kqmx6vRadR6vQfW8KDx/MYGoqiEAgE5harCOYnwvD749hYiIIq9UAi0WPlCQjmZAQjSQQDouZIHYyiMeP5iGKKVRW2vDcCwfUbaTTmRF0R4Z9mJkOYXTED51Og/FxP2prnaiusUOn00KjyWQGzM1GMDrqw93bk5ifiwDI9Ce12gxobHbDaFxa/VD2z2Y3oLzcgspKGxYWoojFkpibC6OnZwbptAyDQQunywSr1QBRzAxoNj7ux9UrI/D7YtBoNTAatUil0gUfoVgQBDjsJlhtRhiNOohiCsGgiMHHC7h2ZRQT4wG4y8zQap90V3A4TXA6TWhodCEtyYhFkxge8mF+PorRET80GgFTE0FUVdtRVW3PBKYCEAqKmJ4KYmzMj3t3JuHzxdRj6HAY0djkzowmvg3WOt/2zvcmEe0FDGKJaIl8Kio6XSbQ9PtjiEYT+Lu/vqX2Rxt8tIDBRwt4/ef9Oa0rFIovaYMym/V48SPtGB70YnYmhOvXRiFJmVTht958hLfefJRzOT/y0XZcvNyMunpnzu8pDZnPqqzcgkuXW/D2Lx9jZiaM73zrHr7zrXsbvlujEWCzG/BPfv8iDrZ7truwqypExdhk1uHY8Vp88lOdcDnN+Np/vYp0WkYyKeH2rQncvjWR1/qqqu04dbp+zf60O22jY6TTadDVVQPfR6PQ67X4i//yIeLxFNJpGffvTuH+3Sl877vdOW/P6TLh4qXmNYPASCSBSCSBb33jTj67AYNBi7p6Jz7y0Q64XCtHJgYy131llQ1PP9eGKx8MY2jQCwDo6Z5GT/c0vvudtc/r6ho7jh2rweRkEAF/DAuLrfKFIghARaUVVVU2VFTaMDUZQDgkIhwS8T/9m5+t+p5LTzXj0uUW/It//cKS55X3jY748iqD0ahDc0sZXvxIO6zWwo1MnI3BKhGVAgaxRLQlgiDg6LEalHusSKXSuH93EnduTxYkABAE4MWXD6Kx2Y3/75+9i+FBL6anQxu/cfG9NbVOXLrcjM/92jG0HfDsauVsO1PxPBU2vPRyO0wmHQYG5nH96uiG79HrNXj62VZcvNyCzqPVcDiMJVt5Vcp9/mIj6hqc0GiBD94fRv/DOSQSG6WWZlqzt2o3Uy2V7XYdq0FFpR3pdBo3r4/j9q2JdedtzkfH4SqYLQb0P5xD970pjIz4cm7p1Ok0MJn1+O0vn8HZcw2oqLRBr189FVYQBDhdZnzxy2eQTssQxRQmJ9YfaVoQgMZmN556uhWf/pUj+A//61s59Yvd7GfWcbgSn/u1Y/jaX1zN6qu68XnUdawGFoseI8M+3Lk1gampYM7HUK/XwGI14B/+7nn1GGanLa+3L0wDJqK9iEEsUQnbrspJvustK7PAbjfiwqUm6A1aiAkJC/MRiPEU4vEUEkkJ8uJopsronkrF1mjQwWY3wO22wJCVHqdsv77BBZvdiHPnG2G1GmAy6xEIxJAQJSQSkloJFIRMZVlv0MJs0sNdZkbbAQ8uXW5Ge0clKqtsm96/QtjO7ZlMOtTWO3DydB0cThPm58IIBOIQ4ymIYkq9oaDVaWAyZaYwqa624/TZBly41ISyMsuu9oUt1OdRWWWHxWrA5adaIIoS9HotZqZDiMcyx0FMpJCWZHV7Go0AjVaATquBTqeFwaiFxWJATa0DjU3uFf021/NkDt7duybLyq2w2Y24eLkZgiAgmZQwMxNSU/hFUUI6nUY6nVmXIGRG29XqNNBpNTAunhvl5RY0NblhyRpV2O02QxCEzDWu18JqM2JuLox4LIm4mEJi8TyT5cw6dToN9HoNrDYj7A4jKittuHi5CR2HKpeMtLva/hmNOhzurMSx4zXw+2OAnGn9jYspJBdvSggC1GvdajPixMk6nDpdh+Mna2Ey6XK6LZFv9wrl/8y1U4933h7EzHQI4ZCIeDwJSUqrx2A1ngor0mkZFy41AQBcQ2bMzWW6YCRECeLiIFwAoNFooNNroNdrYbMZ4HSaUVllw8XLzWg7UL7iGK63L5s5H1c73xgME1ExYRBLVMK2q0KxmfXq9Vp8/gvH8fLHOjA3G8Grf38fjwbm0PdwFlOTQcRjKSQSktqfrazcgs7OajS3lOHpZ1vRdqAcLvfKFEO9XouKChv+7Z+8jEcD8xjom8OPf9iD4WEfxkb98HkzKYNarQYVlVbU1Dpw6HAVfuWzR9HU5EZdw8oU4m0JMrBbs8RmCIKAX/21Y0gl07j0VDNe+2kfBvrnMDjoRTSSgCwD5R4LOg5Vor2jEr/9pdOorLbB6dz5frCrlb1QrFYDPvFKJ5594QB83ih+8L0H6OudxdCgF0NDC4hGEojHU9DrNTBbDLDbjXC7LfBU2tDU5MapM3VobHTjcGfVptI1d/ua1Ou1+OjHD+HZ59oQDIr4/qvdeNQ/j76HsxgeXkAknEA0mszcRDLp4HCa4HJb4HZnbvp0HatBY5MLx4/XwWx9EigZDFpUVlrxu793Ab/+myK8C1F877vdeNib6bM++HgBophCKpWG3WFEWZkVNbV2nL/YjKNHq/HUMy2wO0xrzkOcvX+ZNHcjvvyVs3jlM0fwzb+9gzu3JzDQP4+JxVGKdToN6v//7d3bbyPXfQfwL+/D4fCq60peabPoxt71bu24sQE3cQLUbzbyVLSw+5aHFOhL/pwC/Rvy1vSlKOKgaGC7gY0kdh3vxlh5pV3J0urG+52cPtC/4yPqwouGnBny+wEIjajhzJkhD3V+8zvnzEYGd++t4LW/Wcff/8MrSH37WXbyNlEXnfeNzSxeuJlBJmvisz/u4X/+ewsPvzxAsVhHudRAu929MJCNRkN44WYa//wvb+K9f/oBDg7K+I9//wL/9/k32P76FF9vHasLDcmkgcXlBFZXU3jzR7fwyqtreP2Nm0iljancBotjYonI6wK2m3dpJ6KBPv/8c/z+97/HL37xC6yuruL+/fv41a9+hUjkfDZjFJO6qt5q9TIKu88KvQljipKl6N2/NRIJIRwO9iYjShkwE1EsLSWQsGIDM1/6BDTVSq8x3mz2uksGAgHEYr1MUjIVw/p6GqYZQdw8H4jI157KVu2X8OTJCY6/nc349u0c1l/I9LJPVzQYbbt3j8i93QI++9M3AADLimJtPY3NW2czWZep1Vr434+3Uau20G53kUobuHUrh81b2Uv3ebBfwvPnZTVeMJeL4+7Lq0inDXS7Nk5Oqjj4poRyuYFyuanuJxmNhpBMGUgmexPDGLEwIgPOea3WQqlYxx//sIdarYUAgJfurSC3YGJxMXFu/WazjecHZWxtHeP0pDcZzV/dWcSNtZTK5g1y+LyMrcfHODqqoNu1EQ4H8bc/uoX0JeMo5bzo2+7NvtvriloqNVApN1Cp9M5Fp2MjGAwgFAr0MrDREGKxMMxEFNlsHKYZRTIVQzg8+fsJ27aNg4OyOmYAyGTiePnBKlIpY6RssK7T6aLV6mBvt6jqYaXSRKfdRbvT7WWhgwFEIiFEoiFEIyFYVgzpjAHT7N2nuf+eqKLV6qjPfbFYR6XcRKXcRKfbhd0FwpFe/Ta+zeqm0gYWFy1EwsFL65NeJ/VjaDY7eLqTR+HbGc9lQrJAoDdLbyrVu0fwCzfT6vZQH3/4BMViA41GG5lMHMvLFu6+vHLpuSoW6jjN1/CnP+zCtoFYLISX768imzVhXXJLLtu2cXJcRT5fx9FhGaVSHa1WbzIpu2ur8f2Liwl18Ug/tlarg0a93Ru/W6ih+u04Y8nkhsNBxGJhGPEwFhYSyGTiyOZMRCLu3eNar2O2bePJkyf44IMP8Mtf/hLpdBo//vGP8etf/5rBLhFNBYNYIo+bVBA7DdPufsbubpfz47nxS5n9Uk6AddJL/HhupMwMYonIbf67ISARjaz/WtVF164mcT3rqolGBj03Tnn0/V3neEZ97SjrT3Pb+u+Taljatj2x45fG8qivm0RZLnvtuIEI6+RoWCeHN606SUTkJgaxRHOgv7Hk9ninYfZ/3fJc5/WjvnaU9ae5bSeCq2H2OWoZR2006z+d5MRnZNxtsE5O9rWsk5Ovk0REbmIQSzTHvHBF3QtloO9Mo4HKRvDlvFAfvFAG+g7rJBHReQxiieaYFxouXigDkVd4oT54oQxERERX4S12iGgm9M+cyYY4XYdt23i6k8fW42P8138+cnTbgUAAqzdSuHd/BX/39h1Ht+0lrJNERDQpDGKJaCboDWSvNJbdbri7vX8nuXEsBwcl/OHTZ/i3f/3I0e0GAsDL92/g3dq9mQ5iWSe9t38iolnB7sREc87N8W+zMPbuqmNwu7Hq9v6d5N1j8dasyX7et1NYJ4mIZh+DWKI552ajahYadLNwDHQd3po12c/7dsosHAMREV2N3YmJiIguEA4FETPCSKcNR7cbCAZgJWMwDP4LJiIiGgf/gxIREV3g/l/fwIt3l/GP7//A0e0GAITCQUSjIUe3S0RENC8YxBLRTHB7whS39z8LrnMOnT7/gUAAkUgIkUgIphmd+v5ngdvnxO39zwKeQyLyKo6JJaKZMKihNekJa9jQu77rnEO3z7/b+/ci1kn/4zkkIq9iEEtEc4GNMSJvYZ0kIqJxMYglIlduqzEv+7yMl8pCPV56T+alfsz7OSciovEwiCUiVzIi097nJMZ2XafRyyzU5Iz7vnjpPWGdHH+b4/LS+09ERFdjEEvkc9Jom6cswjjHfFkD1WuNXj9nw8bZziSO9zpjMZ0oD+vkcFgnJ79Pr9RJIiKnMYgl8jlptE2iQehVg455nG0Jt8+XnzNw42zHjc/tVeV08jPFOnm9bQm3zxfrZI/b7wMRkY5BLJFPDdugGLYRM80GipcbQ26dr+tsb5TXjrqfab1X/fvx4ud2ENbJyWCdvN764xq3ThIRTQODWCKfcrpBMc0Gyiw0hrx0/kfpPjvqfvT13cqOTuJ1k+Clz4SX9zUpXjr/81wniYimgUEs0QzyclbFL2zbnuh5nOZ75GbXRK+66PzPyvs9q1gnJ7cdIiK/YRBLNIMuatj4qRHtVnc5XSAQmGgDkY1Pd110/uW5aU02xTo52n5YJ4mISDCIJfKxUTITfmqgjTIGTj/+Yc+FrOenc+IkLwdPXihbIBAYe0wj6yTr5Di88Lm/jJfLRkTzi0EskY9NOjPhdf3HP+y5uM45G6eBPm2Dyujl43fi8+xEGUcpR/9nkHWSdbLfvNdJIiKnMYglImUaDUCvNjKHNU4DfdomWcZ5P/5pY50czA/v97zXSSIipzGIJZpR43SHnEYDaJxxh041sv3eWB/WoOP08vmc5feIdXJy2/E61kkiImcxiCWaUeN2h5wWp8t3VUPLrfF2k5oB97Jt9B/nZet5eWbU/m3KMYw6ttJpg8a6DrNf1snzf2OdxJm/X9c06yQRkZvCbheAiMgJVzXe3OpiN6n9Xrbd/udnqWvhNMZWXme7s3SuncI6Odt1kojITczEEpErE6O4sR8vZBAmeRsXMUvv4TQb/cMczyx/bmf52K7COjkaBuJE5AUMYolmxHXGs7kxMch1uqiNsu6kj20as986te1xyzrpLpBeoR+PE8fMOjl4P6yTrJNERONgEEs0I7w+3m4Qv5bfS2UZ1CAeJki76O9eOsZpceKY/fqZFn4tv5fKwjpJRDQZDGKJZoQXuuVNixuzqLptlImDnJhk6LoT94zD69sbdZuz8tkbxjyeF9ZJIiL3MIglmhFevzLvZGNoEhkirzfWvJgVm+T9Lp14PybR9deL78O4WCevx4ufBa/XSSIipzCIJaKp8HqD/jrlm6XG3TSOxenb0Thh3P35+b1nnfSHea2TRERXYRBLRHRNXmvcXafRO6mJi8bdh9fN0rHMEq+9L6yTRETOYhBLRHNlljI0l/Fr10UvmofPi9vm4RyzThIROYtBLBHNFTbyaBT8vEwezzEREY2KQSyRx0WjUcRiMQBAo9FAqVTC0dER6vW6yyUjIqJ5tbe3h4ODAwBALBZT/6eIiKYh7HYBiOhqhmHANE2Ew2E0Gg0UCgXs7Oyg2+0im80iGo0iGAyqbMY8ZTVs256r4yV/mOfP5Twf+yyTLt/tdhudTgfNZhNff/01nj17BgBIJBJIJBJuFpGI5gyDWCKPW19fR7lcxt27d7Gzs4OvvvoK7733Hl5//XU8ePAA77zzDm7evImlpaUrt6M3Lgc1NN1oiI5SPjFonWG2c91jdavRPs75mjQ3yuT0Pp3Yxii3kGGdHG+dSb7eif3OWp3sdDpoNBr45JNP8MUXX+C3v/0tPv30U+TzeQDAW2+9hbfeesupYhMRDcQglsjjQqEQFhcX8f777+ODDz7Ao0ePsLe3hz//+c84PT3F8fExVlZWsLi4iM3NTSwsLCCXy2F5eRnRaBSRSATA2cZlf0Omv3Ez7eBjUPnGNeg4ndiXWw3Vab9fw3CjTE7vc5rnknWSdXLSximTbdsoFosoFovI5/PY2dnByckJ9vf3sbW1hW+++QZfffUVisUiLMvCG2+8gZ/+9Kd45ZVXJnUYRETnMIgl8rhAIIBcLoef//znAIBgMIijoyM8e/YMOzs7+PDDD5FKpZDNZvGTn/wEd+7cwfe//308ePAAlmXBNE3V3TgYDKplvfuxGw2uedmnn3gle0TzUz/4ebvapOqkbdvq0e12z/xst9vY3d3F7u4utra28Lvf/Q5bW1t49OgRGo0GgN7F1Xg8js3NTbz77rt4++23sbGx4Xg5iYguE7DnYW57Ip+TBkalUkGhUMAnn3yCjz76CJ999hk+/vhj1Ot1tNttxGIxhMNhhMNhRKNRpNNpLC8v46WXXsKNGzewubmJ27dvI5fL4caNGzAMA6FQ6ML9zULjUo5jVo5nVLN03F44FjfL4IXjdwLrpDeOu1gsolQqYXt7G7u7u9jf38eXX36J3d1d7O3t4eTkBK1WC+12G81mE+12G+12G6urq9jY2MAPf/hD/OxnP8Pm5ibW1tZgmqb6X+KF4yOi2ccglshnms0mnj59ir/85S/Y2dnBw4cPcXh4iOPjYzx79gyFQkE1UAzDQDKZxNraGjKZDBYXF7GysgLLspDJZJBOpxGPx2FZFpLJpFrfNE3EYjEkEgkVGHvdJBqHXmlwkvd5cUyr21gnp0sudlarVTSbTVSrVVQqFdTrdZRKJZTLZdTrdfX/oVwu4+joCKenp8jn89jd3cXJyQny+TwajYb6f7C6uopsNoulpSXcunULKysruH37Nl577TVks1lYluX2oRPRHGIQS+Rjtm2j2Wzi8ePHePz4MX7zm9/g8ePH2NrawpMnT9Bqtc50G5OHWF5eRjabxc2bN7GxsYGFhQVsbm5iZWUFmUwG6+vryGQyiMfjAHCmC/JVP8VFjU02QomGN436wjrpTfp3tSz3P6c/3+120W63cXBwgEKhgP39fezt7eH4+Bjb29vY29vD0dERtra2UK1W0Wq1AHw3pER/GIaB5eVlbG5u4s0338SLL76IV199FXfu3IFhGFM8C0REF2MQS+RjUn1brRZarZZqmLRaLZycnODg4ABPnz7Fw4cPsb+/j+3tbWxvb6NUKqFQKCAUCiEYDKouyKFQSC3L89FoFIZhYGVlBdlsFul0GqurqyqTu7S0BMuyYFkWlpaW1K0W9Nv+jHI8o7zGy41vr5TN6XLM6nE5aZ4/x7N0LG6XQ7ryHh0doVKpqHuEl0ol5PN5HBwcoFgs4vj4GM+fP0epVMLp6am6DU6n01HL0h1YlgEgEolgbW0Nq6urWF5exr1797C2tob19XXcuXNH9cgxDAORSASxWAyRSATBYHDSp4iIaCAGsUQzyLZtVKtV5PN5HB4eqtklnz9/joODA5TLZRQKBZRKJTQaDVQqFdXVrFKpoFarodlsolarqWA2m80imUwikUggl8upYFW6JMfjcWQyGRiGoX6Xho80fmKxGKLRqAqOo9EoQqHQuecnFQB7pRHrBj8eu5/KfJ2yXvRat2+p40Q55r1O2ratgslGo4Fms6nusSrjTGW51WqhXq+fWW40Gure4PV6HdVqFYVCAbVaDZVKBScnJ6hWq2oW4VqthnK5rL6z4/G4CkQty1LDQ+R7PB6PY2lpCblcDtlsFhsbG1hcXMTCwgLW19fVhU0iIi9iEEs0h5rNJiqVCra2tnB0dISdnR08efIER0dH2N7exv7+PvL5PPb399Futy/synbR70Cva1ooFEIul0MqlUIul8Pi4iKSySRyuRwymYwKhFOpFEzTRDabVc9ns9kLG0+DGrpO3MOSiObTME2hcdapVquo1Wo4OTlBoVBQFxfz+TwqlQry+by6oHh4eIjT01MUCgUcHh6q8awXuWroRjweRyKRwNraGtbW1pDL5fC9731P3U/89u3bqjdNJBLh9yIR+RKDWKI5JBkCPTPQPxOlZA9OT09RKpVwcHCAk5MTFItF7O/vqwmkpHubZAPa7Ta63a7qkixdlCU7ILf50ZdDoZDq2hwKhWAYBmKxGLLZLEzTVI0yed6yLNXNTbIL+rKsL8umaapu0myw0TBmOUNI53W7XdTrdZUBlR4pjUYD5XIZjUZD9VSR5XK5jGazqZbl+dPTU5UtbTQaKhvb6XTQ7XbPLctP+d6Vsa1yyxvDMGBZlrooaFkW0uk0VlZW1HOyvLi4iHQ6rSbki0QiCIVC6p7h0ttFngd4cY+I/IlBLBFdSCYKKZVKqFQqODo6UrNaHh8fq9ktJaMgt/+R7nFy2x/pGifLEiTL2N3+wNm2bdXISqVSiMfjKhiVbsemaaruyPF4HNFoFLFYDKZpqm7LsmwYhhrTJd2XJbC+aFkad8FgUI3/kuBafur33JXAuH8d4OrGoVeDpHmeSGia5fLqObjKtMvc7XbP3LtUfpfnZOI6/Xk9YNQDw/7xoRc9J915ZSiFdAGuVqtqWYZaNBqNS5eLxSIajQaq1aoafyrfLRJY6gGlXGCT7yl9ORKJwDRNmKapZpWPx+NIJpNYWFhQAa0sZzIZWJblixnliYiug0EsETlCZsqUMVoy6cjp6Sn29/fVZCTHx8dqTO7p6emZAFkakZMQDAZVFlcyG7IsY8QMwzgzxlduOyTjeiUgliBbbkMkAbIE1PF4fKxxvW6axNhFPwZqs85P//L1caPVavXMmNFWq4VisaguhEkGVTKgMoa0VCqpTKmM++9frlQqal+TEAqFYJomFhYW1JCJdDqNRCKBpaUlJJNJWJaFGzduIJ1OI5VKqe6+qVQKyWSSkykREfVhEEtEjpCvEsmGtFotleGQZXm+v/uc/lMmmarVaigWi6pBKo1OvXvfVV39ZLlWq6kySvZUz5oOsyyZVj0DK7ei0H/Xf0p2V2Z3lgyMHgBLBkYmwepfxzAMlSmWLtGynkgkEirzK9nkaDSqjjcWi6nsMQCV4ZH1ZZ1ZCTYZOF+t1Wqh0Wioi04ybKDb7QKAGmIgAZ3cdxSAyohK4AjgTA8LCS6l54UEl/K8HnDqQxkajcaZbbTbbdRqNVWm/gysXnZZlr/Jd4v8Xc/QDloGoOqbPnzhsmXLstRFK334QjKZRDweRzqdVkMfpL5LHb2sF4j8Lj1C5MHPNBHRWQxiicgzOp2OyqTUajWUSiWVgZGgVMar6cvSfblarapl/Xnpitg/5uyyZT3I7m9A643k/mX961SCYOnqrAeo4XD4TKM2Ho+rgLY/0JWGrt7VUILYQCAA0zRVlqY/iA0EAojFYirQBqBmiu4vozSS+7tC66/VA3f97/K86F9nEP1iwLDry2ucWl+CnmGNu/4o/3IvWl8PuPR19MnX9HLpgR/QCzqvCmL1C07yej2IlQtRehCrDwmQIFbvoqv/XQ9sZVt6ECt1Ub/4BJx9D/ULTfL8Zd36Lxqb37+s32pM78IrvS4kQJUgVi5Mycy/+vPxeByWZalgVgJdjscnInIWg1gi8pRJfCVJFlfG8fYvS8ZXsr8yo6jc2kKyu5I1qlQqKrMkwXKtVhspqPEqucevBLMyvhiAaugbhqECwng8roICIYG5BMuD6MH+MPTxhMMEBvqYw8vWly6rw37+Op0OyuXy0Ovbto1isTj0DLe2baNcLp8LSCXgk6BTxm5KmbrdLsrlstqOHlD6mQSX0qVfbuUlgWcqlVIXgCSITCQSKitqWZYaHqAvS6BpGAZSqZS6cOQ0BrBERM5iEEtEM03vVtg/6cuwWdnLHhd1WZSsU6PRUJkpWZafejaq/16Rsk6n01ETw+jdMWXMsGxPz7TV6/VzGbVWqwWgFwDVarWBQVR/ZvWyTKyQro5OZGKHXV/vtj3s9ieVib1uZnWU9fWMv959X8/MDsrEXkTvwgr0zq9cqJDzJtlE4Lsut/rEZ/pERPKQjGV/bwJ9YiPJdsr+9XtK693t+7vz65OsDZuJ7X/o3f77J2kjIiJvYxBLROQACTAkuOwPYvWf+rhAPYjVg992u30miNWDXOB8ECu3CNGDWHmtlE8yjfpD1tef049H//2y9fWAathM47DrimGCseusrxu1uzJwcbdqp9bvL0v/a+XezP3r63/XL0QAOLO+jL/Ux0r3B7ESVMrfJRMuAaVk3vWHTIYm68s60l1eMqt6ECuBrh7EmqbJTCYREZ3BIJaIyCF++TrVx0JKZlcyvRIk691Z9bGQMlZRXq93bZVu1oPOg23bqNVqKuM8DFl/2G6xeqZ7VKFQSN3OaZjgSYI4yfoNQybqGtR1VW71pHdz1cdHS5CZTCZVWSWbKUGpPkmYBKaWZU2k2+ykMIglIiIdg1giojmjZ1X1zGp/19R2u30u4ypB56D1B+mfkGhS6+vlG5ZkNkfJrE5q/f4ZsAGc+1260+rr69nXy9ZnYEhERH7FIJaIiIiIiIh8g7MXEBERERERkW8wiCUiIiIiIiLfYBBLREREREREvsEgloiIiIiIiHyDQSwRERERERH5BoNYIiIiIiIi8g0GsUREREREROQbDGKJiIiIiIjINxjEEhERERERkW8wiCUiIiIiIiLfYBBLREREREREvsEgloiIiIiIiHyDQSwRERERERH5BoNYIiIiIiIi8g0GsUREREREROQbDGKJiIiIiIjINxjEEhERERERkW8wiCUiIiIiIiLfYBBLREREREREvsEgloiIiIiIiHyDQSwRERERERH5BoNYIiIiIiIi8g0GsUREREREROQbDGKJiIiIiIjIN/4felqb+BXwAOUAAAAASUVORK5CYII=",
"text/plain": [
- "{'TableStream': KernelNode(kernel=StreamSource),\n",
- " 'multiply_numbers': PodNode(pod=FunctionPod:multiply_numbers),\n",
- " 'add_numbers': PodNode(pod=FunctionPod:add_numbers),\n",
- " 'Join': KernelNode(kernel=Join()),\n",
- " 'combine_results': PodNode(pod=FunctionPod:combine_results)}"
+ ""
]
},
- "execution_count": 58,
"metadata": {},
- "output_type": "execute_result"
+ "output_type": "display_data"
}
],
"source": [
- "pipeline.nodes"
+ "pipeline.show_graph()"
]
},
{
"cell_type": "markdown",
- "id": "5f33f5a9",
+ "id": "dad175c6",
"metadata": {},
"source": [
- "Notice that elements of the pipeline is wrapped in a `Node`, being either `PodNode` or `KernelNode`."
+ "You can access individual elements of the pipeline as an attribute. By default, the attribute is named after the operator/pod name."
]
},
{
- "cell_type": "markdown",
- "id": "2b6bc8df",
+ "cell_type": "code",
+ "execution_count": 64,
+ "id": "cca9e0d0",
"metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "PodNode[multiply_numbers]\n",
+ "\n",
+ "
shape: (0, 5)| *id | _tag::source:57778e89cbc0 | product | _source_product | _context_key |
|---|
| i64 | str | i64 | str | str |
"
+ ],
+ "text/plain": [
+ "PodNode(pod=FunctionPod:multiply_numbers)"
+ ]
+ },
+ "execution_count": 64,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "You can fetch results of the pipeline through these nodes. For example, you can access the saved results of the pipeline as Polars dataframe by access the `df` attribute."
+ "pipeline.multiply_numbers"
]
},
{
"cell_type": "code",
- "execution_count": 59,
- "id": "21086f72",
+ "execution_count": 65,
+ "id": "635884c6",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
+ "KernelNode[Join]\n",
"\n",
- "
shape: (5, 2)| id | sum |
|---|
| i64 | i64 |
| 0 | 11 |
| 1 | 22 |
| 2 | 33 |
| 3 | 44 |
| 4 | 55 |
"
+ "shape: (0, 4)| *id | sum | product | _context_key_right |
|---|
| i64 | i64 | i64 | str |
"
],
"text/plain": [
- "shape: (5, 2)\n",
- "┌─────┬─────┐\n",
- "│ id ┆ sum │\n",
- "│ --- ┆ --- │\n",
- "│ i64 ┆ i64 │\n",
- "╞═════╪═════╡\n",
- "│ 0 ┆ 11 │\n",
- "│ 1 ┆ 22 │\n",
- "│ 2 ┆ 33 │\n",
- "│ 3 ┆ 44 │\n",
- "│ 4 ┆ 55 │\n",
- "└─────┴─────┘"
+ "KernelNode(kernel=Join())"
]
},
- "execution_count": 59,
+ "execution_count": 65,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
- "pipeline.add_numbers.as_df()"
+ "pipeline.Join"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 66,
+ "id": "08add7d9",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "{'ArrowTableSource': KernelNode(kernel=ArrowTableSource),\n",
+ " 'add_numbers': PodNode(pod=FunctionPod:add_numbers),\n",
+ " 'multiply_numbers': PodNode(pod=FunctionPod:multiply_numbers),\n",
+ " 'Join': KernelNode(kernel=Join()),\n",
+ " 'combine_results': PodNode(pod=FunctionPod:combine_results)}"
+ ]
+ },
+ "execution_count": 66,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "pipeline.nodes"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "5f33f5a9",
+ "metadata": {},
+ "source": [
+ "Notice that elements of the pipeline is wrapped in a `Node`, being either `PodNode` or `KernelNode`."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "2b6bc8df",
+ "metadata": {},
+ "source": [
+ "You can fetch results of the pipeline through these nodes. For example, you can access the saved results of the pipeline as Polars dataframe by access the `df` attribute."
]
},
{
@@ -1862,8 +1959,8 @@
},
{
"cell_type": "code",
- "execution_count": 60,
- "id": "1e741659",
+ "execution_count": 67,
+ "id": "bb357c14",
"metadata": {},
"outputs": [],
"source": [
@@ -1888,13 +1985,14 @@
},
{
"cell_type": "code",
- "execution_count": 61,
+ "execution_count": 68,
"id": "c77154ec",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
+ "PodNode[add_numbers]\n",
"\n",
- "
shape: (5, 2)| id | sum |
|---|
| i64 | i64 |
| 0 | 11 |
| 1 | 22 |
| 2 | 33 |
| 3 | 44 |
| 4 | 55 |
"
+ "shape: (5, 2)| *id | sum |
|---|
| i64 | i64 |
| 0 | 11 |
| 1 | 22 |
| 2 | 33 |
| 3 | 44 |
| 4 | 55 |
"
],
"text/plain": [
- "shape: (5, 2)\n",
- "┌─────┬─────┐\n",
- "│ id ┆ sum │\n",
- "│ --- ┆ --- │\n",
- "│ i64 ┆ i64 │\n",
- "╞═════╪═════╡\n",
- "│ 0 ┆ 11 │\n",
- "│ 1 ┆ 22 │\n",
- "│ 2 ┆ 33 │\n",
- "│ 3 ┆ 44 │\n",
- "│ 4 ┆ 55 │\n",
- "└─────┴─────┘"
+ "PodNode(pod=FunctionPod:add_numbers)"
]
},
- "execution_count": 61,
+ "execution_count": 68,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
- "pipeline.add_numbers.as_df()"
+ "pipeline.add_numbers"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 69,
+ "id": "38bfc68b",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "KernelNode[Join]\n",
+ "\n",
+ "
shape: (5, 3)| *id | sum | product |
|---|
| i64 | i64 | i64 |
| 0 | 11 | 10 |
| 1 | 22 | 40 |
| 2 | 33 | 90 |
| 3 | 44 | 160 |
| 4 | 55 | 250 |
"
+ ],
+ "text/plain": [
+ "KernelNode(kernel=Join())"
+ ]
+ },
+ "execution_count": 69,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "pipeline.Join"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 70,
+ "id": "7897be61",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7EAAAShCAYAAADlUhxMAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAXEgAAFxIBZ5/SUgABAABJREFUeJzs/Xd4HNd9L/6/Z3tfLMqi90aCIAmCAEESbJIoqhfLlixfK7qOLVuOW5yf843sxMmN49i5cXKjODfXsS3L3bEtS6IqKZGS2AtYQHQQvbcFFlhs7/P7g9wxwApWcMX363nwUFrszpwts5j3nM85RxBFUQQRERERERFRHJAtdgOIiIiIiIiIFoohloiIiIiIiOIGQywRERERERHFDYZYIiIiIiIiihsMsURERERERBQ3GGKJiIiIiIgobjDEEhERERERUdxgiCUiIiIiIqK4wRBLREREREREcYMhloiIiIiIiOIGQywRERERERHFDYZYIiIiIiIiihsMsURERERERBQ3GGKJiIiIiIgobjDEEhERERERUdxgiCUiIiIiIqK4wRBLREREREREcYMhloiIiIiIiOIGQywRERERERHFDYZYIiIiIiIiihsMsURERERERBQ3GGKJiIiIiIgobjDEEhERERERUdxgiCUiIiIiIqK4oVjsBhB92EUiEfT19cHlcsHj8Sx2c4iIiG4pMpkMBQUFMBgMMBgMi90cIooDDLFEN1g4HMaOHTvQ2dmJnp6exW4OERHRLUWtVuPZZ59FSUkJQywRLQhDLNENFo1G0d3djcbGRjQ3Ny92c4iIiG4pGo0Gjz76KDIzMxe7KUQUJxhiiW4wURTh8/ngcrkwOzsLq9UKnU4HvV6/2E0jIiJaFNFoFENDQwgEAggGgwgEAohEIovdLCKKEwyxRDeRTCbD+vXrUVxcjLKyssVuDhER0aLwer340Y9+hJGREXi93sVuDhHFGYZYoptIJpOhqKgI1dXV2LBhw2I3h4iIaFE4nU5s374dMzMzDLFEdMUYYoluMoPBgMTERKSnpy92U4iIiBaFVquFWq2GXC5f7KYQURziOrFEREREREQUNxhiiYiIiIiIKG4wxBIREREREVHcYIglIiIiIiKiuMEQS0RERERERHGDIZaIiIiIiIjiBkMsERERERERxQ2GWCIiIiIiIoobDLFEREREREQUNxhiiYiIiIiIKG4wxBIREREREVHcYIglIiIiIiKiuMEQS0RERERERHGDIZaIiIiIiIjiBkMsERERERERxQ2GWCIiIiIiIoobDLFEREREREQUNxhiiYiIiIiIKG4wxBIREREREVHcYIglIiIiIiKiuMEQS0RERERERHGDIZaIiIiIiIjiBkMsERERERERxQ3FYjeAiIgWjyiKl71dEIRLbuNiv7/Ythey/QvdNvcx5247dv9LPe5ij4n996W2H7vPufebe99zt3epbV3N87/U9s7+ArHfXOzxl3sviYiI4gFDLBHRbUwURXg9HvT29KCrqwtdnZ1wOp1wulwIBgKQyeVQq9Uwmkww6PVITExEbl4eUqxWFBYWQq/XQ6G4+J8SURQxODCAkZERNDU2YmpqCo6ZGbg9HgCAXCaDwWhEYmIirFYrqqqrYbVakZaeft62/D4fJiYm8Iuf/xwDAwPS7UqlEklJSfj4k09iZUXFeY87VV+PxsZGHD18GKFwWLq9pLQUVVVVqK2thVanAwAE/H7U19fjJy+8MG8bSqUSRcXF+Mv/7/9DZ0cHhoaGcOL4cUzb7fB4PPD7/bjr7rtRVV2NoqKieWHRPjWFsbEx1NfXY2pqClOTk3C5XIhGIhABJCQkwGQyITUtDRUVFUhNS0NmZuYlX9NAIIDT7e3o7e3F6MgIhoaH4fN6EQwGIZPJoNPpYDQaUVpaioLCQiwtK4PBYGCIJSKiDwWGWCKi21Q4HIbf70djYyO6u7rQ3d2Nvt5euFwueDweBAIByOVyKFUqGI1G6HQ6JCQkYHp6GqlpaQgEAli2bBlMJtNFt93f14furi4MDQ2hra0N09PTcM7Owuv1AgBkMhkMBgPMZjOSk5MBQUBWVhY8Hg+ysrOhUqmk4BWJRuHz+dDf34/Ojg5pX0qlEunp6VIwPpfb7cb42Bg6OjoQCoWk2zUaDQoLCxGJRqXbotEoZmdn0XH6NEQAscinVKkgiiL6+/rQ1NSE/r4+tLS0wDEzA6/Xi0AggOUrVsDr9UIURUSjUYRCIQwMDGB4aAgDAwNoaW7G9PQ0pu12uD2eMyFWFGEym2E0GjExMYFIOIyCwkKkpKRAoVBAJvvjqB9RFBEOhzE2NgbbxAQaGhowODCA8fFxjI6Owu/3I3Q2xGq0Whj0evj9fszOzsLn86GsrAyGs+8jERFRPGOIJSK6TfnO9mz+3+9/H3a7XQqWc8XCmHdOQDxVXw+j0Yj8/Hz8//7yL+eF2Fipq9/vx8jwMP7r//0/DA4OYnp6+qLtmJ6exvT0NPr6+nD8+HFkZWVhxcqV+PQzz0hhbiGudx/judubnp7Gq6+8giOHD2NsbOzCDzr7/EPBIGZnZ/GrX/wC3V1dGBwcPP+uZ/dhn5rC1NQU+vv6cPzYMVRUVKBi1SoYjUaoVKqzmz0TjL0eD3a98w6O1dWhra3toqXFwWAQztlZjI6O4uiRI9DpdPjzv/gLlJSUIC8//8zzY68sERHFKYZYIqLbVMfp06ivr4fdboff71/QY+b2Tl5MNBrFrnffxckTJ9Dd3X35bYsiMCdQ2SYnUXf0KBIsFixfvhybNm++bLuudyA793mGQyHYp6awf98+OJ3OCz9GFKWfo0eP4vChQ2hoaIDH7b5wmy/y3xfb9uTkJH7x85+jtaUFY6OjlxxzPFc4HIbb7cZ//+Y3WLNmDT76sY8hKTkZSqVyQY8nIiK61TDEEhHdpqanpzE4MIBgMIjo2ZJauVwOs9mMxKQkaDSaM3cURYTCYUTCYYRCIXg8HqjUaigUivPCYzgcxsz0NHq6u9HR0QH3OQEuVjprMpkg4EzgtU9Pw+vxwHO2tzcYCMAeCKCttRU6nQ5V1dV/bMsFCIIwLwRfD/O2dnbCpGAwCLvdDovFIo05lc8p+c3IzIRWq8XMzAz6+vrQerbcOBqJSO1TqVTQarVISkqCSqWCQqlENBJBOBI503vrdEKv1//xeZ3lcrkwMTGBluZmTExMwOP1Sm2Uy+VISUmBTq+HRqOBGI3C5XbDOTsLl8sFURQRiUQw0N+PxMRE9Pb2wmgyMcQSEVHcYoglIrpNORwOjI6OSgEWAPR6PdbX1uLhRx5BXn4+ZDIZIpEIpu12OJ1O2Gw2NDU2YnZ2VhozO5fH7cbhQ4dwur0dY6Oj834nl8tRUVGBNTU12LBxIwRBgN/nw5tvvIHmpiY0NjbOu3/DqVNQyOVYt24dcvPyLvlcbkSQnbNxaR9yuRzr16/HsvJyrKmpgTkhYV7ADvj92Lt3L5qbmtDX1zfv8QCQnJyMktJSfOQjH0FaejqSkpLg8XjgdDoxPj6OgwcOwGw2n3dxoKOj48w2e3shiqIUYAVBgFarxcOPPILy5ctRUFiIQCCA48eO4cD+/Th+7BiCwSAAIBQKobenB6+8/DLy8vOlsExERBRvGGKJiG5TMpkMijkhVBAEKBQKqNVqaLRaKJVKyOVyiKKIFKsVFosFaenpyM/PRzgcRiQaRWpa2rxten0+NDQ0YGZmZt7tKpUKlZWVWF9bi+o1a2A2mwEABr0e9z/wAAxGI+x2O8bGxhCJRKTHORwONDY0wGq1QqVWX/y5CMJ1HxMrOVvubDabsXb9etxx113Iz89HQkICFErlvMAZDIVwqr4e4+Pj8zYhCAJy8/JQs3Yt7rnnHqSmpUGtVkOlUkEul0On18NisSA1LQ1KhQIGg2HeBYLe7m60X2AMbF5eHgqLirB5y5YzPcR6PXQ6HVZXVSEtPR09PT2YttulIDs7O4vOjg5MTU3BbDYzyBIRUVxiiCUiuk2p1Wro9fozIexsUIvNzjs0OIhgMAiVUgm5QgGlUgnF2X/TMzKgUCguOOFSKBjEyMgIfD7fvHGlCqUS+QUFyMnJQdo5wTc3Lw/ZfX2wpqbCZrPNC7E+nw8jIyMIhkKXDLE3rBd2zrZ1Oh2WLVuG3Ly888J7TCQSwcjICFwu17zbZTIZsrKyUFhYiNIlS+b9Ti6XQ3V2+5bExAtud8pux8TExHm3p1itKCwqQmZW1rzyYKvVCr1ej4SEBHjc7nm9sQ6HA7MOBzweD0MsERHFJYZYIqLbVHp6OpYsXYpTp04hIggQRREOhwPv7d6N9997D1qtFgaDARaLBRmZmUhMSkJWVhZWrVqFpKQkJCYlnbfNYCiEoaEh+OaM2QQAlVKJFStXIsVqvWBbkpOTsXz5cnR0dEiBCwC8Xi+Ghobm3XYhN7Sc+CyjyYTaDRuQkJBw0ftEIhEMDQ2dN/mTXC7H+tpaFBcXX9W+pyYnMX6BGZHz8vOxqrJy3lI8sf1pNBrk5OTA7/PNC9WiKGJocBBmsxnWi7wfREREtzKGWCKi21Refj5UKhVampsxNDyMSZtN6pEVRRGBQACRSAQ+nw8zMzNQqVRo0ulw9MgRpKamoqKiAtU1NUic03soRqMI+P3zelMBQJDJoNfrLzqZkEqlgsFggGxOEBXxx7VhxTnjdi/qIrP1RiIRhMPhyz/+3G3NaYtMJoNKpYLJZLrkkj+iKJ55/rH9iSJEQYAgCDCZzdBe5RqtoVAIgQsE+SOHD6O3p+fMRFnnhPhoNIr2trbzeoUBwOPxwOfzXVVbiIiIFhtDLBHRbcpisUClUqFs2TIoz47NDPj9Z8a7np0xNxKJwO12nxeErFYrIpEICoqKoNfroVKpIAgCRJwJT+LZGX2lCYhwpndQdpHeUkEmg1yhmBccBQA4uz5qLJ4KZ8e+xrYdu/1SITcSiSAUCi14SZqzO5rXfplMBrlcDrVafdnlfGLPP7YdqaR6zkzGVyoajV7wOQ4ODmJozhq00ut0me0FgsHL9m4TERHdqhhiiYhuUzKZDEajEZ/7/OcxMzODqclJnKqvx+TkJGw2GyZtNjidTkxPT8Pj8cwLgTabDTvefht5BQUIhUJYunSptE2tTgef1zuv9zMajcLpdF6wNxE4s6yOc3b2vKAml8uh0+kgk8kuuK6qgDO9n6FwGNGLhNRYT/IVhVjMD4KCTAaZXH7ZACsIAjRaLYLBIEKhkHS7KIqYmZ6GJzX1itoQo1KrodZo4PN6L9rGC/3/xQSDQYSutHeaiIjoFsEQS0R0m4oFMrlcDqPRCKVSCZVKBZ/fD7/PB5/Ph1AwCL/fj8bGRvT396O5qUl6vCiKGB8bw3hamhRiFQoFrFYrxsfG5oXYcDiM3p4eJCcnIyMj47y2OBwO9Pb0zAt+AKDRaJCamgqlUglBJjvz7wXKZj1uN0Jn17sVzpbvRqNR+P1+2Gw2jAwPz1tK6HLm9sJe7HW7EJlMhtTUVETCYTgcjnltbGluhsFgQElJyYLbEZOQkICkpCQMnxNiK1evRumSJcjOzr5oL/cFngDy8vORdIExzURERPGAIZaI6Dbl9/sRPBv8FAoF1CoVsnNyIAjCmZ7Ps2NjI5EIItEogsHgvBALnFmyZXZOWFOeDbGOmRl4PB7p9nA4jIH+fhQUFsLr9UJ9dqZhURTh9/lgt9sxMjJy3lhatVoNq9UKhUIBQRCgVKkgnFOSGz07btbj8Ugz7sbGwdpsNkxOTsJut19RT+zVThEll8thtVox63CcF2J7e3uRlZ0Nh8MBrVYLuVwOuUyGqChKr7Pf74dMJvtj7/PZYJpgNiMxMRHDQ0Pz9peWloZl5eWorq6WluuRyWRnyrljpdhntx0KhRCNRhGNRGAymy85tpeIiOhWxr9gRES3qRPHj+NUfT0cDgeysrORm5uLrKws6PV66A0G6HQ6hEIheNxujI6MYNpuP6+HMhqJzOvh1BsMWL9+Pabtdtjtdul2v9+PvXv3IhyJwOl0Yt26dRAEAX6/Hzt37EBjYyN6e3vPC5pJSUlYu24dDAYDVCoVUlJSoI6Nvz17X1EU4fP5cOjgQbjcbtx3333wejyYnJzEz3/6U/T391/5xE5XSaVSYX1trbQ0UEw0GsXp9na43W709fbioYcfRmpqKpKSkuDxeuFyuTAxPo69e/bAbDLhiU98QuodB4AlS5ciGAqhualp3mu0f98+tLW2wuf1Ii8vD2np6TAajQiFQvD7/Zh1ODA7Owu73Y6W5mbY7XZMT0/jG3/zN8jMzLwprwkREdH1xhBLRHSbCgaDcDqdOH36NIYGB9Ha0iIFp9hPJBpFKBhEd3c3pu3283ook5KS5s1OrNVqsWz5cjQ2NmJychLT09PS70KhEDo7OuB0OtHW0gIIAsLhMPp6ezE5OXlegC0oKEBhcTHS09OhVCohO1tObE1NhdVqPW/d1K6uLjgcDgwNDiIcCsHr9aKvr++Cs/PeKEqlEmVlZejr7cVAfz8mJibmhe3p6Wm0t7UhGAxCr9dDq9EgFA4jGAzC4/FgaHAQ+QUF570WuXl5CIVCSE1NhcPhgN/vB3Dm4sDU1BR2vfsuzGazNMlWNBpFOBJBwO9HIBCAz+fD1NQUwmfLtSMcD0tERHGMIZaI6DYViUTgDwQwPDR0xT2VgiBAoVAgOSUFycnJ0u1qtRoFBQXIzc3F2OgonE4nIpGIVN46PDyM4eFhnLjEtmNhtbikBIWFhfPWo5XL5UhPT8fExMR5IXZ0ZASjIyNobGiYd39BEKBUKs8bb3sjyOVy5OblIb+gAL29vXA4HFLJNgB43G543G4MnVMWPJfZbAaAeUE2LS0N0UgEuXl5iPb2IhQKSSXTbrcbx48dW1D71Go1EhISLjoJFhERUTy4urn+iYjow+cKgo05IQFramqwpqYGS8vK5v1OoVDg0Y98BF/40pdQWloqhbKFSk1NxYaNG/H0pz6FrVu3nvf7rXffjXvuvRdqtfqSS9bIFQrk5OZi+YoVqKqqumljQAVBwJYtW/DVv/gLrKmpueBEVlezzdS0NPzVc8/hnnvvRUlp6WVnSiYiIvqwYk8sEdFtKjcvD+vDYSgVCszMzGDW4cDMzAyCZ9cQDQQCEEURgiBArVZDo9HAaDIhMzMT6RkZWLFiBVKSkyGXy6VtxoKV3mBAZlYWHnrkEfT29GB0dBRDQ0Nwu1zwer0IBAIAzvS6ajQa6PR6mEwm5OXlISsrCyWlpUhKSoLq7ARQcyUlJ6O4pAQPPvwwOjs6MHV24qZIJAJBEKA3GJCSkgKr1YrqNWtgt9sxPjZ2U17T2PNXazRISkrC3du2YWBgAIMDAxgYGIDL6YTL5YLf7z/TGyqK0Ol00Op0MJvNyMnJQUlpqTTx09ztyuVyJFgsWFNTA2tqKrKzs2Gz2TAzM4Pp6WmEzi7rI4oiFAoFlEol1BoNNBoN9Ho9UlJSYElMRHpaGkwm0015PYiIiG4EhlgiottUXl4e0tLSkJiYiKGhIQwPDWGgvx9utxsejwcul0tassZkMsGckID09HSsrqpCTk4OypcvB3DhJWfUajWSk5PxwIMPoquzE/39/ag7ehQT4+OYnp6WxqnKZDKYExKkpXc2btqEzMxMZOfkXLDNgiDAbDZDpVLh4UcewQfvvYeuri5ERRGhUAgyQUCK1YolS5agqLgY2+65BydPnIDP64XBYJhXUqzVai+4ZI9CoYBer593m0qthlarXfBrq1AooDAYcOddd2FsbAxDg4M4cvgwxsbGMD42Bsfs7JmZmEURSUlJsCQmIisrC2vXrUNmZiZ0Ot1524wF/lWVlVhaVobMzEycPn0aA/396O3rg9fths/vRzQSgVqjgU6rhfHs+5acnIylS5ciPT0duXl5DLFERBTXGGKJiG5TSqUSCoUClatXY2VFBaKRyLzxq3PHTcoEAYJMJo1XlV+ijHcuQRBQWFSEvPx81G7YcGbJl2hU2rYASNuVyWRQKZWQzemBvBiNRoO8vDw89fTTZ5YAOhsIgTNhT65QQC6XQ61Wo2btWlSuXo0//cxn5m1D6q2c09ur1emwafNmVFVXn7fPqy1HtlqtSE5ORnl5OSLRqLTsTay9c5+/Uqmc1wN7qedfuXo1VqxcKT3/2DZFQForN/Yjk8mgUCjOvDZnxwkTERHFK4ZYIqLb1NyAE1vK5XpvHzjbK6lQzAuL12Pbse1ejkqlgkqlOq939ULbBM70Il/Ptsrlcsjl8uv2GsfaGZtBmoiI6HbDiZ2IiIiIiIgobjDEEhERERERUdxgiCUiIiIiIqK4wRBLREREREREcYMhloiIiIiIiOIGQywRERERERHFDYZYIiIiIiIiihsMsURERERERBQ3GGKJiIiIiIgobjDEEhERERERUdxgiCUiIiIiIqK4wRBLREREREREcYMhloiIiIiIiOIGQywRERERERHFDYZYIiIiIiIiihsMsURERERERBQ3GGKJiIiIiIgobjDEEhERERERUdxgiCUiIiIiIqK4wRBLREREREREcYMhloiIiIiIiOIGQywRERERERHFDYZYIiIiIiIiihuKxW4AERHRQkQiEQSDQXg8HoTDYQCAwWCAWq2GQqGAIAjXbV+iKCIcDiMYDMLlcgEAFAoF9Ho9VCoV5HL5ddsXERERXRn2xBIRUVyw2Wx4/fXXce+996KkpAQlJSX40Y9+hObm5huyv8bGRvzoRz+S9rVt2za8/fbbmJiYuCH7IyIiooVhTywRXZAoihBFETt37kRra6vUGyWXy5GTk4OqqiqsWLFikVtJCxEIBDAxMYEXX3wR0Wj0hu5LqVQiJSUFd999N4qKiq7rtkVRRCgUgsfjkT6PwWDwhj2naDQ6ryfW7XYjFApBFMUbsr+rEXtNenp6MDY2BpvNBpvNBr/fj0AggEgkAoVCAZVKBa1WC7VaDZ1Oh7S0NJjNZqSkpMBqtUKtVkMmk13X3mwiIqIbhSGWiC4odnK8Y8cOvPLKK1Lvk0qlQnV1NVQqFcrLyyEIAk98b3GBQADDw8P47ne/K5Xh3ig6nQ5LlixBQUHBdQ+x9EeiKCIajcLv98PpdOLUqVNoampCe3s72tvb4XQ6pdAdC64WiwUGgwGJiYkoLy9HVlYWSktLIZfLYbFYoNfrF/tpERERLQhDLBFdkNfrxbFjx9DV1QWbzSbdHgwGcezYMWzevBmjo6NIT0/n+ECimywcDmNoaAi//vWvsWvXLrS0tCAYDCISiSASiSAajUo9xqFQCG63G1NTU9JFpwMHDkAmk0GhUOCTn/wkamtr8YlPfGKRnxUREdHCMMQS0QX5fD7U19djamoKoihCJpNJJcahUAgjIyNobW2F1WpliCW6iQKBAKampvDb3/4WBw8eRHd3N5xO50XLnGO3RyIR6bZQKCT9t8fjgd/vv7GNJiIiuo4YYonoPKIowuPx4OjRo1LvjVqtRjgcRjgchiiKGBgYwPHjx7Fx40YolUqWFN/CBEGATCaDTqdbUDlxrDdv7n1VKhVkMhlkskvPB6jVaqHRaHhh4wZyu90YHBzEj370I0xNTcHn8wGA9P7I5XKpx1UQBCnEzv031lMbjUY5JICIiOIOQywRncfj8WBsbAwffPAB3G43dDod7r33XkxMTMBms6Grqwutra3w+Xz44he/CK1Wu9hNpkvQ6/VYtWoVWltbF3T/Q4cO4c0338Rrr70Gj8cDmUyGv//7v0dFRQWWL19+yccKggCFQgGz2Xw9mk4XsGvXLuzZswfj4+PShQa5XI5Vq1ahoqICW7duRWpqKlJSUqDT6RAKheD3+zEzMwO3242ZmRm0tLRgdHQUnZ2dSExMhFKpXORnRUREtHAMsUR0nuHhYfT09EjrcRqNRqxatQpjY2MYGhpCT08P3G43JiYmMDw8DEEQkJCQsNjNpouQyWRQq9XIyspa0P1TUlJgMBik3jlBEGCxWGC1Whe8DbpxBgYG0NbWJlVFqNVqbN68GdXV1aioqEB5eTkSEhJgMpmgUqkQiUSkWZ19Ph88Hg+Sk5MxPT2NlStXIj8/n+8rERHFFYZYIjpPR0cHGhsbpeVEtFot1q1bh4mJCfT09OCdd96Bz+eD3W7H6dOnoVarryrExkoaY2P1BEGQSiGBPy7zM/cnRi6XS+N0o9GotMzKhbYxd5Kb2L+x+80tj73Q/ubuc26oi5Xozr39YiKRiNSO2P0VCsUlHyuKotTLNrfNsZLRSz0u9prGHjf3MTeybPRCr9u5/8aeR+zfK3kdLyf2+sbe73P3eb33dzkXKt+de/vcNiykbbHH9ff3o7W1Vfp/vV6PP/3TP0VlZSVKSkrOe5xCoYBarYbBYJBuW7Zs2TU/txtxrMSO5Ss5Vs5tVyzcxx4TK7G+1D6v9nsoNjnWhdoxd9sLee/n/izkec5tW+z1Wsh7MPd3RETxiiGWiM5TV1eHDz74AKIoIikpCXl5eaisrEQgEEBhYSH+9V//FeFwGMFgEG+//TYUCsUFT54v5+jRozh58iT+7//9vwCArKwsfOc730FRURGMRiMaGhpw7NgxtLW1obOzE06nEz6fD0ajEU8//TQ+97nP4f3338cHH3yA7du3AwBqa2vx+c9/HsuXL4ff78fp06exe/du9Pf3o7e3F7Ozs4hEIjAYDPjud7+LO+64Q2pPIBDAiRMn0NDQgNOnT6OtrQ1utxs+nw8KhQJ6vR5msxkrV65EeXk51qxZg5ycHKhUqks+z5/85Cc4evQoDh06BI1Gg+LiYvz2t7+9ZAmn1+vFn/3Zn6Gvr09a3mjp0qW488478fTTT8NisVzwcS6XCx0dHfje976HxsZGAJBmn73zzjtv6Mnr+Pg4Jicn0djYiM7OToyPj2NsbAwulwterxder1da7iU/Px+FhYUoKSnB/fffD71ef80lre3t7eju7sZbb72F0dFRTE9Pw+VywWAwwGw2Y/Xq1aiurkZ1dfVNmVU7Go1iYmICzc3NOHXqFOrr6zEzMwOHwyF9pnQ6HQoKCpCbm4vKykps2rQJiYmJF2xbNBqF1+uF0+mE0+kEAFgsFuTn5+POO++8qdUQwWAQJ06cQHNzM9ra2tDa2gq32w2v1wu5XC4dKytWrMDSpUtRW1uL7OxsqNXqS273zTffRF1dHV555RWIooiMjAy8/PLLUq/y5YTDYTzzzDPo7OyE3W5HeXk5amtr8bWvfe2ijzl58iROnTqFf/u3f0M0GkVycjK+973voaioCImJiTh16hQaGhrQ2NiIjo4OuFwueDweGI1GPProo/j6179+3jYDgQCmp6fx/vvvo6enB21tbbDZbPB4PPB4PNDr9dDpdEhOTkZeXh5ycnKwceNGZGdnIyUl5fJvAICJiQn09vbi4MGDaGpqgt1ux9TUFPx+PwRBgF6vR05ODjIzM7F+/XpUV1cjKyvrsuPaiYjiAUMsEUlCoRCcTidGRkYwOjoKAEhPT0dhYSF0Oh00Gg1SUlKQnZ2N4eFhuN1unD59GmvWrEEwGLziCZ68Xi/sdju6uroAnDkB9Xq96O3tRTAYxLvvvov29nb09/djcHAQXq8XwWAQFosF09PTACCVNce2kZubC5/Ph7a2NoyPj+Pw4cM4fvy4FKjcbjcAwGw2w+PxSD0wXV1d6O/vx/79+9HV1YXBwUH09/fD5/MhEAhALpdDo9HAYDDA4/FI26utrUVGRgZycnIu+jxFUYTf70dXV5d0Im6325GQkHDB8cThcBg+nw8tLS3o7+/HzMwMgDO9PmlpaQgEAhfdl9/vR19fH7q7u6XXJBgMQqPRLPh9uVKRSATBYBAHDx5Ee3s7enp6MDQ0hOnpadjtdni9XgQCAQQCASiVSqjVakxPT2N8fByDg4OIRqMoKSnBkiVLYDAYrvgk2+v14uTJkzhy5Aja29tx/PhxTE1NSeFZq9VCr9cjEAjA4XBgfHwcd911F1JSUi56MeBajY+PY3x8HEeOHEFnZyc6OjrQ1dUFl8sFt9s97zM1MzODkZERTE1Nwev1oqCgABUVFRecIOvcygO5XA6lUgm9Xr+gkHctYsdKT08P+vv7sW/fPnR3d2NgYAD9/f3S+yyXy6WeX4/Hg9HRUUxOTmLdunXIzMxEXl7eRffhcrmk41kURQQCgXlVBQsxMjKC3t5e2Gw2mEwmLFmy5JL39/l8mJmZQVdXF6LRKJxOJ7xeL/r7+9HX14edO3eis7MT3d3dGBoagtfrhc/ng8ViweTk5LzXBwB6enowMjKCpqYmnDhxAqOjo+jv75cuXvj9fmg0Gmg0GphMJoyPj6O3txczMzPYsmULqqqqoNfrL/pdOjMzg+HhYdTV1aGvrw+NjY3o6emB0+nE7OwsgsEgBEGARqOB3W7H0NAQ3G437HY7iouLsWbNGqjVao6DJqK4xhBLRJJAIIC+vj709/djfHwcALBkyRKsWbMGMpkMKpUKZrMZq1atQjgcxunTp9HQ0ICNGzfC7XYjISHhmnr6YqVxR44cQWtrK372s5/NWxYEwLzZVi8mGo1ix44dOHXqFF577bXzfq9QKOaV+/l8Prz99tvYuXMn9u7dKwWEuWKT4zgcDgwPD2P//v1QKBR49tlnsXnzZmRlZV20FDA3NxcFBQUAzgRKl8uF3t5eFBcXXzDEBoNBOJ1ODA0NweFwSLdPT0+jtbUVgUAAoihecF9er1fqFYvJyspCUVHRDeuFjUQimJ2dxY9+9CO8//77l7xvLKA7HA60t7dDEAS8//77eOyxx/C5z30OhYWFV3QxRBRFTE9P45VXXsE777yDzs7O8+7jcrngcrkwPj6OQ4cOwWg0QqlUYvXq1VLv5fV6bWKf4dbWVuzZswf/8R//AY/Hc8HPVDgcRiAQwOzsLE6fPo29e/diz549WL9+Pb71rW/BarVCo9HMKwudW+Y6d3+x/75R73FsPz6fD7t27cIbb7yBPXv2nHd8An88VmZnZzEyMiK1+5lnnsHGjRuRk5Nzy8+ILIoiTp48idbWVrz44osIBoMXvM+5IpEI9uzZgwMHDuC3v/3tRQN4rEfWbrejr68PAPDaa68hGAwiNzcXWq32ghcwRFFEf38/3nrrLfzgBz/A5OTkBd8D4I/fI11dXThy5Ah27dqF8vJyfP/734fVar2iMm0iolsNQywRSaanp/Haa69hbGwMwJmTm1WrVuHOO++Uesc0Gg0eeOABOBwOnD59GsFgEJ2dndi9ezceeugh6HS6q96/0+nEa6+9huPHj6O7u/uiJ2dzxxeea2hoCNu3b8e7774rleFeSKxHa2xsDN/+9rdx9OhR9Pb2XjBsXOzx4XAYv/vd79DR0YHp6Wk89thjSE5OPu++paWlmJ6elgK4z+fD8ePHkZCQAKvVet79R0dH541JjnE4HGhra4PD4UBqauoFe1edTieOHz8Oh8MBlUqFtLQ0pKenIykpaUHP62YTRRFjY2N4/fXX0dnZiR/84AdIT09fcK/ikSNH0NbWhl27dkkltpcSDofhdDrxj//4j3j44YfxzDPPoLS09LJlrgvl8Xjwi1/8Art378aRI0cuGmAvZnBwEB6PB5OTk/i7v/s7rFy5Emq1Wgp9Wq0WycnJSE1NxcTEBBwOBwYGBrB//34sW7bskhUB10IURUxOTuLv//7vcezYMXR2dl70+LzQY8PhMP7whz+gvb0dbrcbDz/8MNLS0m5IW6+V1+vF66+/jqamJpw+fXremrpznTs+tr29HW+++SZ+85vfYHh4eEHLWV2JSCSCX/ziFzh06BB27tyJqampBb8HwJnvFbfbjS9/+cv4/Oc/j7vvvvuGVmgQEd1IDLFEBOBMMHS73WhubobL5YJcLkdiYiLS0tJgtVqlq/UKhQLFxcWwWq1Qq9UIBAKw2WxoaWnBfffdd01t8Pv9aG5uxuDgINxuN4qLi5GQkACj0QiNRiNNUGQwGC46BndmZgZNTU1ST3JJSQlSUlKk8r3YRDF6vR4ymQy9vb04fvy4VHIHAAkJCUhISEBWVhY0Gg1UKpUUPj0eD/r7++HxeOD1ejE1NYWuri4cOHAAGzduhF6vP693NSEhAcnJydBqtQgEAgiFQujv75/XW3rucxgcHEQkEpFKYWNjeT0eD6amppCenj7vBDQWyn0+H4aGhuD3+6FUKpGRkSH1PN5oOp0OiYmJSEpKgtFohFarhUqlglKplHqVwuEwQqEQZmZmMD09jenpaXi9XthsNkSjUfT29krtXoj+/n6o1WpMTU0hNTUVFosFqampUKvVkMvliEQicLvdUu937PUfGhpCW1sb6urqkJeXB5VKdc09Um63G2NjYzh06BDa29ths9kgl8thsVjmtUulUkGhUCAajSIUCsHhcMDpdGJsbEwqsY8FqMTERBQVFQH44wQ96enpyMvLg81mk57f3r174XA4MDU1hZSUFGi1WunnevR6xnoMT5w4gYGBgXll+bFjJfZ+x8rnY8dKbKys3W5HT08P9u/fj5qaGphMpmu66HWjBINBtLS0YHBwEE6nE4WFhTCbzTCZTNBqtdIkaQaDAcuWLYMoitJzO3jwIAYGBqQLKkajEUajEenp6TAajdLxEFuHORAISL2yNpvtoqEyVvJ89OhRNDY2Ynx8HHK5HEajEcnJydJ7HvtsxZ5HrAoh9p0wOzuL5uZmtLe3o6ioCEuWLGFPLBHFJYZYIpJ6Sqanp7F//3643W5otVqsWLECOTk583rxlEolKioqUFBQgMTERIyPj6Ovrw979uzBl7/8ZRiNxqs+KfJ6vVKZblJSEh5//HHU1NRg6dKlyMrKglKpnDcT6IV6Omw2G2w2G5RKJUpLS/HYY49h69atyM7ORnp6OpRKpdSrvHv3bnzwwQdobGyc11tWWlqKqqoqPPXUU8jMzERycjJCoRBGRkbQ3d2N//zP/0RXV5dUBjgwMIDh4WE89thjMBgMyM7OntemuRcDbDYb/H4/mpqacM8998ybRTVmYmICra2tCIfDSEtLQ1FREU6ePAmPxyON371QL24oFMLs7Cw6OzsRCoWQnJyMlStX3pQJfwRBgNVqRVlZGTZt2oTly5cjKysLVqsVZrMZOp0OgiDA5XJhZmYGhw8fxqFDh3D48GFpOadAIIC9e/ciHA4vOMS2tLQAOHNxZe3ataipqcEjjzwiLRPkcrnQ2dmJtrY2PP/88xgfH8fMzAyi0SgaGhowMzODe++9F0aj8Zpfg+HhYTQ2NmL79u3w+/0AzlQulJWVoaamBg8++CCsViuSkpJgMpkQCAQwMzOD+vp6nDp1Ctu3b5fGYQ8PD+O9995DMBiUQmzMihUr4HA4cOLECSnE/uu//ivKy8uxfPlybN26Fbm5ucjNzUV2dva88vlzLfRYbWlpweHDh9HQ0DDvuCsqKkJ1dTX+5E/+BJmZmbBarQiFQhgfH0dXVxd+8IMfSONJY6/R7373O9x///1ISEiQSotvJYFAAAcOHIBCoYDJZMJHP/pRVFVVYcWKFcjKypoXFIEzFwBbWlpw4MABvPXWW/O2lZubi7KyMjz++OMoKytDSkqKNB4/Nra+s7MTPT092LlzJywWywUvOkxOTqK1tRVvvPEGbDYbAECtViMvLw933HEH7rnnHmRmZiI1NRUGgwHRaBR2ux0tLS1ob2/HL37xCwwPD8PpdGJ4eFh6fsXFxZzoiYjiEkMsEQEAGhsbceLECbjdbkQiERiNRtx///3IzMw8776CIKC0tBR33XUX/vCHP2B6ehodHR3SieqFSmQXShAEfPzjH8eWLVuwdetWqfcjVlK5EDKZDH/xF3+B1atXY+3atUhISJB6QOZuI1aWFwuwRqMRTz75JLZu3YqqqiqkpKRIj1MqlcjNzUVqaipycnKwZ88e/OY3v0Fzc7M0+czu3bsRCATw5JNPntcmvV6PyspK1NXVYXx8HC0tLZicnEQoFDqvl3R0dBSnTp1COBxGeno6ampqEA6HpcmmWlpakJycjNWrV897XHd3N7q7u6UyZJ1Oh9WrV9+wyYtiFAoFLBYLvv71r8Pn88FkMkkTDcV6YWM9sbFx1UlJSaitrcXo6Ci++tWvSifYBw8eRGJiIu6+++4F7z8tLQ1f+MIXsGnTJhQWFiIxMVHab0JCApYvX46CggIUFxfj5ZdfxksvvQS73Y7Z2Vn09vZKwSw/P/+aXoejR4/irbfekt5Ti8WC73znOygpKUFOTg4sFot0IUYul0OlUkGr1UozJz/44IP4h3/4BzQ3N2NkZASHDx+GIAh45pln5u1n3bp1SEtLQ0NDA9ra2jAyMoJoNIru7m6Mjo6irq4OarVaWvoqMTERqampKC4uRmZmJoqKilBSUnLB8dgXc+zYMbz11ltS+apOp8MnPvEJ3HHHHVi7di1SUlKkyYKUSiWys7ORnJyM7OxsHDp0CD/96U/R2toKn88njRuNRCJ46qmnruk1v1EEQcBDDz2Ebdu2Ydu2bfM+0+eGvmg0iu3bt+Po0aPSbampqVi3bh0+/elPo7i4GMnJydDpdNLn0mg0QqfTISEhAbm5udi4cSMeffRRJCcnS0F2rra2NvzqV7+C2+2GQqGAVqvFt771LSxbtkyqWJl7vImiKB1rFRUV2LRpE/7f//t/OHDgAAYGBtDY2IhwOIwvfvGLnOCJiOISQywRAThTltnT04NwOAyZTAa9Xo+ysrLzevFiJ1fp6elYtmwZXn31VQQCAbjdbvT29l50nOdCyOVyJCUloby8HDU1NcjJybniXgKNRoOEhARUVVVh1apVFxwjGI1GEQwGMTIygsHBQQBnwpXFYsGGDRuwcuVKaSKmmNh6kFqtFiaTCQ6HA11dXeju7pYmWurp6bnozKsqlQp5eXlobm5GJBKBw+GAw+HA7OysNI5WFEUEg0E4HA5MTEwgGo3CbDajoKBAmg26r68Pw8PDUm/MXLEZcWO9biqVCrm5udDr9Vf0Gl6p2KRf5/YYXkgsvMVKj61WK/Lz8+HxeDA7O4uhoSFMTk5esIf6QgwGAzIyMlBbW4slS5YgNTX1vLYplUoYDAbodDp0dXWhqakJdXV1CAaD8Hg8GBgYQFpa2lWH2Fglw/DwME6fPg1RFKVwUlNTg6ysrIteSFAoFNJnNj09HUuWLJFmK56cnJRKjOfOVGyxWCCKIjZv3gytVguj0YjR0VH4/X5MTU1hampK2r5Wq5WOyfHxcaSnp2N4eBh2ux0pKSnIyMiA2Wy+aJCJHSujo6MYGBiQwlFCQgJqa2tRUVGBwsLC817z2PMymUzwer2oqamRepkBoLe394aN371WMpkMycnJKCsrw9q1a5Gbm3vR5ZgikQgCgQA6OzsxMjICANJY9I0bN6KiogKZmZnn9a7GXqO56/eeW8EB/PGzFavOCIVC0Ov1yMrKQlVVFUpLSy/6fTv3sxWrkhgaGsLg4CCmp6cxMjICj8cjzXBNRBRPGGKJCMCZnpZYT4JGo0FycjI2bNhw0TFaJSUlUCqV+N//+38DOFPau2fPHqjVapSVlV1VG/R6PdavX4+amhqUl5dfVZlhSkoK1qxZg+rqauTm5l7wPqFQCDabDSMjI9LY2eTkZJSWluKJJ5645CQ/sZlWV61ahfT0dLz77ruYnZ2VZqS92Im5TqfDqlWrcPDgQakNQ0ND6OrqktYFjUaj0tIzsRNiq9WKyspKaVzniRMn0NbWdsExwV1dXdKyOsCZ17OiogJms3lhL95NFlsaZv369dLSQAMDA9L42IVcwIiVs27ZsuWS95fJZDCZTFi3bh1kMhmampoQDAYRjUbR3NwMq9WK6urqq3oesfHkfX19aGtrgyiKWLJkCbZs2YLCwsIF9XjK5XLIZDJs3rwZwJm1ml0uF6ampjAyMoKMjAwp7AiCgKSkJPz1X/81Tp48iYaGBvzkJz9Bf3//eZOZ+Xw++Hw+jI2NSesGA2fKXFevXo1PfepTqK2tRWJi4gXbFQ6HpWMlNuFbbJzu448/fskLJLFjpby8HF/96lexd+9eTE9PIxqN4vTp00hPT7/s67IYNBoN1q1bh7Vr12LlypWX/B6KlYTPDbFJSUlYtWoVvvSlL0GhUFzTmGRRFOHxeDAyMoLm5maIoojs7Gzcd999KC0tXdCasrGLTGvWrEE4HMbBgwelMcojIyOQyWQ3vFqDiOh6Y4glus3FTsLa29ul5UnKy8tRXV0tTY5zISaTCVlZWSgrK0NPTw+mpqZw6NAh5OXlIRQKSSdvV0Kr1aK6uhrJyclXfdKXlJSE6upqaQzmhQQCAfT29sLj8Ui3FRcXo6qq6qLPdy5BEKDT6ZCWlobCwkJ4vV6MjY1hamoKdrsdPp8PKpVq3rZ0Ot15gXJwcBBtbW1Ys2YNgDOBYe6kVCaTCampqcjLy4PD4UBvby8ASOv4zszMwGg0SuPzYuXEwJlyxuzs7Ev2st0IPp9PKnkeGhpCb28vZmdn4fF44Pf7z5tZOhqNYmBgQFr3N7Y8i8vlgtFovOz7sXTpUlRUVCyobYIgIDMzU/psA2dCQqz392qFQiF0dnZiZmZGem4tLS0YGxvD0aNHpedwoXGp595ms9mk1wI485mw2+3zZr2e+7kuLi5GWloali9fjomJCUxOTuL06dPS2PDh4WFpvd656wtPTEzg4MGD6Ovrw//8n/8Tq1atwsaNG887ZkKhEPr6+uZNQlZQUIA1a9bMGxd6MbH1StPS0lBQUACHw4GRkRHY7XZMTk7C7/efd6wsNrVajaqqKqSmpl72e8jpdEol/DGx8bPXGmCBM8dHT08PbDab9Fnp7+/Hyy+/jJMnT0qzeC/ks2W32+FwOKSS8NhFs1gJMxFRPGGIJbrN+f1+6SQ+NqNmbm4uiouLz1uTci6VSgWDwYCioiLMzs7CZrNhdHQU4+PjmJ6eRlJS0oJOcudSKpXIzMy8phlLdTodMjMzLxncYuW8c088ExMTkZGRseCTzlhpcWySnrGxMQQCAfh8Pmlm4HOfW2pqKkwmE1QqFYLBIKampjA8PCydbEYiEQwMDGBmZgYymQxJSUmwWCwwGo3IzMxEUlIS5HI5vF4vZmdnMTU1Jc2WGo1GpRADnAnzVqt13kRWN0psqZGJiQnYbDapd7C/vx/d3d2YmZmB2+2Gz+e75PJIsW3Fgmys5/FSUlJSkJaWtuCgYDAYkJqaKgUnURQxOzsLr9e74Od7rkgkgunpaWkyJ+DMDNNzLzwACwsa54rNOH2xpVTMZjPMZjOysrIwOzuLmZkZpKWlSaXlg4ODsNvtmJiYkN6H2dlZOJ1OKejGJvepqqo678JVJBLBzMzMvHVSExMTkZmZKc3SezkKhQI6nQ5JSUkwm80YGRmZd6zExgjfKuRy+bye70uJXQSc+/5kZGQgNTX1uhx3sXWQ515wc7vdUhn83Ptd6LGX27bP57vuSwEREd0MDLFEt7mpqSm89dZb83qiqqqqsGnTpsueoKpUKtxzzz3weDxoa2uDy+VCT08PDhw4gHvvvXdBJ4FzKRQKWK3Wa1q7UKPRwGq1XjJAh8NhzM7OzguxFovlisIQAGm5k7mlmKFQCE6nE1qtdl4bFAoFkpOTkZmZiYyMDPT396O/vx9ms1maWCoUCqG+vh5jY2OQy+VYuXIlsrOzIZPJUFhYiOzsbJhMJszOzmJ6ehonTpyQgm2snDU2xrekpARlZWU3ZeZXURQRiUTw3//939i7dy/efvvty55AX0o4HIbX613Q+qqJiYkLKqmMiQWqhIQEOBwOeDweuFyuaw6xMzMz83o6gfPXEb0a0WgUXq93QeuBmkwmmEym88roo9EoIpEI6uvrUV9fjx07dmD//v1wuVwAgD/84Q8YGhrC5s2bkZ+fP2+m5kgkAqfTOS/ExsbvXulnKy0tbV6PcmzbGo3mlhqTKZfLYbVaF3QxLRZiY59VQRCQlpZ2RZ/JSxFFEQ6H47zP5/X4bDHEElE8Y4gluk3FToLsdjv27NmDmZkZ6Xe/+tWv8O677152LGU0GpVKW2OGh4exZ88ebNq06YpDLHAmZFxLD0ZswpTLuR4ngbHtzHWxE/vY7bm5uSgpKZHGfvb19cHr9UImkyEcDqOtrQ0TExOQy+UoKyuTxg0KgoDExEQsW7YMJ0+ehMPhQHNzszSGsq2tDW63W2pPXl7egiZauh5sNht27NiBnTt3orW19Ya8rtfLjQr1kUjkhrT5Sj6nF3tusR7TkpISWK1WrFy5EhqNBq2trdJEVHa7He+//z4ee+yx85Ybul7P63odcwvZz7W61u+h6ykajS7ogs7VuFnvCRHR9cYQS3Qb8/l8mJ6eRnd397wr/bG1N6+G3W5HW1ub1Ht0JWWCgiAsuETxUi63jdiEM3PvE4lE5vXMLlQoFJrXkyEIwiXHA6ekpEjLFnk8HszMzGB2dhYymQx+vx9jY2NwuVyQyWTIyclBYmKitC2j0Yjc3Fw0NTVJPa+BQADRaBT9/f3zyllTU1Nv+MQ5sRNgh8OBAwcOoKOjA+Pj4xAEAQaDAVqtFjqdTgoEc1/z2L/RaFQqc5077nKhJ9bhcPiK3jdRFBGNRhEOh6VgEJtU6Vqc+5kzGo1Sz+i1bDvWM3qlpflzxUrkExMTkZiYiLy8PLz//vtwuVw4ffo0gDOfxY6Ojgv2SJ97rFzpax6z0GPl3P+/XAn6uSKRyIJ6ri9loe9Z7LtkrnOf57WSyWTz2hOrJDCZTNdUhm2xWKThDURE8YYhlug21tLSgoaGBmnW0ethYmJCmrzFZDJddNbTxSSXy2GxWOadvMVmBb6Sk2VRFKUxwDEKhQImk+mioaOoqAh2ux2CIEjjHU+dOoXMzExEIhGMj4/D4/HAaDRi9erV82Y7tlqtWLNmDXbv3g273Y5jx47B6/VCFEUcO3ZMCoEymQzFxcVYunTplb40Vyy2VNFLL72EQCAAQRCgVCpx1113obKyErW1tUhNTZXGbsbGP8ZOygOBAH74wx/ivffewzvvvHPF+49NELRQoVBIGlPs8/kgCIK0ZufVin2e5s5qvXXrVjz00EOXne36cmIB9Hr2IAuCgLvuugvhcBi7du0CAHi9XnR2ds4bewlAWmt37rHicDgwNjZ2xb2DExMTsNvt87Z97rESu9gRI4oi/H7/gkOhKIrS+OubQa1Ww2KxzJu8a2xs7IJLYF0NQRCQkJAwb4briooKPP300/joRz963hJoV+p6XDQkIloMDLFEt7GGhgY0Nzdf123G1jU8fvw45HI51q5de123fz2o1WpkZ2fPOzEcGBhAc3Pzgk/M/X4/ZmZmMDAwIIUoi8UCi8UCjUZz0RPDrKwsTE5OSr8PhUJoa2uDw+GAIAiIRCLQ6XRITk5GSkrKvJJsi8WCpUuXQqVSYXp6GpOTk5icnEQgEEBrays8Hg80Gg0yMzORkJBwTeFpoaampmCz2RAIBBCJRJCQkICtW7fi0UcfxfLly2G1WqHVaqFSqaRJpub2xoZCIYyPj2N2dvaq9t/T04PU1FSIorigk/Hx8XG0t7cjGAxCFEXIZDJkZGRc08UWhUKBvLy8eWW4IyMjaGpqwhNPPHFNvag30tzXKzau+VxKpRLZ2dnzltIZHBxEY2PjFR0rTqcTg4OD0hJACQkJSExMhEajmdfLqFKp5n1uI5EIJicnYTAYLjs8wel0Ynx8HE6n87zxyTeK0WhEXl7evDG9zc3NSE1NRTgcvuTkeAshk8mQnZ097/Npt9tx6tQpPPLII7fsZ4uI6Ebjtx/RbShWUtnZ2Ymenh4AZ05o1Wq1NLnRlZx4xcozx8bGEIlEEI1G0dbWhvT0dNTU1Ejbv1UoFAqkpKRAr9dDoVAgHA5jYmICfX19cDgcMJvNFw2AsZ5ap9MpBdjYBDmJiYmwWCyXnKQmMTERaWlpUKvV8Pv90hImsRmNo9EojEYjUlJSYDQa57XDYDAgJycHGo1GWpt0YmICHo8Hg4ODCAQCUKvVyMrKgsFguCmT5bhcLjidTikA6XQ6rFy5EhUVFVi2bNklHxvrFR0ZGYHD4biq/Q8PD6O3txdutxtarfaizzn2mR8fH0dLS8u8ctjU1NRrWmIk9nmaO/O0zWZDZ2cnHA4H5HL5NU1Wdj3FSsBdLte8XtcLlcUCFz5Wpqam0NvbK114udhzix0rHo8H/f39sNls0gzoFosFiYmJ55UTq9XqeduLRCIYGxuD1Wq96GRJsec0MzODjo4OeDyeay4nXiitVitNAqVUKqX1n/v7+zE5OYnExESpF/tqvgMFQUBycrJ0USoQCMDhcOD06dOw2+0wmUzXVEVARBSvGGKJbkOhUAhutxtHjx7FqVOnAJw5GVuzZg1effXVS64PeyFOpxNjY2O45557MDExgWg0it27d8NsNuOJJ564UU/jqimVSqSnpyM3NxfZ2dno6+vDxMQEwuEwfvWrX+Guu+665Nqj4XAYx44dw3/9139hcnJSOllftWoVysrKLrnv2FIjpaWl6O/vh9vtxrFjx5CamgqtVotIJILs7GxUVVWdF8iMRqO05qbdbsfMzIw0y2xPTw9EUURKSgrWrVt3zWWGCxUKhc4bH7nQiyBDQ0NoaWnBe++9N6/M9Eq0t7fD5/PhnXfewdq1a+eVX88VCzl79+7Ff/3Xf0kBTiaTYfXq1SguLr6q/ce2kZycjOLiYpSXl6OhoQEDAwOYmprCb3/7W2zcuFG6mLPYotEogsEgtm/fjmPHjkm3q9VqZGZmnhdIFQqFdKzk5OSgr69P6nn/9a9/jS1btqC6uvqi+wuHwzh16hT+/d//HaOjo9KxsnLlSixfvvy8+6ekpEhLXYmiCI/Hg1dffRU6nQ55eXkX3U8wGMSxY8fw/e9/f155/42mVquRlJSE8vJyBINBdHd3Y2JiAkePHsV3v/tdfOUrX0FhYeFVX8QTBAFJSUnIz8/HypUr0dDQIJVlv/TSS6itrcW2bduu87MiIrr1McQS3YZmZmbQ2NgIh8MhjTWLLcliMBiueKIbs9kMURRRXFwsrRc6NTWFkZERdHd3Iycn56aUti5U7IRy+fLlsNls6O/vl8bSvfrqq7Db7ejp6UFVVRXMZjP0ej0ikQhmZ2cxOTmJffv24fjx42hpaZHKFuVyOaqrqy94Yn7uvtVqNUpLS+FwODA7O4vR0VG43W6oVCpEo1EkJyejpKTkvAsJsYmv8vPzMT09jZmZGdTV1UmlscCZkFxaWjqv/PNGSkhImBeYnU4n3n33XZhMJjgcDpSUlEiTOwUCAbjdbjidTtTX16OlpQXNzc1wuVxXPfuqKIqYmprCz3/+cwwPD2P58uVYsWIFDAaD1Ns9OTmJsbEx7Ny5E0eOHMHU1BSi0ahUtl1SUoK0tLSrfg3mfp6mpqbQ3NwsrXW7fft29Pb2oqmpCRUVFUhKSkJiYqL0/sSW0AkGg/D5fLDZbJiZmcHQ0BBUKhVSU1Oxbdu2eSHo5ZdfRltbGzIzM6VeuvT0dKjVaqjVaqlXMPZ5CgQC8Hq9GBoawuDgIFpbW1FXV4fh4WFpmwaDAStXrjyvZDe237KyMqxbt046VrxeL7Zv3w6bzYaBgQHpWDEYDNLSOVNTU9i3bx/q6+vR3NwsTTwmk8lQWVmJlStXnvdapqWlITc3V1rDNxAIoK6uDsnJyfB6vaiqqoLRaIRWq0UwGMT09DRsNhv27NmDEydOoLu7+6omnbpasWNy06ZNiEaj6O7uBnCm5Hfv3r3S8bhq1SqkpaXBYDBAp9MhEAggGAzC5XLBZrNhamoKbW1tqKysRHl5OSwWy7zS+4KCAtx3333o6OhAMBhEJBLBjh070Nvbi97eXixfvhzJyclSr7BcLkckEoHP50MwGITX64XdbofD4UB/f780dv+hhx5iSTIRxSV+cxHdhmZnZ3Hq1Kl54aGgoAAlJSWXnFn3YlQqFUwmE4qKijA7O4uJiQmp1LW7uxupqam3VIiNKS0txczMDF5//XUEg0EEAgEcPnwYwWAQk5OT0Gq1SEtLg8ViQTgcxvj4OPr7+/Hyyy+jt7dXWpNVqVTCYDBg2bJlKCwsvOx+VSoVCgsL0dbWhmg0CrvdDrfbDYVCgWg0isTEROTn51+0NzwnJwdDQ0Noa2tDe3v7vMmotFotCgoKblqJodFohNlshkajQTAYhMfjwfHjx5Geno5AIACZTCaVZ7vdbil0vP3222hqakJ7ezsUCoVUqnqlYuW7u3btkpaKUavVSE5Ohk6ng8fjQW9vLzo6OvD73/8eNptNmgDLbDajoKDgvDGHV6uoqAh+vx8/+9nPpHWIDx8+jNHRUfT29iIQCCA7OxvZ2dmwWCwQBAHhcFhaBzTWoz4yMoLm5maYzWaUlZWd19O2b98+vPXWWygrK0Nubi4yMjJQWloKg8EAvV4Pk8kErVYr9ex7vV44HA40NTWhubkZe/bskWa2Bs58fi0Wi3QR62LPzW63Y/v27VIZ/JEjR6QZzmMVAklJSQiHw9LFoVdffRU9PT3SsaJQKKDX61FWVoaSkpLz9pOUlIT09HTo9Xp4PB6EQiF0dHQgISEBfr8fBoMBycnJMJlMUil6T08PXnrpJYyMjEhLhclkshu2LM25BEHA6tWrMTk5iR07dsDv98Plckll6yUlJYhEIigpKUFSUpLUdq/Xi8nJSfT09GBgYAAffPCBNCv5ueXtmZmZ2LBhA375y1/C7/cjEAjgxIkTGBwclGY0z83NRWFhIRISEqBQKKQ1q30+HxwOh3TfkydPQq/XIysrC/fffz9DLBHFJX5zEd2GRkZG8PLLL88ru9u8eTPuuOOOq96mXC7Hgw8+iGg0iqamJgBnJkt65ZVXUF5eDpPJdM3tvt7Wr1+P9PR07Nq1C62trRgfHwcA1NfXo7GxEb/5zW/mlcbGxlWGQqF5J8ilpaX4yEc+IvW2XI5Wq0VNTQ3q6uqk2wKBgBQqsrKyUF1dfcGTS5lMhoqKCkxOTmLv3r3zlkSJhZHVq1fflIsGsZlTc3NzsXHjRpw6dQpTU1Pw+/149dVX8frrr583sU1s/GIoFIJMJoNGo8GWLVswNDSExsbGK25DdXU1tFot3nvvPezevRsffPAB/v3f/33ePmPrbM7tsZbL5aitrcWXvvSl6zaDdmFhIZKSkvCFL3wB7777rvT+DgwMYGhoCHv37pV61859TWL/xpaTiUQiFy2Pdjgc0jZjy6/EKifmbjtWkhvbdmy8euzfmBUrVmDTpk3Ytm3bRSsw1qxZg8zMTOzcuRNtbW0YGRkBADQ1NaG1tRW//e1vF3SsFBQU4OMf/zhWr16N9PT08y6YGQwGZGZm4sEHH8Thw4fR29sLADh+/Djq6+vx85///Lz3VhRFBINBpKWlYe3atdIY66stUb9SgiCguroagiDAZrPhD3/4A6ampgAAXV1d6Onpwe7du+e997HjYO57Hg6HpQsW586SnpGRgeTkZDz77LPYt28fdu7cCQDS98DBgwcv+9mK7SsSiWDFihWXXQeciOhWxhBLdBuJlV6OjIxIEwGpVCpYLBbk5ORc07qiMpkMZWVlaGxshFarlWbvbWhogNPpRDAYvOXWI5TL5UhOTsbTTz+Nt956C/X19ejt7ZVCz+XKEmUyGWpqalBTU4N77rlnwWuCqlQqFBUVwWw2zwsaMpkMSUlJUm/NxbaVn59/wfcqtjasWq2+5nVPF0oQBKSkpODxxx+H2+1GMBiE0+lEOBy+ZM+qUqnEsmXLsGLFCiQkJEiTY12ppUuXIiMjAx6PB52dnbDb7QgGgxe9v0wmg0qlwgMPPIA777wTRUVFUCqV12XiMZlMBr1ej23btkGlUiExMRH79u2D3++/qrVLL7bcUyyQXOt6qGazGfn5+Xj88cdRWVl5yZl0Y8sI/cmf/AneeecdHDt2DD09PQs+VmJBr6qqCvfccw8SExMv+BkVBAEmkwkPP/wwXC4XXC4XJicnL7kfQRCQlpaG6upq3HvvvfjJT34iTSB1M8QmxcrNzcWjjz6K2dlZtLa2SrOdxya+W4iLvecymQxKpRJ33HGHtG7wwYMHpUnVrvRzcKVr7xIR3WoYYoluM2NjYxgeHpbWMTQajcjMzJSu9F8tmUwmlWaazWYEg0HMzs6io6MD09PT8Pv9t1yIFQQBZrMZH/3oR+FyuRAMBjE1NYVgMIhwOIxIJCIFhtj9ZTKZVP6q0WiwceNGbNiwAbW1tQver1KpRE5ODsxmM5RKpRS6ZDIZ0tPTkZSUdNExrYIgICsrC6mpqeeVTKalpSEtLe2al/W4UomJiXjggQdw/PhxzMzMIBQKSa9frH2xHiK5XA6FQoGEhARUVVXhgQceQGdnpzSW8EoVFBRg2bJlCAQC8Pv98Pv90pjB2HsX23fsPbNYLHj00UdRUVGBzMzM6/lSQK1Wo7a2Fmq1GgkJCejs7MTMzAx8Ph/C4bAUauYGiFiYi/WoyuVyyOVy6PX6ectAxej1epjNZun1jYWkub17AOZ9bgFInwu5XA6VSoWsrCysXbsWDz/8MAoKCi75vARBgMFgwGOPPSa9zlNTUwgEAhc9VmKveex137BhA9avX3/ZY8VgMGDr1q1obW3F6OioVFYc60WMbT/2WsUuCq1btw6PPvoofv/73y/KbOipqanYunUrRkdHYTAYMDw8DJ/Ph0gkIr33574+sfcjdnEltuTQhdovl8uxZs0aaabiwcFBaTz9Qj9bse+v2NhcIqJ4xRBLdBsRRRG7du3CkSNHpNtSU1PxsY99DFar9Zq3r1QqUVhYiAcffBAvvfQSnE4nvF4v9u3bh1AohDvvvPOa93G9CYIAnU6HT3/60/jYxz6G/fv348SJE1JPSuw5KBQKGI1GKXytXLkStbW1WLp06RWfDMb2mZeXh6VLl6KpqQmiKEKpVKK6uvqywSo2g2teXh6Gh4elELxs2bLLLmtzI8QmIPr2t7+NoaEh/P73v0d9fT0GBgYwMjIihRmr1Yri4mKUlpbiiSeeQFZWFiwWCwYGBq5p/6mpqfjmN7+Je++9F62trXj11VcxPDwsjTU2GAwwm81Yu3Yt1q1bh9raWpSUlNzQkuuVK1eirKwM9913HxobG3HixAnU1dVhYmICExMTUk+hUqlEQkICdDodTCYTSkpKkJmZieXLl6OiouKC5enf/OY38bnPfQ6tra0YGBjA6OgoOjo6MDs7C7fbDYfDAZ/PB5/PB7lcLk32lJ2djbS0NBQVFeHOO+9ETk4O8vPzodVqF3ThI/a5feqpp/Doo49i3759OHXqlDTW1ul0wuPxSONeY6Xt5eXl2Lx5M5YsWXLZtV4BSOOo//zP/xxPPvkkfvOb36ChoQFdXV0YGhqSPk9ZWVkoKytDZWUlPv7xjyMpKemmViFciCAIePLJJ3H//ffjc5/7HHbs2IGOjg40NTXBZrPB4/HA7/dLS+OkpKSgsLAQeXl5uOuuu1BaWoqsrKxLvhexi4V33XUXuru7pe+s8fFxjIyMSHMdKJVKaT8JCQnIy8tDRkYGVq9ejaVLlyI7O/umLMNFRHQjMMQS3WZWr16NpKQkLF26FMCZQFRTU3PNS7LETrry8vLw4IMPIjMzE36/H4IgoKamBllZWec9JrZkxnPPPQfgTI9ebm7ugmfWFQQBpaWliEaj0sl+cXExcnJyFnxyFmt37ER+5cqVsFgsKC8vx6ZNm6SePZlMJoWBnJwcZGRkoKCgQCrtuxKxfW7YsAEJCQnS0iMqlQqrVq265HIvsd6bkpIS/Nmf/dm8Gaarq6uRn59/RW25kNzcXNxzzz1ITU2VJme6WKCKtSlWbiqXy7Ft2zYsXboUMzMz0lqiMpkMBoMBVqsVVqsVhYWFMBqNUKlUqKqqgslkQnl5OYAzs/zGZmedy2AwoLy8HJ/97GelSoK1a9ciMzMTer0eRUVFMBqN0Ol0mJmZgcfjkdbO1Wq1yMvLQ35+PnJzc6HVai8bdtLT07F27Vrp85mcnHzJyY/mUiqVUCgUSEtLQzQahdlsRlFRkVQiO3em3thswlqtFikpKUhISEBGRgbS09MveIEkKSkJOp0OGo0G+fn5mJ2dRVVVlTThj8/nk5Y+ivW8xcZLm0wmaUbmhIQEGI3Gyz6XmLnHilKpxMqVK5GYmIilS5di48aN5x0rWq0W2dnZyMjIQFFREUwm04KOy9hn3Gg0Qi6X484770RpaSkmJycxMzMjfZ4SEhKQlpaG7OzseZPHfeITn8D4+DjcbjcyMzMvu3xSdnY2otEo/uqv/gqiKMJoNCIvL++Kx/HHXp9Yb6pcLseWLVtQVlaGNWvWwO12Sz3XGo0GKpVKmqgqMTERJSUlSExMvOzyZgqFAnK5HKmpqVJPd3FxMZxOJxwOBwKBAKLRqLQ+sUqlglarRVJSEsxmM7Kzs6V1jW+l9buJiK6EIHJQBNEN5fV68ed//uc4fvw4Wltb8c1vfhMbNmzAXXfdtdhNIyIiWhQOhwNPPfUUWltbMTExgeeffx5r1qzBqlWrFrtpRBQHFq/mhoiIiIiIiOgKMcQSERERERFR3GCIJSIiIiIiorjBEEtERERERERxgyGWiIiIiIiI4gZDLBEREREREcUNhlgiIiIiIiKKGwyxREREREREFDcYYomIiIiIiChuMMQSERERERFR3GCIJSIiIiIiorjBEEtERERERERxgyGWiIiIiIiI4gZDLBEREREREcUNhlgiIiIiIiKKGwyxREREREREFDcYYomIiIiIiChuMMQSERERERFR3GCIJSIiIiIiorjBEEtERERERERxgyGWiIiIiIiI4gZDLBEREREREcUNhlgiIiIiIiKKGwyxREREREREFDcUi90AotuN3++Hy+XC9PT0YjeFiIhoUTidToRCIUSj0cVuChHFIYZYoptIFEU4HA5MTExgYGBgsZtDRES0KFwuF3w+H8Lh8GI3hYjiEEMs0U0UiUTws5/9DAqFAgoFDz8iIro9iaIIr9eLSCQCjUaz2M0hojjDs2iiG0wQBMjlcim4RiIRRCIRBAKBxW4akSQajUIURYiiCEEQIAgCZDJOmxCvYu9lrFQz9n4KgrDILSOaL/b3US6X8/NJRAvGEEt0E+j1ephMJlgslsVuCtE8oigiGAxKP6IoQqlUQqPRQKVS8aQyTkWjUUQiEbhcLkSjUQiCAJVKBaVSCbVavdjNI5pHo9FArVZDLpcvdlOIKE4IoiiKi90Iog8zURSlCSxCodBiN4doHo/Hg+effx5HjhzBqVOnoFar8eCDD+JTn/oUli9fDpVKtdhNpKvg8XgwOTmJZ599FoODg3A6nVi5ciW2bduGL3zhC1AqlbxAQbcMQRBgMpmgVCqhVCoXuzlEFAfYE0t0gwmCALPZvNjNIDrP8PAwRkdH0d3djenpaSiVStxxxx2ora3FsmXLkJmZybHbccrv98NsNuPBBx/E0aNHcfjwYczMzGBwcBAtLS3YsGEDTCYTgywREcUlnp0QEd1mYmMlT58+jX379mHfvn0Ih8MwGo34xCc+gVWrViE/P3+xm0nXIFYO/qlPfQp6vR7Nzc0YHh7GkSNHEI1GUVpaCp1Ox14vIiKKSywnJiK6zfh8Phw9ehS/+MUv8Oabb2JmZgYbN27E3XffjWeffRZms5llxB8CoigiHA6jp6cHJ0+exNe//nVMTk5CqVTis5/9LDZs2IDHHntssZtJRER0xTj1JBHRbcTlcmF0dBTvvPMOWlpa4HK5UFhYiMrKSqxfv54B9kNEEAQolUqkpqZi5cqVqK2tRWFhITweD44fP46jR4+ira0NXq93sZtKRER0RVhOTER0G4gV3UxOTqKlpQU//vGP4Xa7oVKpsHnzZmzduhV33nnnIreSbgSLxQKTyYQ/+ZM/wc6dO3H69GkcPHgQDocDGRkZeOKJJ6DVajk+loiI4gZDLBHRbSAcDmNiYgIvvPACduzYAZfLhby8PCxduhR/9Vd/hdTU1MVuIt1AMpkMmzZtgtFohFwux29+8xt0d3fjX/7lX6DRaFBdXY3KykoGWSIiigsMsUREH3KhUAgOhwN79+5FQ0MDBgYGYDQaUV5ejo0bNyI7O5trh37ICYIAo9GIvLw8bNy4ESdPnkRPTw/GxsZw+PBhiKKIvLw8GI1GlpMTEdEtjyGWiOhDKlZC7PP5MDAwgH/6p3/CyMgIfD4fli1bhkceeQQf//jHodFo2AN3m8jJyUFWVha6urpw8OBB7NixAy+99BJ6enqwYsUKLFu2jGvIEhHRLY+zExMRfUhFo1GEQiG88MIL2LNnD3bu3AmtVovMzEw8//zzKCkpQUZGBmQyGUPLbUQURYyOjuLo0aP4z//8T5w6dQqCIKC0tBR/8zd/g6qqKqSlpfEzQUREtyz2xBIRfQiJogifz4fTp0+jvr4ezc3NCIVCWLp0KSorK1FeXg6z2Qy5XL7YTaVFkJ6ejqVLl2LTpk0YHx/H2NgY2tracOzYMSiVSiQmJkKhUPDzQUREtyT2xBIRfQiJooi+vj78r//1v7B//34MDw/DYDDgueeew2OPPYaSkhLIZFxl7XYWiUQQCATwla98BYcPH0Z7ezvS0tJQVVWFF154AQkJCVCr1eyRJSKiWw5DLBHRh9COHTtQV1eHH/3oR3C5XEhISMDXvvY1bN68GUuWLIFOp2M4uc2JoohoNIpTp07h6NGj+Od//mfMzs7CZDJh27Zt+NznPodVq1ZBpVLxs0JERLcUXoYnIvoQCQaDGB8fx8mTJ3Hs2DFMTEzAYrFg6dKlqK2tRU5ODvR6PUMJQRAEyGQyLFmyBJWVlaiqqoLBYMDs7CwOHz6MhoYG9PT0QBRF8Ho3ERHdStgTS0T0ITI2Noa3334b3//+99HS0gIA+OIXv4i7774bDz30EARBYICleWLjp0dHR/HVr34Vhw8fxszMDFavXo01a9bg+eefh1KpZPk5ERHdMvgXiYjoQ0AURXR0dGDPnj34wQ9+gMHBQSQmJuKTn/wk7r//ftTU1DDA0gUJggC1Wo309HR8+tOfxjPPPAONRoPe3l4cOHAAP/zhD9HR0bHYzSQiIpIwxBIRxblIJAKfz4eWlhacOHECTU1NAICsrCxpDCyXTKFLkcvl0Ov1qKysxPr161FYWIhwOIzBwUHs27cPnZ2dmJqaYlkxERHdErjEDhFRnHO73ejt7cXzzz+PU6dOIRKJoKamBrW1tfj0pz/NMlBasNzcXJhMJnz3u9/FP//zP+Po0aPYvn07FAoFxsbG8Mwzz0Ch4KkDEREtLv4lIiKKU6Iowul0orGxET/60Y/Q09MDuVyOsrIyfPSjH8XatWshk8nYA0sLJggCDAYDVq9ejY9+9KNIS0vD9u3bcfToUdjtdpSUlGDJkiXIyMhY7KYSEdFtjCGWiCgOxZZHGRoaQnNzM95//324XC5YLBZUVFSgqqoKZWVli91MikMqlQqZmZlYs2YNAGDfvn2YmJiA1+tFXV0d9Ho9EhISoNVqeYGEiIgWBUMsEVEcCofD8Hg8+Pa3v42TJ09iYmICeXl5WL9+Pb7//e/DZDKx7JOuyfr165Gfn4/x8XHs2LEDbW1t+Id/+AfYbDYEg0GsW7eOnzEiIloU/OtDRBRHYj2wnZ2dePvtt9Hc3Izp6WmYzWZ8/OMfx9q1a2E0GqFQKNhLRtdEJpPBYrHgscceg9/vh1KpRHNzM/bt24fZ2VlkZGQgJSUFJpNpsZtKRES3GYZYIqI4EZsZdmZmBqdPn8abb76JoaEhyGQy5OXl4c4770RlZSVUKhUDLF0XWq0WNTU16OnpgcvlQmdnJzo6OjA1NYWPfOQjWLZsGXQ6HeRyOT9zRER00wgi58snIooLoigiEongW9/6Fo4cOYI9e/ZAo9Fg/fr1+Md//EcsXboURqORYYKum9gpQiAQwPDwML74xS+itbUV4+PjyMrKwrPPPounn34aaWlpkMvli9xaIiK6XXDdBSKiODEyMoLdu3fj0KFD6OzsBADcd999uO+++5Cfnw+NRsMAS9eVIAgQBAEqlQopKSl4+umnUVNTg+TkZNjtduzbtw+//OUvMTs7i1AotNjNJSKi2wRDLBHRLU4URQQCAQwMDOD9999HQ0MDxsfHYTKZsHXrVmzZsgVWqxUqlWqxm0ofUjKZDEajEQ8//DBqamqQm5uLQCCA+vp6vPrqqxgdHYXb7YYoimCBFxER3WgsJyYiusWFw2G8++672LlzJ1588UUEAgFUVFTgqaeewpNPPgmr1cpZYumGi50u2Gw29Pb24umnn4bNZkMgEMCmTZvw8Y9/HE899RTHZBMR0Q3HnlgiolvY7Ows+vr68MYbb6Curg6BQACVlZXYsGEDNm7cCLPZzABLN0WstNhsNiM3NxdPPvkkVqxYAZlMho6ODhw8eBBvvfUWfD4fe2OJiOiG4pkPEdEtKLaUjt1uR2trK9566y1MTk5CpVKhtrYWmzdvRnV19WI3k25DGo0GKSkp+OQnPwmv14uuri4MDw/jyJEj0vqxSqUSSqVysZtKREQfUiwnJiK6BUUiEfT19eGll17Cj3/8Y4yMjCAzMxOrV6/GP/3TPyE7OxtarXaxm0m3qdhM2e3t7WhoaMBXv/pVeDweqFQqfOELX8CWLVtw7733LnYziYjoQ4o9sUREt5hgMAi3240333wTR48exeTkJJKTk7Fy5Uo89NBDsFqt0Gg0i91Muo0JggCFQoH09HREo1HcfffdaGxsRFdXFw4dOgSVSoX09HQsWbIEarV6sZtLREQfMgyxRES3iFhhjNfrxdjYGH72s59haGgIgUAAhYWF2LBhAz7xiU9AqVRy4hy6JSQnJ8NkMuHJJ5+EUqlET08PDh48iGg0iqSkJGRlZUGpVEIm4xQcRER0/TDEEhHdQvx+P15//XX89re/RXd3N9RqNQoLC/Gd73wHxcXFXEaHbjlKpRJ33303NBoNEhMT8dOf/hT19fXo7e1FQkICVq1ahRUrVix2M4mI6EOEIZaI6BYQWwv2wIEDOHbsGDo6OgAARUVFqK2tRUFBARITE9kDS7ccQRCg1+tRVFSETZs2oa6uDgMDA5iamsKePXsQDAaRlpYGi8XCyZ6IiOi6YIglIroFRCIROJ1OvPjii2hoaMDAwACSk5NRW1uLL3/5y0hLS2MAoFtaUVERsrOz0dDQgIMHD2Lfvn343e9+B7vdjqVLl6KiogIKhYIXYoiI6JpxdmIiolvArl27sGfPHvz4xz+G3++HWq3Gv/zLv2DVqlUoLy/nOFiKC9FoFDabDbt27cLPfvYzHDt2DBqNBnl5efg//+f/YOnSpUhNTV3sZhIRUZzjTAtERIsoFAqho6MDJ0+eRF1dHZxOJ1JTU7Fu3TpUVFQgOzsbKpWKAZbigiAIsFqtWLZsGbZu3SrNXtzd3Y39+/fj1KlT8Pv9iEaji91UIiKKYywnJiJaJKIowuPx4K233sKOHTtw8OBByGQyrF27Fv/jf/wPlJeXc3kSiiuCIEAQBKxYsQJFRUU4deoUGhsb0d3djRdeeAG9vb2oqKhAYmIiqwuIiOiqsZyYiGiRtLW1obm5GX/9138Nm82GaDSKz3zmM9i6dSs2bdoEk8nEpUkoLomiiEgkgubmZuzevRv/+Z//ienpaaSkpGDdunX4xje+gZKSElYZEBHRVeHZERHRTRaJROBwONDc3IxDhw5haGgIKpUKhYWFqK2tRUlJCRISEhhgKW4JggC5XI6ioiKsWrUKtbW10Ol0cDgcOHnyJE6ePInOzk4Af1wfmYiIaKFYTkxEdBOJoohgMIjOzk784Q9/wNtvv41QKITy8nJs3rwZjzzyCDQazWI3k+iaCYIAo9GItWvXIi8vD4ODg2htbUVnZydeeOEFdHZ24h/+4R8gl8sXu6lERBRnGGKJiG6imZkZ9PT04K//+q/R3t4OQRBQU1ODxx9/HPfffz9UKtViN5HoutJqtcjMzMTXvvY17N+/Hz/84Q/R2toKn8+HxMREfOxjH0NeXt5iN5OIiOIIQywR0U0giiLC4TC6u7tRX1+PhoYGhEIhJCQkYN26dVi+fDlyc3M5PpA+dBQKBeRyOSoqKuD1elFWVobOzk4MDQ3hwIEDWLlyJbRaLaxWKz//RES0IAyxREQ3QSQSgdPpxE9/+lO88847sNvtyM3NxfLly/G3f/u3MBqNHANLH1qCICA/Px86nQ4mkwnf+MY3cPr0abzxxhtISUnB+Pg4nnrqqcVuJhERxQmGWCKiGywUCmFwcBD/8R//gYMHD2J6ehqpqal48skncffdd8NgMEAul7MXij7UBEGAxWJBTU0Nnn76aRw5cgSvv/46du3ahZGREWRkZGD58uWwWq2L3VQiIrrFMcQSEd0gsVlXx8fHcfr0aezbtw+jo6MQBAHLly9HdXU1KisruV4m3TbUajWsVivWrFmDcDiMI0eOYGJiAqIo4vDhw7BYLNDpdNDr9TwmiIjoohhiiYhusP/+7//G3r170djYCIPBgJKSEjz//PPIysqC2Wxe7OYR3VSCIGDLli3IysrC9PQ0XnnlFQwODuIf//EfEY1GsW3bNqxdu3axm0lERLcwhlgiohtkYmICu3fvxu7du9HW1gaFQoEHH3wQGzZsQFZWFnQ6HXub6LYkCALS0tLw1FNPwel04sSJE2hqasIbb7yBwcFBpKWlISUlBQaDYbGbSkREtyCGWCKi60wURbjdbgwPD2PPnj04ffo07HY7MjIyUFNTgw0bNsBsNjPA0m3NYDCgoqICa9asQSAQQGdnJzo6OuD1etHS0oIVK1ZAo9FwvDgREZ1HEGODtoiI6LoQRRFvvfUW9u/fj3/7t3+DKIrIy8vD3/7t32LLli3Smpg8MafbWez0IxgMor29HV/72tfQ3NwMh8OBtLQ0/M3f/A0efvhhpKWl8VghIqJ5uJ4DEdF15HQ60dzcjFdffRW7du1CNBrF+vXr8dBDD6G2thbJyckQBIEn5XTbix0HSqUSWVlZ+MIXvoDq6mokJSXBbrfjzTffxIsvvgiXy4VQKLTYzSUiolsIQywR0XUgiiJCoRDsdjtOnTqFo0ePor29HQaDAatXr8bGjRtRXFwMo9G42E0luqXIZDJYLBbcfffdqKysRF5eHoLBIOrr67Fr1y4MDQ3B7XZDFEWweIyIiACWExMRXReiKKKjowMffPAB/vZv/xZOpxPJycm455578NWvfhXl5eUc20d0EbFTkYmJCbS0tODTn/40pqenIYoiamtr8bnPfQ4PPfQQVCoVjyEiImJPLBHRtQoGg3A4HHj55Zexc+dOuFwuZGZmoqqqCk8++SQyMzOhUCh48k10EbHSYrPZjKKiInz2s5/FsmXLAADt7e1477338NprryEUCrE3loiIODsxEdHVipU3ejweDA0N4d1330VbWxui0SiKiopQVVWFrVu3Qibj9UKihdBqtUhPT8fHPvYxDAwMYHh4GCMjIzhy5AgCgQDuvPNOmEwmqNXqxW4qEREtIpYTExFdpViAfe+99/BP//RPaG1thUwmQ1ZWFr7//e+jsrISiYmJADgTMdFCiaKIaDSKpqYm1NfX4ytf+QpCoRD0ej2+9KUvYdu2bdi4ceNiN5OIiBYRe2KJiK5CNBpFJBLB22+/jQMHDqC/vx9yuRyFhYV44oknUFhYKE3ixABLtHCCIEAulyMrKwvRaBSPPPIITpw4gYGBAXzwwQfQarXQ6XRYsWIFlErlYjeXiIgWAUMsEdEViBWvhMNhuN1uvP7662hoaMDk5CSysrKwfPlyPPXUU0hJSYFKpVrk1hLFr5SUFGi1Wjz22GPweDwYHBzE4cOHYTQaYTQaUVxcDJlMBrlcvthNJSKim4whlojoKtTV1eG3v/0tdu/eDZfLBYPBgG9961uoqqpCeno6x8ESXQd6vR4PPvigVKb/wgsvYO/evWhubkZqaipWrlyJ0tLSxW4mERHdZAyxRERXIBqNor6+HkeOHMGxY8fg8XiQkZGB9evXY/ny5cjMzGTPENF1IggCNBoNysrKIIqiVFY8PT2Nt956Cz6fDyaTCVarlccdEdFthCGWiGiBotEogsEg3n//fezduxcnT56EVqvFkiVL8Kd/+qcoLS2VxsES0fWzZMkSZGRkoK6uDvv378eJEyfw8ssvQxAEFBQUICEhARqNhuPPiYhuE5ydmIhogbq6unDq1Cl8/etfx/j4OAKBAL761a+itrYW9913H9RqNcuIiW6QaDSK6elpvPTSS/jDH/4gjY/Nzs7Gj3/8Y+Tn5yM5OXmxm0lERDcBz7aIiC4jGo1ifHwcDQ0NeOedd2Cz2aDX61FZWYl169Zh6dKl0Gq1DLBEN5AgCEhMTERFRQXuvfdepKenIxqNYmBgAO+88w5OnToFn8+HaDS62E0lIqIbjOXERESXIIoiwuEwOjo68P777+PXv/41IpEIysrK8NBDD+GOO+5AUlLSYjeT6ENPEAQIgoCqqioUFRVh3759aGtrw9DQEH7yk5/A4XCgvLwcKSkp0n2JiOjDieXERESXYLfbMTQ0hD/7sz9DX18fpqamsHnzZtx///14+umnkZiYyAlliG6i2IWl06dP4w9/+AN+/vOfS0tcVVRU4Hvf+x4yMzO5xBUR0YcYa9+IiC5AFEX4fD6cPn0a77//Pnp6euD3+5GamootW7agoqICycnJLCEmuskEQYBCoUBeXh4qKytx1113QavVYnp6Gk1NTTh8+DA6OjoQjUbB6/RERB9OLCcmIjqHKIqIRqOYmZnB7t278eKLL8JutyMzMxNLly7Fn/7pnyI1NZXlikSLRBAEGI1GbN68GUVFRTh+/DgGBwfR1dWFF198Effddx+WLFkChYKnOUREH0b8diciOkcoFILdbsdf/dVfoaGhAZOTk8jOzsZHPvIRPP3000hJSeHJMdEtwGg0Ij8/H9/+9rexc+dO/OpXv8KJEyfg8/kQCoXwmc98BqmpqYvdTCIius5YB0dEdJYoihBFEYODgzhx4gROnTqF8fFxKBQKrF27FqtXr0ZxcTGUSiV7YYluAQqFAlqtFitWrEBlZSUqKioQCoUwODiIQ4cOoaOjA+Pj44vdTCIius7YlUBENEckEsEHH3yAV155BR0dHVCr1UhLS8Nf/uVfIi8vDwaDYbGbSERzyGQyFBYWAgDMZjP+8i//EmNjYxgbG0NpaSk2btyIRx99FAB48YmI6EOCIZaI6Cyn04mf//zn2LlzJ44fPw6FQoH77rsPjzzyCIqKiqDX6xe7iUR0ERkZGbjzzjvx2c9+FkeOHMGuXbvw0ksvobe3FzqdDmvWrIHFYlnsZhIR0XXAEEtEhDNL6QwODuLgwYPo7u6G2+1GWVkZKisrUV1dDYPBwHGwRLcwrVYLtVqNmpoa+P1+tLa2wmazob29HQcPHkRmZiYUCgUMBgN7ZImI4hzPyIiIANTV1WHfvn147bXXEIlEYLFY8Nxzz2HVqlUoLS3lSS9RHJDJZLj33nthtVrh9/vx3//93+jq6sL3vvc9pKSkYMOGDVi1atViN5OIiK4RQywR3dY8Hg/q6+vxyiuvYO/evYhEIli/fj3Wr1+PDRs2IDExkQGWKI4IgoCioiJ89rOfhc1mQ2NjI9rb2/Hzn/8cbW1teO6555CamgqdTrfYTSUioqvEEEtEty2fz4epqSkcOXIETU1NGBwcREpKClasWIHa2lqkpaVBqVQudjOJ6AqZTCYsWbIEa9asQTgcltaQlcvlqK+vR01NDZRKJRQKBS9SERHFIUEURXGxG0FEtBja29tx8uRJfP7zn4ff74der8enPvUpfPSjH8XGjRsBcDZTongUO7UJBAI4fPgw/u7v/g5NTU0IBoNISUnB888/j40bN8JqtfIYJyKKQ1wnlohuO6FQCOPj43jppZfw05/+FH6/H9nZ2Vi3bh0++clPYsmSJRAEgSe3RHEqduwqlUosWbIEzz33HCoqKmA2m2G32/GrX/0KP/3pT+H1ehEOhxe5tUREdKUYYokoroiiiHA4DJ/PB6fTiWg0ekWPj0QicLvdaG9vR11dHU6dOgWlUomioiJUVVVh5cqVSE5OvkGtJ6KbRRAEyOVypKSkYOPGjaioqEBubi6CwSDq6+tx4MAB9Pb2wu12QxRFXElhmiiKcLlc8Pl8V/xYIiK6diwnJqK4Eo1GYbfbMTAwgIGBAdx3331XNEHL7OwsGhsb8eyzz2JkZAThcBhlZWV47rnncP/990vbYi8s0YdD7DRndHQUhw8fxpe//GU4HA6o1WqsWbMG3/jGN7Bx48YrGh8bDofxzjvvwGq1oqKiAkqlkt8ZREQ3ESd2IqK4Eg6HUVdXhyNHjuDYsWPw+XxYvnw5Vq5cecnHRaNRhMNhbN++HYcPH8bo6CiUSiVyc3Px53/+56ioqIBarQbAAEv0YSIIAkRRhMViwfLly/EXf/EX+NWvfoX+/n60tLTgtddeg81mw+OPPw6ZTHbZ47+/vx9tbW144YUXUFpaimg0ipUrV0Kr1d6kZ0RERAyxRBQ3RFFEJBJBc3Mzjh49igMHDiA3NxeiKCIrKwtmsxlyuXzeSWisFyYYDMJms+HAgQM4fPgw3G43ioqKUFZWhm3btsFsNkOh4Fci0YeRIAjQ6XTIysrCAw88gOPHj2NmZgajo6M4evQowuEwtm7dCqPRKF3MmitWMuxwONDV1YWDBw9i3759mJmZQUlJCZYsWcIQS0R0E7GcmIjihiiKmJ2dxX333Yeenh5MTk5CLpdj2bJluOOOO/Dcc8/BarVCLpfPe4woimhtbcV3vvMd7N+/H1NTUzAajfjWt76Fbdu2oaioiBM5Ed0GYt8HdXV1OHz4ML7+9a9DFEUkJyfjC1/4Ah5++GFUVFSc97hoNAqPx4Nvf/vbOHLkiBR8MzIysGzZMrz44ovIzs6++U+IiOg2xW4HIoobdrsd/f39GB0dhcvlAnBmoqbh4WHs3bsXaWlpqKysxObNm6FUKiGTnZm77sCBA6irq8OJEyfgcrlgtVrx5JNPYvXq1UhNTWWAJbpNxI71goICRCIRPPHEEzhw4ACmpqbw9ttvw2AwIBQKYfXq1ZDJZBBFEaFQCPX19airq8OePXswNDQkzWg8OzuLzs5OjI6Owmg0IiEhYXGfIBHRbYIhlojixtTUFLq7uzEzMwO/3y/dPj09jZmZGWi1WrjdbpSWliI1NRVyuRzBYBCHDx/GoUOH0NPTA7PZjNzcXDz66KMoLi6G2WxexGdERIshNTUVCoUCDzzwAIaHhzE1NYVjx44hOzsbWq0WZWVlUKlUAACbzYZjx45h+/btaGxsRCgUkrbj8XgQCAQwMjICq9XKEEtEdJMwxBJR3GhqasL27dsRCATO+50oijh+/Dh6e3vxwQcf4F/+5V+g1WrR0NCAX/7yl+ju7gYAfPrTn8amTZuwdu1aqaeWiG4/FosFH/vYxxCJRFBcXIyf/vSnePPNN3Hy5Emkp6ejsLAQarUaX/nKV9DR0YGhoSFEIpHzthONRrFjxw74/X7k5+cvwjMhIrr9MMQS0S0vGo3C7/djaGgILS0tFzyRBM6UFs/OzqKnpwe/+MUvoFAoMDg4iImJCZhMJlRVVaG2thbLly8/bwIoIrq9yGQyqFQqVFZWQqVSoaGhAQMDA5iamsLvf/97pKamQq1Wo729HdPT0xf93hFFEU1NTcjOzkYwGORyO0RENwFDLBHd8mKzgg4PD6O7u/uiJ5MAEAgEYLPZ8Lvf/Q6iKMLj8UAul6OoqAj3338/qqqqkJubexNbT0S3srKyMlgsFhw6dAh+vx8dHR147bXXoNPpoFKpMDExgUvNgSmKItrb27FkyRJ4vV4YjcZ5k8sREdH1x1o6Irrl+f1+vP7662htbUUwGFzQY9xuNzweDwBgxYoVuPfee/HZz34WWVlZN7KpRBSHUlNT8a1vfQuPPPIIlixZgnA4DIfDAZvNdskAG+PxeNDT04OdO3didnb2JrSYiOj2xhBLRLe82OygY2NjC35MbCkNURQxNTWFoaEhdHZ2SsGWiAg4M2NxOBzGxMQE7HY7ZmdnEY1GpZ+FiH3PHDt2DF6v9wa3mIiIWE5MRLe02HjYkydPYnR09Kq2MTw8DJ1Oh/3798NoNEKr1UKhOPP1x7FrRLe3SCQCt9uNxsZG9PT0YGJiYsHhda6pqSkcOXIELpcL0WiUE8cREd1AgriQOhkiokXS29uL1tZWfPKTn4TH47mqk0sAUCgUMBgMeOSRR7B+/Xo888wzXB+WiPDBBx+grq4O//7v/w6n0zlv+a4rIZPJoFQq8etf/xpVVVXIy8u7vg0lIiIJe2KJ6JY2PDyMlpYWBIPBqw6wAKQxbg0NDQiFQsjNzcWKFStgtVohk8kYZoluI7FJ39rb27Fnzx4cP34cU1NT1/QdE41GEQwG0dHRgaSkJIZYIqIbiCGWiG5JsSKR7u5uHD169JIzEl+JxsZGDA4OIhAI4Etf+hJMJhN0Oh1EUWSQJfqQi32vRCIRTE1N4Y033sArr7yC9vb267b9+vp6mM1mbNmyBQCHLBAR3QgMsUR0S4pGo3A6nWhsbMT+/fsRDoev27ZnZ2fx7rvvYnp6GqtXr8bf/M3fSMtpENGHlyiKCIVC+MlPfoLDhw/jnXfegcvluq772L9/PzQaDT71qU9Bq9VyuR0iohuAsw4Q0S0pFApJk6y43e7ruu1oNAq3242uri4cP34c7777LoaGhhAOhxe0nAYRxRdRFBEOhzE5OYn3338fhw8fRmNjI6anpxEKha7rvpxOJ2w2G3p7e696fC0REV0ae2KJ6JYjiiL8fj8OHjwohcsbYXh4GFNTU7Db7fjmN7+JtLQ06HS6G7IvIlpcgUAAXV1d+Od//mc0NzdjZmbmhuwnGAxifHwchw4dQkpKCvR6/Q3ZDxHR7Yw9sUR0S/J4PHjttdfQ29t7w/ZRUFCAzZs341vf+hZqamqg1Wpv2L6IaHFpNBrk5OTg4x//OMrLy5GSknLD9jU2NoaXX34ZU1NTN2wfRES3M/bEEtEtx+12Y3JyEoODg9d9vJpKpYJer0deXh4qKiqwdOlSrFixAomJiVzXkehDTCaTwWQyYcWKFZiYmEBmZiZaWlowOjoKp9N5XSs+vF4vent7YbPZ4HK5YDAYOMETEdF1xBBLRLeckZERtLe3Y3h4+LqPVzObzSgqKsKzzz6LzZs3Izc3FwBnECX6MIsd3wkJCdiwYQPWrl2LiYkJvPzyy3jppZfQ3Nx8XS+Y+Xw+9Pf3o6urC2lpaSgrK7tu2yYiIoZYIroFnTp1Cu+99941rdk4l0qlQnp6Ou666y7ce++9KCwsRFZWFkwm03XZPhHFF7lcjuTkZDz++ONYt24dBgcH8cYbb6Curg69vb3XrVf24MGDkMlkDLFERNcZQywR3TJiM4gODg6is7PzmkOsWq2GxWJBfn4+CgoKsGnTJqxZswYZGRlQKBTsfSW6TQmCALVajYyMDFgsFmRkZMDhcEAul8NisaC/vx9OpxM+n++a9tPT04OMjAyEw2HI5XIOWSAiuk4YYonolhGJROB0OtHS0oJjx45d03I3giAgNTUVmzdvxhe+8AWUlJTAYrHM+z0RkUajQWZmJj7zmc/ggQcewMDAAP7jP/4DJ06cQFdX1zVtu76+HlqtFk6nE0ajkWtRExFdJwyxRHTLcLvd2L17N4aGhq56LGxCQgJyc3Px+OOPo6SkBEuXLkV2djZ0Oh2DKxGdZ+73QmJiInQ6Hb7xjW+gvb0d7e3t+N3vfoeJiYmrWpInFArBZrPhvffew6ZNm5Cenn49m05EdNtiiCWiW4bf70dTUxPsdvsV9cLKZDIolUqkpqYiOzsbK1aswJYtW5CXl4fMzMwb2GIi+jBRq9VQq9VYvnw5zGYzUlNTMTAwgJ6eHgwODmJsbAyhUGjBQx1EUYTL5UJjYyMqKiqQlpYGgJUgRETXShCvpV6PiOg66urqwmOPPYahoSHMzs4u+HEGgwHJycn48pe/jOrqamzYsEH6HU8WiehqxE6PotEoGhsbcezYMfzrv/6rtGzOQul0OuTk5OCHP/whNm3aBIDfS0RE14o9sUR0SxgaGsLp06cxNDQEr9d72fvL5XJoNBrcddddWLFiBdasWYMlS5bAYrHwBJGIrpkgCBBFETKZDAUFBUhISEBmZiba29vR0NCAd955By6X67IzGQcCAQwPD6OzsxNZWVkoKCi4Sc+AiOjDiyGWiG4Jo6Oj6Ovrg8vlumSpniAIMBqNSExMhNVqxYYNG1BVVYX169dDpVIxwBLRdTN3fVmz2Yz09HRkZmbCbDZjeHgYY2NjsNvtcDqdiEQiF9xGJBKB2+3GwMAABgYGGGKJiK4DhlgiuiXU1dXhvffeu+RY2NiyGPfccw/uuece3H///UhOToZcLmd4JaIbTqPRYNWqVVi5ciUefPBBHD9+HG+++Sa2b98Oh8Nxye+vgwcPQhRFbNmyhd9XRETXiCGWiBZVJBKBz+dDe3s7mpubL3gSqFAoUFRUJJ08VldXIzs7GwkJCVzvlYhuirnfMzKZDImJiVi9ejVSUlKwdOlStLW14dChQxgYGEAgEDjv8V1dXTCZTHA6ndDr9VAqlTez+UREHyoMsRS3otHogmewvZKZJBe6zdh9L3Z/QRCkn4WQyWQLut+V3Hfu/m/VoBcOh2G32zE8PIyRkZF5v1MoFNDr9TCbzaioqMBdd92FjRs3orCwEHK5fJFaTES3O0EQoNVqkZ2djaysLKSkpCArKwterxeRSATT09NwuVyIRCLS34iJiQkMDQ3BZrMhPT19UUNs7G/ilc7teSV/Iy+0v6vd1+UqdK7kb+1cV/J399z9Xc3jrmZ/RHRhDLEUt7xeL8Lh8GX/oIqiCLfbjWg0etk/pJFIBIFAAKFQ6LLbDYVCCIfDCAQC59039scqtlzD5QiCAIPBsKBgJpfLYTAYFvSHVKlUQq1WQ6G4dQ/1mZkZvPHGG+etDatQKJCbm4tHHnkEW7ZswdatW6FUKiGTyW7ZQE5Et6eioiIUFhbisccew549e1BXV4df/vKXGBkZgd/vB3Dm78vk5CS2b9+ORx55BEuWLFm09gaDQQSDwYuO470Yj8eDSCRyRY8TRVF63JUE4FAohEAg8P9n77+jJEmu+1D4l+W97+quat89PdPjzY5drN+FWTjCg6QoiZRAgk4SRR4duU9P4hMl8tOjKOlJJChK/B6JRwOQEABCwAJYYN3M7M7ujnc9Mz3T3pT33mTl90dW5ET5qu6q7qru/J0z01mZkeEybty4N+69UZfPEz6o0WhaUgoQHk14aSvvyWQy6HS6pt8h7ymVSqjV6pbeEyFCRG1078pWxJYhn8+DZVlks1nk83nk83mk02nhmghr5D4RBGkGSM7NY1lWEBaz2SwAnoGl02lBq0rSkvQsywrRHfP5vPBeoVAoSUt+E2bW7Fl9pMxmNMgcxwltaJSWbkM1MAwDqVTalGDKMAzkcnlTzJRhGCgUCuG6HiQSieAvSoQ/hUIhaIOVSqVwLZfLIZVKhXfI2askH5VKVVI+yVMmkwntJAyevCeVSoV2kfxIOUTAXl1dxRtvvAGfzycw+iNHjmBqagovvPAC9u7di5GRkZK6ihAhQkQnQPMvmj8RPkh+k3uEB9A8LhgMQqPR4Ny5c3j48CF8Ph9WVlaQz+cRjUbxwx/+EBzHYXJyUuB9HMcJ+RO+Vs4fAZ7v0WloPkl4VjabLfldKBQqlK35fL4laya6fI7jWt5ZbZYH0yB92+g9wnda4Q+EdxJe2sp7NA9uBVKptEKhrFKpShTSUqm0hL+X82xaQU7/JnwY4Pk14bckX5pPkzSkPnQacp+kUalUQn4KhUJIQ/g84eckL1JXkVeL2AqIQmwXgjafIcyCNl2t9Y9+p9F9+l42m0Uul0MqlRK0s7FYDNlsFplMBul0WtCIxuNxQWijd0KJAEwYLPFzJGXE43GhLel0umIhQATXbDaLVCoFAMLCgGbkmUxmQ2ZJNFrVuraavlUm3Sw2e6QzYXYajUZgMFqtVhA+yY4t/Y8IrhKJBHq9XshHrVYLjIswMsIwFQqF8J5cLheYIGFwKpVKuK/VarG6uorr168jHA4LwvzIyAiOHTuG559/HkqlElKpFH6/v8JsrPw3zeirpaGFedq0a6PmYSJEiGgP6vGwRjyt2vsbvSb8hvA3wp8ymYxgpUP4IeFPuVyuZKeRCJaDg4OCFdD6+jpYlkUikcCVK1cgl8vx8OFDZLPZEuGTCMsAKvgjUQjTgi2xHqJ3K1OplCCkkjSJRGLTPKQWNmpau9H3gI3xw2ZMk+u91wnodLoSniSTyaDRaACU7jKXC59arVbIQyaTlVhcEd5Mdn0JX66mYKYj+tNrAJIvWSNIpVJoNJqSfNRqNRQKhZAP4e9E0K3Fj+l75b8J6Her5VHO96tdi3x954PhOkmdIjYEIhSmUikkEglEIhEkk0nhOp1OI5lMIpVKIZfLIZ1OI5VKIZPJIJFICEJnKpVCOp0WhFLCgEnaTCZTcZxJtUm+metmfm/0vXYPUcIQGmkKieaR1oLWAq2JJIuceqCF+2YE2U4tQugJvtpk3+h5tfut/CZCf/kuAWGkBoMBSqUSCoUCGo0GKpUKKpVKYKbEPIv8rXdfqVRCq9XCYDBArVbDZDJBp9MJ+YnMToSI7QPZ/Uwmk0in00gkEsJ1PB5HOp0W7hNBk5zRSoTKbDYr8D9yTQQ8kjdJTyttiRKWzMft5H+0JRENwoPqzenVnm3mXrtRLnQ1i1ZcbeiyiEAHQBDmW2kn/a1bAbFMa9X0eiNoxIdbvbfZPBrx73rXer1e4OVE4CWCskKhEIKbEYU5eSaXy6HVaisEZLVaLeSn1+uF/PR6vbA20Ov1At9Xq9XijvAOhyjEtgFEe0t2ComwSJguuabv09dkYqWZKnmPpKGva5k2EUZN71ySNJlMRrhP75aWR1Ckd9aIUEauyYRCNGzkH9HaEaEPeGweS6ejTVlobR+5T5u9EhOXclMaYhJTPjGR+80IIs36VdLmwM2kJe2kTb1qgda8N0OC5abU9UC+fXlaMm5IfmQM0DsHdL0Iwybpys26CYi/FzGHo9PRvlO0yTqpI9kxKH+PgDZVIsyOHpON7pePZ8L0iCkzYZoqlapEk0zGOmG8hIEShlrtmjBOWtstQsROAR0DoJlrWrgkvKn8Ph2DgKQpvybzBn1NBE0yT5G5hp5Lyn+TeYukp+chkr7aHEt4EOE7hNeUm1USfkHTfrlJJ+F/ZO4DgP7+/hIeQ7t0kHvlPIsun6A8DeHHNO8i7agGmn83C9pNpNX3qpnWNvMeKYveaW4WNC9rBfQYahaN3JiqjTeizKUVIGQXns6T8FTamo7+TQvc1fh7OW8u/03aTPqqnG7IM3pNWa2dtGkxzZvJ+KafEx5Op6fNm8tdk4iFFhGIyfvkPuHPhD5p4Zncr3VN1gj0DjfJj6wn6PtA9wbO3OkQhdgimjXhpe/T10R4jcfjiMViSKVSiEajiEajwjV9P5FIIJVKIRKJCBrnUCgk7LAmk0mhbrXMJcv/Nnuv3jOlUinsTNGLdPKXLNLJ5CGVSgWfDtrERSKRCCantCkpIXhaC0tPCCQt7SdCzFkACKYq1fxKyAS32ycTslgsZ7hEUUKULmRhSBgTWVQCvKk4YUy0rzRtKg7w9EJ282lTN3oBSRQlxOSOlJtOpxEOh4UdFFoZU8vUr969ZtOXmyEC/BjU6XRQq9UwGo3QaDTQaDQwmUzQarXQaDQl98k1iZysVquh1+thNBoFYbaWCXOte+VmUCJEbAatmOfW+wdAcAMhPI5Y+dA7pOSaWBCR+8QKKJlMIh6PC9eJREKwHiLzDa0cq2dGWC1Nvb+tpC3/S4L/0C4W9IKWKL7IwpmOHUDS03EHAH4uDoVCAIDp6ekS4ZL2NST50LyU5FMesK/cwojwY7oPiKVKOcj8U55exMZRKBSQSqVq7hYTPk0LjuWWAPl8HolEQnjOcZxAK+Q3MX0n79C8nfym3bsAlCiKSBpCf2TdQCucyEYKyYcooUg+yWRSEPLr8Wb6L7muZt3Q7Lt0HtXSEJokvJpYY+l0OuGattIi12QtUO1apVJBrVaXXJfz9mb+AahYAwAi728VohBbBNFeRSIRRKNR+Hw+QQj1+/2IxWKIRCIIBAIV16FQCKlUqmnf1XqLavoZ0UAR80eyeCaCJhEuaaGTEBu5pk0q6d2lWvcb+SHQfwlaMS9pJm0r6VpJs1tQbTIvf1btdyvXtZ4386wW8wEgCNTlvtlEACdmguX3yXU8HhcWB3R6smCOxWKIxWLC4preca7GTJplRHR6ouAxm83QarWw2WyCMNzX1wej0QidToe+vj4YDAbh2mKxwGAwCAocESI2A7K7EgwGBeUq4VXxeByRSASpVAqxWAzhcBjJZLKm4jUSidSl3Y08q/YceLxLRxRGKpVKWHQS3keEPCK4kYjt5YImvVtCeCTZXaH9/2ilLdmNoQXHjQjLtX4TkDaX74zWW8y2Wk6zdWlUrojWUY8Pl6ep9buZNLV+t5p3M3y8kfK4UCggkUiUWFuUW2MQ60Pym7bGonk2SUOOrCICPR1klFagER91EreFVuLX4uv1frfyTKfTQaPRQKfTwWQyCUIuUXAbDAbhvsFggF6vFxTmZG1gsVhKgnOJaA47WojlOE7w/yS7n0STTPvaJJNJYYFL3yfv0gRCNMxkt5T4p5LdI7KbSRglbZ5AhEX6Ps2QifBJtLm0lpfcp80Vy80l6YA81cwpqgXiKb8vMrDdCTJ2t7tMolkm/+idXdqEnjBFonWmzeMJwyNmh+SaMD6asZJ86N1gwmTLtc20KT/td0czaOJrRYJqEA1vtWuiySXXGo1G2NGl/XvKrzUaTYliS7Q+2Nkg45rwKWKtQxaAZEzTsQ7oa8L3CN8i47r8miwwy11gyH0CoqShzfiIaWAtk75qZn/kPs2/6Oty875y/kabIxK+W83kl9wrNwmmn5EyadcW2nRRhAige/hkN5ZJBFnaxL+W6XH5b9qcn35GPycRtmnXgHKXBcKT6Wt6PUDyo6+ruS/Q98uvaYsxAtpFqdy9iKzn6Wuypler1cIagCjs6Hge5dd0zA+i2CPrgN06T/WsEFuu0a22C1ooFBAMBhEOh7G2tgaPx4NIJAK32w2fz4dIJAKXy4VAIIBIJAKv1yvkU29Hhr5X/pzeOdXr9YLGhb4mOzG06WK5GaPFYhG0zjsV2zE5ixBBg2h8o9GooLiKRCKCcosEVSP3k8mkcD+RSCAejws7V0TBRc9FQHO7VOQ3wzAwm80wm80wmUxwOp0wmUwwm83Ctc1mw8jICMxmM2w2W8lim56L6N8kbxHbj2q7F/Usc3K5HCKRiGAd5PP5hN3VQCCAcDiMWCwm8DFyHY/HEY/HhXKbsa6px+PIX8KXaEVMeUAV+postsrTEPO+clM/ssATwUPkkyJEtAYiqJINKMKfq7ky0K4RRFFIXByqpaGVhrV2pKtd1/pLi2DEpNlmswk7tjabDXq9HgaDAX19fcIOb39/P4xGIywWS8k6oJbcQoTccmvLXkfPCrEkZL3X68Xa2hqWl5cRDAbh8XiwsrKCcDgMt9uNeDxe4qBOn2VKdn3ogDJEG2y326HT6QQTQGJHb7PZoNVqhcFFrs1mc4V9fL1FZSMfufIFqAgRItqPakJDLb/3ckVZtd+0b3wwGEQymUQ4HEYoFEIikSi5DoVCgsAcCASE3TBC+/R5vURBRgdJI3OVw+GA2WyGw+GA0+kUBN7R0VH09fVhdHS05TMURXQOZIG1srKCYDAIr9cLt9uNaDQq/I7FYvD5fPD5fILFDx2Ejf5H3yu/5jhOsPih/bfJQogIlmSXnyyWiNkbEVKJmTvZYWjG1H6z/0SIECFiI6jG1+v9A9CyOyAdAZ1WZEejUUHgDYfDgusSUZITlybaZYNYv5Sv/wm/r3VN/hEFoMVigd1uF+QTIgz39/fD4XDAZDJhaGhIcCPcCehqIZYsCD0eD2KxGBKJBILBoLADQnZWQ6GQoHmORCJCmkgkglwuJwQZojW/5CPSW/jkPmHatPaYpCGa5PI0JFT4Vg2MVrWz3arN3Yp6daKMduTZrd9ExMbAcVyJv0655pe4HlTTAhNGRr9HhGHCKIlmmDBCwnSJTw3ZsdVoNMIurcFggN1uh8FgEJicTqcT/HCJkALsHM3sdoKYrhEeRPhQKpUSFi1ksUN4VjQaFRY79M5+LBZDNBoVzOOIyRoJPlJ+TiO5LvfxJCZo5XEUyq9pszcSyI82e6Mj1vfKWBH55PaWIfJJEeXYCTRJlIXlx3XRrhmE99NuGuSauHIQBSU5/ouYNJM8yk8woa8TiYRgSk3cJXQ6naCEpK+JTy69BiD3aTcmsnFnsVgEF4tuR1cIsbU0IURAvXz5MpaXl7G2toZ79+5hfX0d6+vriMViNU1/yTXxTSOaCKPRiIGBgRINhc1mE+4Tk14RInYjenWxtBNAGJ3L5UIoFEIoFILL5RJ2b8m13+/HysqKINTWM2Uic+Dw8DDsdjump6cxMjICp9OJEydOYHBwEDabrcIKBBCF2nqopZ0nC5f79+9jbW0Nbrcb8/Pz8Hq98Pl8WFxcFPgaQSPzXvLXbDZDp9MJfIpYCREFRX9/v7AIIdc6nQ5ms7nhMWEiTYoQ0TxEPiminWBZVggqm0gkBNcRYqVFdmzpwLIul0vY7SVWOs2aLRsMBhgMBoyNjaG/vx9WqxVjY2MYHByEw+HAgQMHBEG3npVMN4zPrhBiiU/alStXMDs7i9XVVdy6dQtutxuhUEhw2qaDp7AsC5lMBpPJBLvdjtHRUZjNZvT19Qm+Y3a7Hf39/YJjNB3UgT6bij6Hityvhm6eVLqlbu2ux05tVzuxEzSbBLu5LbSLAx0Yg5iHlp9/SY7lIsKt1+sVBGCXy4Xl5WXBd7dW8B1yLNCRI0cwOjqKsbExPPXUUzCZTDAYDB3snd7G6uoqvF4vbt++jZWVFXi9Xjx69EiwDiJBwMoDm9BBSgwGA4xGI+x2u7BbTvyb9Ho9LBaLoDW3Wq0lQZRos3KigCA7pPR9mp9tlE52M032Sj12arvaid08jndSW3qlHq3kV81NpNz9sfwf4Su5XE6IkRAKheDz+QThl1j7eL1eeDwewWWFln/oQHZ0AD6TyQSr1Yq9e/eiv78fTqcThw8fxsDAAIaHh0uitm8ntk2IDYVCiEajWF1dhcvlgt/vx927d7G2tgafz4f5+XnBDIsEQqJ9eojJnMFggNlsFjTPpOO1Wq0QHIWOYEhjM4O2mXe7hTi3A73Y9l6qc7vH7na0vd312G00SUySCaMKh8MlAX+IbyUxbaXPqE4mkwgGg8I5z+Pj4+jv78fAwAAOHToEu90uMCuz2Qyr1dpwN2+ngWiv0+k0AoEAfD4fYrEY/H4/VldXEQgEsLCwAK/XKwQPJMG/aPcUOvgRHVGS8DWTyQSTySREnSYmXiSwB3Fdoc8A7WSbRZrcOvRi23upziKfbC6/jaTZqeilthPhl7ig0Een0cellcfiINHrybqAPrWFnLxCTIyHhoaENcD4+DhsNhucTif6+/uh1+thtVrR399fcW71VmHLhFi6mEKhgFu3bmF2dhbf//73cenSJaytrSGRSJSYTxE77/3792N0dBTDw8OYnp6G0+mE0+nExMSEoD0QIUKECBGlyGazcLvdWFpagsfjwezsLJaWlrC+vo5r164Jvjm02RHDMBgeHsbevXvxyU9+EocOHcKpU6eEc6R7hcFvBDSf4jj+uAifz4fLly/j/fffx9zcHN599134/X7h2Jly01+pVIr+/n4MDg5iYGAA4+Pj6Ovrg91ux9jYGGw2m2AGLPIuESJEiBCxFWBZFqlUCm63G8FgUFgX+P1+LC4uCi4wKysrVU9ZACBEpT937hwmJydx4sQJPPPMM7DZbMKRf8DWmRpvqRDrdrsxMzODr371q7h9+zb8fr9wNivDMOjr68P09DSGh4dx8OBBjI6Oor+/X9hNpc9SJVvexEabNGMnL7A2g17SLu0W9NI32UhdRZqsj634/nTwCXIeLjn3Lh6Pw+12w+124+7du1hcXMTS0hLu3bsHAFAoFNDr9TCZTHA4HPjSl76EAwcO4OjRox2t83aCBOdaXFzEW2+9hVdeeQWrq6vweDxC4I1UKgWJRAKtVov9+/djaGgIdrsd4+PjcDgcsFqtwpEH5Wd409ebVQiINNl+9NKcvFvQS99EpMn2o5e+f7eDDkhFTJGJywtZF+RyOYTDYfh8Png8HszNzcHr9WJ9fR137txBIpFANpsVAgaq1WpYrVYMDw/jmWeewSc+8QkMDw+XCLSdxJbs/ZJonZcuXcK1a9dw+fJlrK6uIp/Pw263Y2JiAiaTCRMTE8JCYHJyUjguQqVSNewMMQJeb0IMkLA12GwfbORdkSa3H8SapTxqOmFmdrsdg4ODMBqNGBsbw9raGpxOpxBYan19XfCpeeONNxCNRmEwGOB0OqFUKrepVZ0B8T+6evUqZmZm8NZbb+HatWsIBoPI5XKwWq2wWCyCaZXJZMLk5CQGBgZgsVgwNDSEvr4+GI1G6PX6pkz2NgORJncPRD65NRD5pIhm0Ys0SQI91rMA4jgOqVRKOPWlv79fOPpteHgYoVAIwWBQcFMi6fx+PyQSCXQ6Haanp3H27FkoFIqOWxttyU5sPB7H2toavvSlL+HGjRuIx+NQKpXo7+/Hhz/8YTz99NOYmprC4cOHRWIUAWDjGk1x/IgQsXEUCgW4XC7cu3cPV69exTe/+U243W74/X4AwIkTJ/DzP//z+OxnPwubzbaj6I0cefDLv/zLuHr1Kh48eACAN5+y2Wx46qmnMDU1hdOnT2P//v0lB8yLELEdEPmkCBHdhZ1Kk0TxTWIWXbp0CbOzs7h8+TKWlpYE9xqHw4GTJ0/i93//92Gz2aBWqztary0RYu/fv4+//uu/xh//8R8jFAphZGQEP/uzP4uDBw9iZGQEer0earVaCOcsonPYqQS2XRD7RsRm0U00yXGccE5dIpGA1+vFnTt38MYbb+B73/seZDIZJicn8dWvfhXT09M7auwvLy/j6tWr+Bf/4l9gbW0NUqkUn//853HgwAGcPHkSRqNRCM6kVquFaMA7qQ9E8OgmmtwJEPtGxGYh0mR7sZEI1wCEs2nJ2fbxeBw3b97E3bt38a1vfQvhcBgOhwNf/vKX8alPfQqTk5OdagKALTInjkajuHPnjnCuq1KpxOTkJA4cOACr1SoOsi0AGbAbiXK33d+nXh23e5JqpuxaddzuuovYXnQjTTIMI5gfGwwG2Gw2ZDIZzMzMQCaTIR6PY2FhAclkEoVCYUcFJgqHw5iZmUEwGEQ6nYZOp8PQ0BD27t2Lo0eP7vigViK6kyabhcgnRexEiDTZGbRKk+QviU+k1+uFNJlMBtFoFHK5HPl8HuFwGLdu3cILL7zQuQYU0dl4/UUEg0G8++67iMfjQgPz+bzwnI6AVQvNbBh3clN5o3mXR7vcLtQasNtN5M2gXh27pf71vm2jvu+WMdIqRJrcHLqVJsvnYxIIAoBwJl0qlUI2m92uKnYEbrcb58+fFwT0TCZTEZmR9E0zPGs7INLk5tCtNNkMRD7ZnRBpcnMQabKzaIUmy6MVl68TEokEWJZFNBrFhQsXEAwGO1NpCluyE6tUKjEwMIBAIIBUKoX19XX89m//NkZHR3Hu3DkcOXIEg4ODGB8f39SA7eSgqJd3PY0KfX+jeYjoPDod0GEnjhGRJnceCoUCQqEQlpeXMTs7i7feegtLS0t49OgRYrHYdlevo9BqtRgeHoZMJgPLskin0/jTP/1TfO9738PIyIjAp6anpzEyMgKDwSCYFHcLRJoU0UmIfLJ1iDQpopPYKpokQmskEoHL5cLdu3extraG+/fv49GjR8J56fl8HjqdDgMDA1sS/HFLhFiZTAatViuYnnEcJ3QAy7KIx+MYGRlBNBqFVqsV/I5UKhUUCkVDM67tJqJ2lL2bJoHt/F61yu50fVr1PdiOOjZCK99NpMnuBtGgZrNZZLNZxONxpFIppFIpLC8vY2FhAffv38f58+cRDocFKxoaO61/CJ+SSCSQyWRQq9XCuXmLi4uIRCJCdEa32w2r1Sr4ycrlcqjV6pIj4Laif0Sa3LkQ+WR9iHxy8xBpsjXsBpokAZzI2oBYXRGTYb/fj9XVVdy+fRsrKyuYmZmB1+tFoVCAWq0Gy7KQSCTQaDRb4m60JUKsVCqFSqWCRCKBUqnE4OAg1tbW4PF48J3vfAff+c53oFAoMDw8jGPHjmFychInT57E1NQUnE4ntFpt3fy7hYgaDfDNEMB2T3Y06LpspF69Nmlvtr2t5A80X8dOjolqebdSVjeO1Y0830zeW4mNjFGWZeFyubC2toYrV65gdnYWDx48wLVr15DNZgVBl5wD5/P5wLJsR9uxnZBIJEK0YaPRiH379mF5eRmxWAw+nw8//vGPhbQqlQoGgwHHjx8XjoPbv38/RkZGYLfbYbVa214/kSY3n/dWQuSTIp9shG4cqxt5vpm8txIiTTbOg+M4JBIJuN1urK6uYmZmBmtra1haWsL777+PaDSKRCJR8o5arUZfXx+mp6dx7do1cBwnbEB2GlsixNKw2+349Kc/DaVSiXg8juvXr2N2dhahUAgulwvJZBI3b97E66+/Dr1eD51Oh7GxMdjtdthsNgwNDcFiscBisaC/vx8ymazj0n6zA6HRAOnklv9WopyR0OYG9LONTl7dEOChmkN7+XW7sNE8y/u8Xf3TTUynFkSaLEUtmqQPLg+Hw1hbW4PX60UwGMSjR48QiUQQj8eF3Vay42q1WuF0OnHy5EmMjIxgbGwM//yf/3O4XK5tbOXWQafTYWpqCj/3cz8HhmFw//59PHz4EB6PB7Ozs0gmkwiHw7h+/ToePHgAlUpVEmWfCLKETxkMBhiNRvT390Ov18NoNEKj0TTN5EWabA7d1Ecin2wvRD7ZOkSaLMVup0kS6yEcDgvK2VAohFgsBq/Xi0AgIMhixDKLRCFOJpMIhUIAAL1ej71792JgYADj4+PC8airq6uYm5tDOBzekrYC2yDEajQa7NmzByMjI8hms1AqlVCr1XC5XEJUSL/fj+XlZRQKBUgkEkxMTMDpdAod1tfXB7vdjuHhYahUKiiVSigUCshkMshkMsGci/zdbFTJTk/OvY5qBFPtd6v5NXu/E9jq77zRSa4TY7MXxrhIk48DLuVyObAsi1wuJ1wTU6B0Og2v1wuXy4VAIIDFxUW4XC54vV7MzMwgl8sJZkAKhUIQwJxOJ8bHx/HMM89gbGwMo6Oj0Gg0293kLYNcLofZbMaTTz4JrVYLh8MBu92O1dVVqNVq+Hw+JBIJgckHg0FkMhnk83lwHAer1Qq73Y6+vj4MDQ3BbDbDYrHA6XTCZDLBYrHAaDSW8CqpVCrwMGLSTF8D3T3WRZqsD5FPbh4in2wNIk3WR6/TJLGWyufzYFkWLMsK1/l8Hvl8HoVCAblcTlgrxONx+P1+wbeVCK7r6+vwer3w+/1wuVxgGAZSqVRwkVEoFHA4HNBqtTAajThy5AiGh4exb98+nDhxAslkEhcvXoRCoehIW2thy4VYgqmpKQwMDOCFF14QNAPvvPMO7t27h6WlJVy5cgUejweRSAT379/H/fv3KwhSoVDAarXC4XBgz549sNlsGBgYwPDwMKxWKwYHB+FwOKBSqbouAIcIETTEsSmiVaTTaQSDQSwvLyMYDMLlcmF5eRmBQEDwaw2Hw4hGowBKI+wSaDQaGAwGPPHEE5iYmMDk5CReeOEFQcgCeLPjRCKxK8eoTCaDzWbDs88+i2eeeQYA33/Ly8twuVy4fv26oBi4d++ewLN8Ph98Ph+A6gtJhmFgMplgNpsxMDAAp9MJo9EIu90u7Nz29fWhr68PBoMBdrtdMHUWIWK3Qhz/IkQ8BsdxYFkWPp8P0WgUgUAAbrcb0WgUXq8XXq8X0WgULpcL6+vriEQi8Hq9Je9XuwYAo9EIm82GAwcOwOl0YmRkBMeOHcPg4CBGR0chlUrBMI+PPtouK61tE2IBCB2gUChgNptx+vRp7Nu3D/F4HJ/61KcQDAYRDoexsLCAYDCIUCiEtbU1hMNhhMNhZLNZIeKxz+cTdnU1Gg2USiU0Gg20Wi3UajXMZjNMJpOgRSCmXyaTCTqdDhqNBiaTSQjO0Qi9YEqyGez09nUC22UyIoJHr/cJ2UkNh8NIJBJIJBIIhUJIJBKIx+OIRCJIJBKIxWIIBAJIJpNCukwmg1QqJVwnk0nEYjHkcjkwDAOLxQK9Xg+HwwGr1QqTyYSxsTHYbDZYLBbYbDbodDro9Xr09/eX+LPsZD/YZlBNW9/X1we9Xg+r1SrsyEYiEcRiMcTjcayvryMUCgmLhlgshlgsBr/fj2QyKXyfTCaDSCSC5eVlKBQKqFQqIVAUbWVEgh0SnqXRaAS/XMKzjEYjlEolVCpVybVOp9sS36Rq6HWabISd3r5OQOST24ud3ie92L5CoYBUKoVkMolMJoNYLCaY89JBF8k1cWchPD+ZTCKXywnrgFwuh3Q6jXQ6LQRnIgGaiOWVSqUSlKQ6nQ42m02QkwYHBwV3TuL6otVqYTabodFohE3BbujnbRViCaRSKaRSKYaHhzE8PCzcj8ViiEajuH37tmACR0I5e71eRCIRYcs8FoshHA5XbKeTYFI2mw12u13QcJvNZuj1euHDkftEuKXNkKtdSyQSQRMhlUqF5xKJpCeJqBy16t+Kc3iv9UGnQ5W3is34sOxG1OuTrRiP9E5noVAAy7IoFApNXbMsi0wmI5j/RiIRQQAi10TbGgwGsb6+LjAoEheAmKOSvyaTSYiy29/fD6vVivHxcTidTvT19eHgwYOw2+0wm81dw5C6HWQc6XQ6gfHTIN9wfn4eHo8Hfr8fKysrCIVCCAaDWFtbQzQaRTQaFRYU+XxeUE4QvkXGBMuywtEGRqMRWq1WWHhoNBpYLBbodDpotVpYrVZoNBpoNBrYbDZh4UHGAeFbhE8R/kXfL+dl9D96jDQ7VrabJjsNkU+2DpFPbi9EmqyPZtLRvJ7w+0KhIOyM0vfof7XuExkmHo8jkUgIPqtEkU3iVRCldjQaFVxaotEoCoWCMH+TOZy+lslk0Ol0wtqACK5DQ0OCUntwcFBwgZmamhIE3W5HVwixNOgBRBYKDodDGCxk8BQKBayursLj8WBtbQ2Li4sIBAJwuVxYWVkRzOuI1nt5eRkrKysAKjXr9F9i+z0wMAC9Xg+9Xg+73V5yrdPpBBMvnU4nmIWRneByAmjHxNAsYTVbzmZ8S6q9u9HIgc2iUZmttmejUQXb/R22q5yNjpV29HM70rZax62iSaINjcfjCAQCiMfjCAaDwjURZogfJQmqQBhSJpOpMPutZgZMypbL5XA4HLBYLBgcHMTg4CAsFguGhoYwNjaGvr4+jI2NQS6XVxVEen3BspVoZswoFAooFAocPXpUeKf8+5ExQky/PR4P3G43IpEI/H4/PB6PsEjxer2Cdp4oM2izrWpCZfk1Of5Hr9cLu7gk0JRarYbBYBCEYqPRKNwnFkvkvlqtFnx4W+2v7aTJjaTZbJ1EPinySZFPNp9HL9Ikx3GC0jIcDiOZTAoWUyRWQigUQiqVQjQaFe4TJSYJlBSNRpFOp0t4P8m/3jV9Ty6XC4pMerPObrfDaDRiYGAADocDZrMZw8PD0Gg0gntKNTmol9YFXSfEVhtM1TqU4zhBuBwYGMDU1JQQQYuYaSUSCUQiEWHrPRqNCoOIRNwiJnpkq54ERVlfX4dCoYBcLsfS0pIg3BJGTq7JooV2fqbNwegzBMm5t/R7Go1GuCb3iSk0CexRqw/q9V070zbzbqcHfaMyWy1/o/Vt93fYaB6NJvJGzzc6VjrZz5sdk6TNrXwjYrVBTG2I6U0mkxFMc7LZLHK5HJLJZMXZadlsFolEQhBM0um0EECBmPWQ+8TEJ5PJCOeuketUKiXswBGXCGI6qlarodVqBUFDp9PBYrEIwoher4dKpYJWq4VOp4NSqRQUbSqVCmq1etPB7US0RpO1eBbRlsvlcgwPD6Ovrw+jo6NIJBIVZl/EbCybzQpa+nQ6jVgshmQyKfA7+pq8T/IjwabI2ItEIgKfIsEQy6+VSmXV+2SXn/A6uVze1DWJSVGed61rEuSqmX5u9Rs1m2YjaZt5V+STm8+7lTxEPln57kb4ZCN0G00SKxYy/5G5kLjskPuEB5Nr+nk2m616n74mljP0PEveo+dfslYov6bLKRQKwpxL3CAJLyeyBOHvRPlIrw2IDEEHaSTyBbHKIfltxakuW4WuEGI3ollhGKZkd7RWvkTT4Xa7BXM8n8+HQCAgXAeDQcEpmjblInbqiUSiwgyg/Depk1wuFwYd2UkmvkvEp4lot4nvElmwkvtE8038oegdlFq7KeX/aj1r5p2NYieYohB0Q1s2wxi2QnvaCZRrGQltVbPEKDfpKf9X6xl5l+M4QUAlpjvpdFo4By2ZTAqKL6L8IoIC0Z4SBVk6nRbeJ3UuN8ssv6bdEQwGg2ACRHbDiAbVYDDAZDIJAX/IrqvRaITVahXyqdWf2z2OdxLaQZNkDFgslqbKzOfzAn8i/tDEb5rwN3JMElHQkufJZLLCvI0stGg6oHlaNToh9MQwjLCgUigUwqJKpVIJPI0oVGifXDpNtdgV9GKLCLQ0b6KVMDS/on19a/G5Zp/R36hdPLEadhJNdkNbdiOf3AzqKdg2s8tJ8innva1e13oGPF4PlKcv5+9kM4pWDtLXxLqFKAHJphdRMtPXhOdXu0+3v9oavdo1fY9WMkskEkEWIO6OOp0OVqtVkCUsFgu0Wi30er3gVmI2m2E2m4U5sxfH5GbQFUJseYdv5CPUeoc4Kg8PD9dd5BLmHolEBOGWXJPFQyQSEa7D4TCCwaBgIkhMAbLZLILBYNNMsRYDBSDYrxNTLhKUijB+esdXp9NV7PISrQxJT7Tc5F2lUgmtVivc36z9e6cIp9546BTB9uok0K7+6CRNNkKhUBAYRTwer9j9JIEP6PtEM0p8DendT5JPOp1GPB4XgiYQawza75DUezN/CaMiQeOIz4lOpxMYj1arFcx+dDod7HY7TCaTsNtaS9FUvnjv9CJNxOaxWZqUSqUCH2u00KOvyS4B8akifIuYvZHAIOQ+baVUbvZGDrfnOE5Q6jAMA6/XW8HP6L/V7jVKT3y5iNKXDmpFW0PJZDJotVphV0Gr1Qq7vzQPJBZNhBeSI42ISZ1MJhN4Kb2DrNVqOxIQS+ST24+dwCfbmW87yydnjbMsKwQcIspiYtFEW4eQ3UoSGyCbzYJl2RLrJTr2DW09RYIXEeGSWFSSNNVMbxvx72bT06DnKbPZLGxKkd1Sooim3TTIfRLrwGKxCPNRM8q2ejLFbkJXCLHl2IwmqNq9ZvIjgqxCoRB2O2iTwnLzQkIw5JoQGiFKmkDJNSFk2kSxVhoSVVQikQjBWwiTpc8VJIKuQqEoCexCrkk68lcikQiEQt8n14Th0/mV3y8PckUHA5HL5QAgBNQi/V8eEIu8A0BYNJD3yHPSfvpoCaVSWaF9p/39dhI2qxEt97EgAQTonZlcLiekIbszAITzQ+l/uVyuat7ZbLZkp4cOSEPOLyXl02eZEkZGTGzKzzcj2tRq559Vu0/Mh+j7pM0kfbmJDznXUyKRlChzyCKYviaLZ+IeQLsVyGQyYbeJmEeShTHZXaJ3mqpdk3c7eZTKbtPSthvt4k0beb/VfMhOKjnzljZ3J3yLviaLzWqmduUmcDTdkmv6fjXzOtqMr5p5HW3VJJFIkMlkSvgOzbMIL6l2TfMX+jl5n6Qpf0b/JfMBnTfJlz7Pt9pvwp/KeRmAkvzJN1UqlSXflpRF3yMKZjofwjPJfYVCUaLkIvUmIPUsF8zpvulFbAdNtpIv4UflUd4Jr8zn88I92hIQ4OdrwosJCP+klVaEB5PfhIfS/D+dTpf8pnkzeZcui+b7dBvo34T3knVEoVAooWWSHx3AkF5b0PUsf5fm3+Re+XPyj8w7ZD4hcx/DPHbfoNfOtVwpyFq31n2i5CKKL0L3tDsE4fu0Uoy+T3g+eY/8pndkRTSPrhRitwNksBPTJrPZ3PS7ZFFPdnzonR6y20P7NBFzRdonl5guEtMFYpZIa97JIoCU2Yw2vpnnBIRxkx1aQnBkwU7MxAiDJYRLR0QlzFYikUCv1wt9SwieFowJgyVlADyjpRcshNAJYRN7frrOzfr80ZqrRmiFydXTfjeLZtPW0waWIx6PlzA/etFJmABt/ppIJATmSWs/CcNKpVJC2bFYTKgDMVmkmRxhqkRpQ8onCh+itCEKHWLSQ+pIoxWzv2avyRgkv4mwSbSjZB6gr4lFBLkm9EC0reX3uxGiALt7QM+ZmwGhc6LMjUajAr8jfIzeDSHXRGiOx+MV17QZH7kmC9Hy3Wbi1kPqUr5L0qyFRLPpy/uQmPkRnkX4YrkPMM0Pgce8jFZK0XyQ5K/RaEr4F1Fm0XOWXq8v+U0WvXQ9ST4AhDJo4ZdevNMgfs7NBuwi+dF/W0En3mmF17bjnVbeJUIWERgJCK+kFcJECUsrfmlrIQBC/ATCqwuFApLJZImLDaFPup7RaLSk/jRvJkJkKpUS8iVCKrF0omM9kHUEUUAR3k2vNwhqWWK04y99Ta9fyTMiwNJuDYSfl7sy0NYetE+qVqut8ElVqVTQ6/UC3ddz6RHRWYhCbAuot4tBtCkk0FS56XK5EEkz6PL7HMcJiwHaLy+ZTCISiQj3aXNJWhgg9+ngM2TxUB6ghpiJkbqQneFoNFp30qDvN/O7kdlDM+9WS1frXjUQ7VozGmdiptYob1pYp0HM7ogGsh6IcEczqlogwmUzZ3dWy6v8XiMTmlrX9fJp5f1qyhUCoighC0HCTGjFCr2jSfxLygOlkffINe2nTsx6yk14Sfnl/5q9L2J3YyfueBOTOYPBAKA9/m/0daFQKLF8IgEXq/mrkQU2EX7pBTXhf2RHmFbIkSBs9M4xEQrIcxpk1ycWiwn36vGyVnhis2k6mXej+7VQTUBvBmQ3qtldXzKf1jPtJqanzfBPGmSN1SyIZREpqxXUq1ctXlnr3kZ4+Ebzpu81Ug5VAwlQWs3cn7ZoIub+9E4o/Zu2cCKKIuJCR/vmE7c7ck1vcGxW8V3vWsT2QRRiW0AjBtCuAc1xXIlpBGHKNMMtN8uk09MmHrT5JX2fNtcsT1+eptz8k94ZJpNXNfPTcrNV0jaySwc8Np8pPzMLgGA+QvdJI4GwHsrNmOuBNpuuByJolYOubyPGSpu+NgLp541okQloLT9t3kab1gGPd+aBx5p8WsNJm5GT38BjszWiHS0306PNAsmChjbNKzcdLN+9Lzenp+/R6WlTRHKfMD2inaV3U0SGJKJd2EljqZESsV0gcz/hN0TIpKOM0uaC1UwdaesROj/aHJF+Vm7eWG6uWJ43ua5mGlnO1wjvo9tGz9202wWAEp5K51MunJXvsNE7d3Q+tIKc5qvtAD3ntzImyk2umy2L5lnloPu2FZA1TrOotu5pB2heCaCEXxKUu0yRPiHXJB96N72830gZ9IkXhK/T5u3la4BaJvY0zya/65nsE4s62iy/3M2t/N1q55/T+ZH7hKfT1gaE9++kuVhEJbpaiO1WbXan60UmFqKpMhqNdetC3tko6GM+iGkIcbCnTT6JlpwwVdr8lJickIUFvdggDv4ABK02YQj04oT8IybTuVxO0IzTC5lWTXpaYTi0UN4siEnOZtGMZo8WmFv55nRacug1gBK/DtoEjSxStFpthTac9h8lTIVoSQEI1zSjIoyF9jkl5rvEX4QIlMSUp/wcs3roprmiHTQporvRbeOtW+pCo9V6kXmELM7bXRegOZokgiN9HBYd76JakBqyi0sEKZqvAY+tnGhhixbSSZpqZqG0LyPH8a4c5T6ShL8SgZW4eACPheVyPrVVJrj0e9V8Q5tBu3hsOTayAVEuKG60TAKVSiUIaCR/co+kVavVFYpimjeTfGj/aoYpNUMngiJtYi6RSEp2ucvdwqRSqVC2TCaDXq8vSUMrhek4ELS7WC2IfHLr0K08oh3oaiG2nTub7fyA3TYYNlsfOmoxUGnyXM0smtynr5sxG62Xttl8iDaUDkRUCyRYVjVz1XKQRUgzO6fk2KVmwDCMwJQamVERIbKZXeBmTLOIMKpWq0uYGf28/LrWvVbSNpNPO01ydxpNtopGc9xOZmI7Gc18N5FPNodm60Mr34g/cSOTaKDy+A8azZhgVuNRm32vVhraOqsZEOV0q8IkUUq3IriWB91rBUQwI8rZZkEHyGxl3JKgfs2aR9NxPug603/Lr8nvRqbhtdJs9L1qz+td18qrHnYqn+w2fswwO/fona4WYtuFnfjhCNrRto0IDTS2ijhIOcRUt1l/02aYIdkVbkbY5TiuJV8ahimNzlwPdETNRn1Kdk/rpSNMXTSr2TpsRz+Xl1lOk+K3by+2qj+3eqGzU7GRhXW7+2Or+WS957S5dLN5lpstN/NOq+UA1U2vmwVZy9Amss2AmLA2EweDBm0u2wxo09udTG/NYCfzyW7kxzt1vO0KIXanods0KlslANOLi2bMVTZSRrdjJ7VlJ6HbvksvKKV2CsT+6k5023fZaj5Z73k1q6Bu66/NYCe1ZSeh275Lt9BkO8rYrRAPJOpB7KRBvRVtEftLRKexk77LTmrLVkDsr+7ETvouIp9sDTupLTsJO+m7iDTZHRCF2CLaGW1uN2Gz/bYV/d4Ldew0erENvVjnboA43nsDvdjPvVjnbkAv0GQv1LHT6MU29GKduwG9MN57oY7bjZ4XYmt9pGr36wU/IBqPTn70TuS9HYO0Wr9tFK2+34zP6mbLqPd+K+OtWTTjg7tZ1GtDu8eQSJO7iyZ3I0SaFGmylTJFPln/fjMQ+WT13yJNbqxMkSbr328G3SAk97wQW+sjV7tf/kEbpaHTtgPtinrW7jxbRbNlbrTf6r232SBUm0Ur462VPBu1uRk029/l5bW7P0Wa3Hk0KaIUIk2KNNkIIp9s/n6zeYp8UqTJzUCkyebvN5vndq8ptl2I3aoO2AwBtZKWLqcTbduMg3inUCvvjda11nvbTSztRjMMspU2b2ZMd3rcVoNIk71DkyIeQ6TJ6hBpcmN5i3yyPkQ+KdJkpyDS5MbQSeVOq9h2IbYTphDV8tqqjqY1E53UjDXCVmq9trJvdxLKtVjVTIa2o29FmuwMdiJN7jaINNkeiDTZOew02hf5pEiTnYJIkxtDI5rcSmy7EEvQzo/cTF6d7PR65e9EotmIrX83lrEdoBlh+Tfr5Ddspi9Fmty6OrQbO5VethsiTbYPIk32ZhnbAZFPPoZIk+2DSJMbRz2a3Ep0jRC71dhpmpHtRid8JjaTf69NGls9Hrtx/HdjnXoZnaZJEe1FN47/bqxTL0Pkk5uDyCe7s069DJEmN4ftHo/bKsRuxcfqtQHRi2jXIG6UT6d8QUQ8hkiTOwNbRZMiOg+RJncGRD65cyDS5M6ASJO9j20VYrfiY3WqjFYmmG6djLq1Xp3GTmh3p9og0uT2olvrJaIxRJqshEiTvYud0G6RJish0mTvYre2ux5k212BatiIjfVW22XvBM1Ko3oVCgWwLItgMIhMJoN0Oo18Pg+uUKggJofDAa1OB6VS2bXtJej2+pWjUCgglUphYWEBoKPCSSSQy+XYs2cPJJLO6qNEmtwadGu9RDTGVn87kSa3Bp32uczn84jFYkglk0gmk2BZFmyhAK5QKElrNJlgs9mgVCo7Pt8D3fs9WkGzbSgUCigUCpibm0Mumy15n5FIMDY2Bo1G0zAfkSa3Bt1ar05jt7a7HrpSiN3Ih9oJH3e7HaTLkc1mEYvF8P1XXsHS4iIWFxYQDAaRzWaRz+dL0v7yr/wKTjzxBEZGR7eptjsX2UwGC/Pz+PVf+7US5YFMLkd/fz/+8I/+CCqVquSddo8lkSZFiNgcRJpsD3YSTbIsi2g0ivfefRf37t7F3ZkZxKJRJBIJ5HK5krQvvPgiPvf5z2NsfHxLhNjdADKW2Hwe8Xgc//Y3fxMet1t4LpFKoVAo8Lv/8T9i3/R0w/xEmhQhYmvRlULsbsRWREhrdpLhOA7ZTAa3b97Eq6++irm5OSTicSSTSeRyORTKNMSigUN95HI5/M23vw3X+jq8Xq9wn2EYfOTllzE0PIyRkZEN5S32fefQTTQpQoSInUWT2WwWfp8PX/3TP8Xq6iqCwSDisRhyuRxYliUVAnbRHFGt/5v9Jm+8/jrm5uawvLhYwhdPnjyJ6f37MbV3b2Phv3x8ieabDbGTaFJEJTZDk1sBUYjtEnR6QLSafzQaxcrKCm5cv45oNFohuJbkXfa7XQO8mwhlM2BZFo8ePsSjhw+xtLQk3GcYBkeOHoXJZGp7mTuh37Yb3UaTm8FOoaVehtj/m8dOoslkIgGf14sb168jFoshS5mxUhUCUF9ZuZNou1o7mm3b6uoq7t65gzu3b5fcN1ss6B8YaPkMVlF8bQ47iSbFtWslNkOTW4Get0lptxZopzlOb6Q9hUIBN2/exIPZWYTD4VIBdhPnptWqS63720Eojfqrmf7caWOoVYg0WR+daE+jPNtFkyJ6EyJN1sd20OTc3Bxu3LyJUChUXYClUI8TinyyM+h0r4o0WR+9zCdFmtw69PxObLsHS7X8elmrspF6cxyHcDiMZDzO/8bjCf3AwYMYHhnB0WPHIJFIhPyn9u6FxWLZUF26qW/bESq9kXa31dbKFQoMDQ/jn//Lf1kyyUgkEqhUKsjlcj7vLhmnIk3WRyfqvdE8e4EmexndMk5FmqyP7aDJeDyOaCRSsXAcGh7G8PAwzj35JBQKhZBP/8AABgYGIJVK217XVtFpPtlJVBunUpkMWq0Wv/yrv4p0Oi3cZxgGEqkUDqez7fUQabI+RD7ZGnqZJjeDnhdiW8VGiLqZ9PXy7YWJhOM4RKNRZDIZJBMJeD0exGIxAADDceAYBgwAnV4Pe38/9kxNQSqVQiKRQCKRwGAwAOBNemhIpVLIZDL09fVVtauPRiLIZLPIZDLCfQaAXq+HQqmEWq0W0nIcB7/PhwwdPRAAGAYWiwUqlQrZbBbpdBrZbJYPjFFcIEhlMigUCigUCmg0mqYCY7Asi1wuJ0Rlzhf9gcmig7RdXsxXoVBALpeDYRgUCgWEQiHkslkkilEnc7lchQAbCYfh9XqhL/YfgVarhVKphEajAcMwUKvVmJqaKjFxYhgGUqlU6Fe6f0kd8/k834ZUCnmWRT6fF3bWGdIGqRRymQwqlQoyuVxoQzVwhQLyLAuvx4MCHSm5mBcx28rlckgmEny/sSw4joOkuCBQq9VQKBQl31akyfZgp7arG9FMX29Uibjd31CkyfaBblc8Hud5bDIJt9uNQCDAp8Fj5aZarYbFYsHknj1CJGKpVAqdVgudXo9cLodUKoVoNFpSjkwqhVKlqqpMJhGQCS8jkEgk0Ov1gjKU4zjEolFEi7yfgGEYaLVamEwmZLNZgc/mcjn+tAI85vVqtZrnJbLGy0sSfyObywk8u0BFZiZCpFwuh1wmg7JYT8K/I+EwMpkMMtksotEostQ6giARj8Pv92N1dbWE7yuL6wutVsvzUpkM4+PjyBN/5OI3YRimInBieRsACAEvCa9lWbaU10qlJX0kk8kEBXS1PDmOQyaTgd/vr/gWcrkcdrsd+VwOuXweiSKvJesTMmY0Gg0UCgWUSmXd+u9mmtxudFNdehG7Tojt1GCp5/jcrjI7Odiz2Sy+/c1v4s7t27h9507pMTpFARYALr//Pq5cvoy/+LM/A8MwkMlkMBqN+Omf+RkoFQr87u/+bonJsclsxsjICP7tv/t3UCgUFWV+83/9L9y5cwczd+8K9xmGwee+8AUcOnQIp8+cAcALlJl0Gr/z27+NezMzJWkVSiV+45/8E5w6eRIzMzO4euUKHj58iIWFBeSLER77+/uxd98+7D94EC88/zyUdZgSQSKRwPzcHK5cvoz19XUsLy8jFo0im82C4zgYjEYYDAaMj4/j4KFDGJ+YwNTUFBiGQSqVwh/94R9ibm4OqysrJcIvAcdx+Kuvfx0Mw1R814+8/DIOHT6MF158EdlMBnNzc/gnv/EbFdGJ7XY7fv8rX6nKZDmOg8fjwdyjR7j8/vvweDxwu1yIxWIoFAqC8sFoNGJkdBSnTp3C0MgIJicna/ZJNpeD1+PBP/jVX0WG0lhLZTLodDr8wVe+gjzLYmlxET969VWsr6/D5XIhn89DpVTCarXi3JNPYs/evTh79mzVtrcLvU6TG0E31WWnY6vG7XZApMn2ga7L+bfewu2bN/Hmm28KPIHjuBLl5sPZWTx6+BA/+P73AYaBhGFgMpvxsY99DD/1t/4W1lZXcf78eXztL/6ipBy73Y7jTzyBX/vH/7iiDqFgEN/4678WeBmBVqfDF774RRw/fhx7pqaQSibxrW9+E1//2tdK3lcolfjgBz+IX/kH/4CP7/DoEd57910sLS0hlUohn8uhr68PAwMDOPvkkzh95gz6+/tL8qj2XViWxezsLB4+fIiHs7NYWFhAPB5HIh4HB0CtUkFvNGJ8bAwjo6M4dvw4JiYmoFarwXEcvvnNb+L2rVu4NzMjHJNTjgvnz+PihQtgJJKSfj5y9CjOnD2Llz/6UcikUiQSCfzzf/pP4fF4hDQSiQQKpRK/8x/+A/bt21eRN922hfl5LC8v4/L778PtciEYCiEWjQrKZqPRyPeRw4Gnn3kGzsFBDA4O1swzk07jxo0b+D//zb8puS9XKDA+Po7f+8//GWtra1heXsaPXn0VLpcLoVAI+VwOBoMBFosFzz7/PPbv34/9Bw7ULGe30+R2Yzvr0m3fZSPYNULsdpzF1Q1HKhA0UxdyLixbdnxOeT7lwhg5O7bAcYLQWEwMNp9/HGmxTpm0dpjsZBaqCH3V0kqkUjy4fx/JZBIX3noLXq8XkUgEiXhcYGoejweZTAYulwtymQwTExOYqCKssSyLfC6Hd955ByvLy5idnYXP60UimUQ8FkM2l0Oh2B62UECiyHDX1tbgdDrxpV/4BWi1WiGvZtpfDWyZ0Mtx/HmCJX3PMCVaY4JcLodkMok3X38dKysrWF5ehtfrFc4hzOVywnhgWRbJZBKxWAxerxd2ux1Hjh7F0aNH0We3l5iMFysCFOtCfwcOvFLi8uXLCAQCuHP7NlZXVvhd6EQChUIBuaKm/dI772BlZQVsPo+Dhw7BbDbX7J92ohdpUsTuxXaMD5FPdrb9XKEAtlAoPaKOq4xATHgdABQY/ggYwis4jkOhUOB5LfVentr5qygXRX5Uxj9Zcu47qQd4nlR+hJ5UKoXL5cLbFy/iwvnz8Ljd8Hg8iMXjAv/3+/1IJpNIJJNIp1LYMzWFY8ePVwhEHMchm83iwf37mJ2dxe1btxAKhRAJhxEtRmcm64hcccc3nUphdWUFsw8e4G//3b+LoaEhKJVKFKq0qaLtZM1S1jdsWX9xVfgasVQifVM+PtLpNMKhEM6/9RYWFhbg9Xrh9XqRTCaRKe5Uk7bn83kkk0n4/H74/X4MDQ9jamoKZ8+dg1arrWodxlX5FoxEgmgshnfeeQe3b93C4sICVldW+DIzGUGYT6VSePONN+D1eBAKhfDEyZN1d2SF/HcZTe5mbLRfu+mbdJ0Q26nOqZfnZsqs924727HZftlsXTbiy0kYbMeHelEL6vP58P5771V1To/H44jH43C73bDb7ZDL5RgdGxOENMEkKJNBMBjE1StXeI3z3FzN+udTKaSLZl2rq6tYX1vD3/rbf7sqo2jUfxvq3/I8im1IFM3B33n7bayurpYc61MOlmWRTqcRiUSwtrYGvV6PVDIJm80GtUYDg8HQ3NgrLrpu376N9bU13L51qyJJoVBALpdDLBZDKBSCTqfD0NAQjAYDryUvM4cWaVJEr6HVMbHRsSryydbLaQbbQpMbLbPsPQad47UcAL/fj2vXruH9995DvBgvg36eLCpJ/X4/tBoNcrkcDh85UuLyQoTzYCCAezMzePfdd3FvZkYQ2Mv5IMuyyGaziMfjcAGYnZ3Fxz/xCdjt9go+W5eHVlEUbAR0OwAgEolgZWUFF86fx/r6eoWJN41UKoVUKoVgMIjVlRX+WKVAAHuK1ls6na6pOnAch1QyiRvXruH69etYWV6uaF86nRb4ei6bRaFQwKFDh0pMsUWa7A50k0DYLLqpvl0nxG5H5/QCgXXToGkFnTQXBceBA5DJZHDl8uXirfrR1fL5PF5/7TXI5XIcOHAAFqtVCJTBcRxmZ2fx53/2Z5idnUUykajOFDfAEOnU1Zhtu3qIZVm8e+kSvvfd72Lu0SNBE8wX3LjesVgMb7/9NtKZDA4cOoSf/umfbtp/OJlI4Mevvlqxg/64+MeTdSAQwA++/30cPnIERqMRprLdWJEmRfQiOuFH2s73NgORJrsQ1JzedNs3wL+ymQwW5uextLhY1bKoPLerV68iEAjgxZdegtFkEtxdSOyN3/9v/w2Li4vwejwlPLsRn6wHIW219rXS3ib7h2VZfOfb38bVq1exMD9f9xjCanC7XPB5vZBKpThx8iQ+/OEPN/VePpdDwO/H97773cdl1qnv/Pw83G43XnzpJTiLPtD8KyJNdgPE/tkcuk6IFbE9kMlkOHX6NMbGx3Hm3Dlcv3YNbpcLa2trAB4ziMNHjmDA4cD4+DgA3txGqVTCOThYEYBAQKeIlMqXBJ44eeoUrFYr1Go1AoEAHjx4gKXFxRJhLp/PCxpUg9EoCLGLi4uYe/QIK8vLyKTTJcxVqVTC4XBgcs8eWCwW6IsBNnK5HCKRCNwuFzgAkqLQrlAo8NIHP4iTp04hFArhwltvwe/3IxQKCX3JMAzOnj0Le38/+gcGSpo2PjGBPputpe5gWZb3K5qfh7voh0r3T19/P/bs2YORkRHI5XKwhQIezc7C6/VicXFRSFsoFLC0tASpVAqfzwej0Vg3sAUNhmEwMjSEqb17MeBw8H0dDuPdd99FNBJ5rHEvBn/yuN1wezwVQqwIESJE7DTsP3AAtr4+TO3di9kHD7C2toaHs7MlaUZHRzE8MoLp6WlIpFIwAJQqVfVYBeW7sc3w2k3wY4lEgtNnzsBms8FqsyEUDMLtduPa1asl7i4syyKVSmF5eRmTcrnAP7weD5aWlrC8tFQRmZlhGAwNDcHhcGBoeFiwAsrlcohGowiFQlhfX4dSqRTaefrMGYxPTOCpp5/GtatXsbq6CrfLVVLn6f37MTY2huHhYTCUQtZut8PhcPABrWgBtIn+SaVSmJ+bw/LyMnxeb4kAK5FIMDY+jsHBQYyOjQHgzaLv37sHd9EMG3hsvvzgwQMYjUb4jh+H2WJpKiAW6a+DBw9icGgIAw4H4vE4wqEQ3r54Edni7ivA8/NsNou1tTWo1WpBiBWxM9CLO7nthCjEigDA+7wcOnwYAK/pI74VRIglWtGpqSkcPnIETz39dMn7q6ur1YXYJndiSf4bNatVqVSw2Wz4wNNPY2xsDEajEUuLi8jn8/C43aU7kuDNi10uF6b37+fL5zgsLS5icWmpoh0SiQQ6nQ5Te/fiAx/4AIZHR2Hv6xNMdlwuF+7NzCAciUBaZEByuRxnz50DwJv2LC0uIpvNIhQKlbT3yLFjOHDgAA4cPLiBVpeCZVnMPXqE1dVVhMPhkmdECD995gxOPPEE1Go18rkczp8/j/v37vE+qpSG3evxQCqRwOvxQKlUNi3EarVajI2P4+lnnsH+Awd4P+T1dTx6+BCZdBrJZLIkfSAQgN/nA6anN91+ESJEiOhmTExOYmJyEmfOnsWrP/whZNeu4dHDhygUgztxABxOJ46fOIGXP/rRiui19Xb7GIbpnMIYPE/T6XQ4dfo0JiYmMDY+jpXlZczcvYv79+4hHo+X8JBsNgvX+jqc1PE0Xq8Xc3Nz8Pl8FUpWhUKBiclJHDh4EMeOHUN/fz84jhN47FrRTUVdjNjPMAwOHzki5EH4cbkQOz4xgSeffBKnTp+ueTxRrsE5veVIpVJ4+OAB3C5XiQkxwzBQKpWYnJzEsRMncOrUKaDYBqVSCebmTfj9/pJ+WltdxYrDIZxS0IwQS9YkBw4dwrFjx7D/wAE+AvPKCm7dvCmcNEFQKBTg8Xhg6+vDSEstFdHt2M0CLCAKsV2BXtCkbLR2kiaFWKbsb6s4feYMjh47hrNnz0ImlYKRSHDg4EH4/X5k0mlcvHixhGkmk0leg0rtDF67dg2z9+9X5D06NoaDBw/iF37xFyGXyXg/2mLUQoPRCFtfHw4cPAiO40rO9Wumve1EPp/H1StXsLqyUnKfaM+feOIJvPShD5UwyY9/4hPYs2cPVlZWsLa6ilQqJTxLplJ47733oFarYTKZGpYvk8nw8sc+hiNHjuD4iROCGbLVasWp06ehvXsXN27cKHknHA4Lgn03oRdoUoSI3YSdTJOb5X9A0XWnHZWpgbGxMTzz3HP4wFNPwWg0QiKRYGrvXsjkcj4C/uXLJXN5Pp+H1+stOXf10aNHuHL5coUwbuvrw+joKL78S78EY9E6ivAPjVYLk9mM6f378dzzz5f4dW4X4vE43nvvvQrepVKr8fTTT+OFF1/EkaNHBaHZCOALP/mTsFgsiMZiFWbZfr8f77/3HhxOZ1MKY6PRiE995jM4feYMxsbGIC0eXWc2m3H6zBnM3L2LhYUFIT3HcQj4/YiXHZ20Wexkmtwq9EIfdnMdRSG2C9Ctg2PDKPMp2YrWDTgcGBsbg1wmE0yGyHlsOr2+oo8LhQJy+XzJuavBQACRKoEZRkdHMT4xAZVKVZIPuZZIJE2bAHUSHMfB5/cjkUiU3GcYBsPDw7D391ccc6RQKKDX6zEyMoKA318ixLL5PHxeL9JVzt6rBolEgomJCfQPDFT0h06ng1qjqXinPBpkt2DH0aQIET0OkSZrgPDbVuNPNIgfUQ6D0YipqSmo1WpBOJNKpVAqFNAbDIIV0uPseVNgOkZCLBaD3++viF1hs9mwb98+aLXaCh7FMIwgtNY6V3Wrkcvl4PX5kC3bwZXLZBgbG4PZbK6oq1KphNliwfDwMFbLLJ/S6XTF7nQ9KJRKTO3dC7PZLPBacgatXq+HokpwyVwuV/ekhI1ApMnNoxf6sJvruK3qrEZBeHqljK1Et7Wnan3oAd/AxKld7bHb7RgaHq4oSyGXQ1NFeCLHCNDlh8NhxKpoKkdGRzE6OtqWenYShUIBoVCowmQXDAOH0wmr1Vr1PZVKhaHh4QoNcD6fRzAYrHqAfDUwEglGRkdhq+LLq1Krq0ZtZotHLPUyeoImRfQsRD7ZOrqtPR2tDx3YqcFis6QWLS5M9Xo9xicmKoRMiVQKrVYLadnuKAf+2B/a3zSRSCAcDlcVYvfu29cVyuBmkM/nEQgESoVYjoNMJsPwyEjNSMMGgwGDg4MVZs3kVIRmeaGieFZseTkMw0Cj0VQV9vMsC7bF4FPtxK6iyS7BbmjjtgqxWyHdd7MGYSNodATCVqOZo1fqId/gHNVmIC0y0WqMQ1LUTlatZ9k5rJlMpqpvjNFohMFo3FQdK4pu9LxWhF/+Yc330qkUcuXnyoHfCVWp1VXfkclkvAlXFU16KpWqehZtORiGgUwqhV6vr2oOJZNKq/sjFc+d7WV0M03uBia2VdiuvhT5ZOvYlTRZZy4lu6LcBoUYqVQKlUoFg8FQYsrLcRwkDNMUjwWK575S1j4Eao0GFqu1ZTPhjfLJzaJQKCCdSpWuXYo7xnq9vkLQJ1AWXZDK25kvntfeTIRjiUQCuVwOo9FYdddaVnR5qsA289pdSZPbgPJgaTsd2+tY0MPgygSgbsB2DthaZ9SRg9mrgQhJrQZVKCmXYSAp+s9s1k+G9sOhkc1mK8yGNotGX6rm+W38w5rvSWswsFwuB7aGqVKhePh8tQWOTCaDpBkfX+o7VK37FoxNkSa7r/ydhGp92Y1jrpvQjf2z3TTRjvKr5VAoFGoeb1YoFJBMJptSSFYD4a/lvEVoS5NtkkgkFcpSgFdmp8tOBGgGG+WTmwXDMJBWEdyJsqDWjifLsshlsxXtrKsIKC9bIoG0znqnkW+0SJPdV347sZPa0gxEIRYbI+RqvpG7GpQpE4fHO41s0WwXqJw8OY5DLB4viaK3ERDBqeqZtE1GbCTREauZ4STicSTKDnevh23bsQGv6ZVRO54cHisLavUzOeO1fEecHJ9UK6JjSdkSiXCofU16aIFORJoU0QvY7JjrlkVkMxBpsjtQITgV/+ZZFgWWFXir8JzjwLIsYrEY8mVR+psFCWZYk8fSf+tAJpdX3aXMpNOIRiItn7VaUo0Nv9k6JMUoxBKptMSqiuM4JBKJmv2cy+WQSCQqhViptOTooLplSySQ1OPJDdY8Ik12F7qJB3RTXZqFKMSi/YTcjZquDaPJ+stkMl4ALGoBSY+mkknEolEhCjBBJpNBJBIRzintBjicTtj6+oTfpOXXr1/H9WvXms6n2niq5a9UbcFR7bq8TtUgkUoxODgIIxVJmCnmc29mBsvLy1Xfi8diuHnjBuJlgrpcLsfw8HBVn+JNo8G4EmlSRLegk2OnlxaRIk12B+QKxWPf0eLRPAA/j8fj8Yq+TKVSCAYCeHD/PqKx2LaalVosFgwODlaMpaXFRVy8cKFpi6eqY4cSsMsFy1o71FXzbiKNQqnEyMgI1Gp1ifCcyWRwq3iMTjV4PR7cuX274sg/rUaDkZERKGoErqpVJ5Emex/dxAO6qS7Noje86Lsc5eGnd5Smi2Eant3KcZxwligDasItHuadTCbx8OFDDDgcMBqNyGQyWFtbw8L8POLxeFdEp2UYBk6nE+FQCCsrKyWCuM/rxfz8PK5fuwaHwwGdXg+1Wg2WZcGyLBKJBAJ+P9LpNPZNT0Mul5cEqCCmR9XMf4LBIMLhMPL5vLCTSb9XUc86bZBIJBgaGkI0EoGPUgxwHIelpSUYTSZMTEygr68PUpkMhUKBP8P10SN4vd7KSItyOYZHRqDVapvqw5bQYbrY0TTZBLo5JH6vod7YEfu5eYg0ufmxwjAM1Gr14+izVH65XA6RSASzDx7AOTgIpVKJbDaL2QcPMPvgAdLpNK9M3sa+tlqtGBoawtzcHDiWFdYW0WgUy8vLuHnjBq9Mttl45SnHCf6i8VgMXq8Xe6amoNPpBKsp0qdSKu4C3cJ4LIaA349cLlcS6bgWmukdpUKB4eFh+H2+kmNrcrkc5ubmMDwyAoPRCHtRKZ5nWayurGBxcRE+n69ix1mr1WJoeLhm9OVOfTGRJrdm/hb5ROewK3Ziq+5old3bjNaJYZhNvd/qu62k34q8SUQ8rVYrMAiOfyCYMb399ttYXFhAIpGAz+vFtStX8Mp3v9t0MIOtwNTUFIaHhysYhtfrxb2ZGfzNt7+NezMz8Ho8SKdSiMdiCAaDmJ+bw1tvvIFXvvtd3mSrilCupLXnFFZXVrC+vs77BudywpEzhUKh5W8nlUqxd+9e9FG7yQD/nR7cv4+bN27g2rVrCAQCiMViCIfDeP+99/D+e+/B7XZXRCFWqVSYnp5ue1CrYqWq3BJpsl15CzsSoja9YyALk432cTPjfSu/n8gnO5t3u2hSp9NBrVZXBgcqnst64cIFeL1exGIxeD0eXHjrLbz5xhsV0fg3A5JPq/k5nU7s3bdPiGRMeG00GsXiwgJe+d738N6lS3C7XEgmEkgkEohEIlhaXMTVq1fxzW98A6719ZKzZwnkMllVU2W/z4elxUUkk0lks9kKHruRb69Wq7F//37o9fqSZ9lsFndu38aN69dx88YNxGIxRKNRBAIBXDh/Hrdu3YLH4yld8zAMjCYTpqenoWzijNhq9anzsO67Ik1uDZ8k/bwV7e9EW7p5HbGjdmJraTuaubdRfyby3ma0LK2+20r6duRdKwc6rVwuh95gwPT0NFZWVhClzltNpVJ49Qc/wPm33oJCoQDLskilUkglk11zvArDMDh27BjAMLh37x6Wl5ZKfEgTiQSuX7uGB/fv8+ZcUqlgppTP5ZBOp6E3GMAWfZJoSCQSOAcH4Xa7S+5zHIebN27g/r17eOW73xXOtwWAL//iL2Lf9DSMLQiQMpkMp8+eRTQaxUpROCb9y7Is5h49gtvlwre++U1IipNqMpl83E7qe07v34/p6WmMjo1t6my+mpOfSJNbknd5BEZRG9w+0ONsI33bzHjvxPcS+eT25r3ZbyqXy2G1WrFv3z7Mzc2VWND4fT784JVXcP6ttyCVSMAWCojHYsIc38iqqhk09T1rzPsTk5PQGwy4eOEC1tfWEAqFhGcsy+L2rVuYnZ3F9195RQgAxRV5bK7IZ5NVohsDgK2vDwMOR8X9+fl5rK6t4crly7zgX6zzCy++iI+8/DIsFkvTbQf4NusNBjz51FOYffAAyWQSLperpB2X338ft2/dwjf+6q8A8METE/F4xZnrDMPg+IkTOHb8OEZHRyHbAK+tO55qPBNpcuv5ZCfb067v2Y66bDV2lBC71R3dzvI2QjjdtChlGAYatRr7DxxArOibQ7SNHMchFouVnMEqVyigVChgMBiQSqWQSCQ6X0mOq2tKpdZo4HA48MTJk8jlcgj4/YjGYmDAR3dMpVJI1WCgAGqG1SemyosLC5BKpSWCO8kzHA6XvJOoEmipERiGgU6nw+jYGI4fP45UKsUHzipqrYUoy9TCoRwyuRwWsxn79+/H9P799YNNNOhPUqet1OKJNFkbzdarm9vQreil/hL5ZO+BtIH8M5vN2H/gANbX1/mjc4pzbD6fRzQaLVEiq1QqqNRqmEwmRKPRTQdSbKova6RRKpUwmUw4ceIEf274/HzJubHpdBrpdBqROllzNayUbDYbBgYGIJPLwVK7zoTvxcvOgA8Vz2XdCH+SFo+T2zc9jVw+j0QigWQqJQR0SiaTj89rr8En1Wo1jEYjDh85gvHx8ccm4u1GlfaJNFkb3cQnmy2jk3Xu5m8FdKkQuxM6utX6bKTuW9neZjS4eoMBL7z0ElZXV+HxeOoyS71OB6vNhv7+ft4vc26uaQ2xUJcmhKgS1ElLFgcjIyP44he/iHQqhfv37yN2796m85dKJPwO9fIyVGo1ksnkhs/rq188H6b/0KFDGBoagtvjwfLSUsUOcD1oNRocOnwYz7/wAvZMTQn3q47nBn1flwZa/XZtwE6jyU5hJ7RhN0Dkk517Z7vQbAAf5+Agnn/xRVy5cgWpVKpuQCSzxQKTyYS+vj7cm5mBz+crFrb1JoIMw0Cr1eKzn/sczBYLGIbBzRs3mo6LUW+3aXR0FCzLQq1WI5VMdjTWBuG1Tz/zDMYnJrC+vo7VlRVEIlXE7xrjz2qzYf/+/fjwhz8Mc4u7wS1WtqXkIk02h61oQ7vL2InfqiuF2E519GYZeCvvd/uHbxWNWsNxHBTFYAef/+IXcfrMGbz5xhtwu92IRiLI5/PQarXQGww4cvQo9u/fj7Hxcbzx2msIBgItmTgxRADqQB9LpVKoNRp8/otfRMDvx8OHD3k/WK8XrvV1JJJJ5Iuab51OB51Oh8GhIUxOTmJ0bAwWi6XS/LZofnTuAx9Af38/3nj9dbjdbng8HqRSqQ35v9aDUqWCzWbDL/3yL2N1bQ3zjx7hzp07CAYC8Pv9QpkMw0Cr00Gv02HA4cDBQ4cwODiI6elpGE2miuBUraLaO4ICok3fbjfTZCN0m8Cym7AVvEbkk72HRn3TbG/odDqMjo7i57/8Zcw9eoQrly9jZWUF6XQabD4Po9EIi9WK6f37cerUKSiVSlw4fx5yubztc3CrYBgGKrUaTz/zDI4cPYq7t29jaXkZy0tLWF1Z4a2T0mlwhQKUSqXAYwcGBjA9PY3JycmqEfM1Wi3Gx8fx67/+67h69SoWFhYEtyB6t3qjqPbtNFotxsbH8Y9/4zfwcHYWq6uruHP7NgKBAKKRiLAbK5FIoNfrYTabYevrw4kTJzA4NISR0VGYzOamjrHbKpWDSJO9lf9uR1cKsZ3CZgdSL/mXbaZ+jESCwcFB5HK5UkEGwMjoKMxmc+U7xZ1MlUqFoaEhqNVqhMNh+Hw+xGIxsPk81BoN9Dod9h84gLHxcTidTkxMTEAilUKr05XkNTw8DFPxqBjSFplMhgMHDpREy2UYBnK5vKZfi8FgwNDQEJ44ebJEM+twODAyOloRbIlhGEilUtjtdmi1WsjlcsjlcgT8fjidTqRSKSFAhlarhUajwYDDgdHRUTgcDsjl8qoHwstkMlgtFsj27UMgGITD54Pf5+MjRlYRYq1WqyAMS4qmS6dOny5JJ5XJYDKZKsqTSCRg5HI+QqVKBZVKBZlMhlA4jFAwiFQqJfSpRqOBVqeDva8Pe/ftQ5/djv6BgZpjRyKRQKVW4+TJkyXaf6lUCrVaXdV/lmEY9PX1YWJiAqdPny55NrV3b1U/pmaxW2hyI+jmvtiJaKdf0nZ+O5FPdg50WTabDROTk4hGoyXz+tTevbDb7XXrJZVKoVKpMDExAaVCATafR//AADJFIVZvMMBkNmPPnj2Y3LMHUqkUa2tryOfzGBwaEvJRq9UYcDqh1WiAIu8bGhrCqbJ5Wq5QYGxsrGpdlEolnE4njh49iuHhYeG+VqvF6OhoRXR7wmNNJhP0ej3YfB4GoxEWiwX9/f1IpdPIpNOCYlyr1WJgYAB9djsm9+yBVqerKvQRBfTU3r3IZLMwmUyw2+3IZjLIVQlqNTo2BoVCwa9dJBLI5XIcPXasxE9XIpFAJpdDq9VW/R7kO5CAkEaTCXKZDKFQCLFYTHA/kkgk0Gq1MJpMsFgsOHDwIKw2G2w2W/UPDJ7vm8zmim8hk8kw4HBUrY9EIhGEfdq9SSKRYHxiAharVaTJMmyXANvt36EVbGfgJ4bbgtLfeecd/NZv/RYuXboEh8OBX/u1X8OLL74IR3Hxut0fs13l0/nQkSvL73Ua5ZHXOpF/qzb4jd5pNt1WolpdOlE/uu1A5/xVNvLdtgsiTbaef6doMpfLIZFI4Nlnn8WjR4/AMAzOnz+PkydPQrWBaJrdisuXL+PrX/86/uRP/gRmsxkf//jH8Uu/9EtVz7XcDESaFGmyVlqRTzYuR+ST7S9fpMnaaUWabFwOx3FwuVx47bXX8Hu/93vwer04d+4c/vW//tc4c+ZMW8ssR1ccsbPdH75d5dP5VNPIb1U7ya4ojXbqKlppR7M7E+3awdgoqvVPtbq0m3HSeVb7bpvFRsefSJPtRS/T5G6HSJPtLV+kydppRT5Zu0yRT3aufJEma6cVabJ2mdvddqBLhFgRIkSIECFChAgRIkSIECGiGYhC7C7BdmsMux3b0T/iN9ndEL+/CBHdBZEm60PkkyK2GuL3r4/dTpOiENsEqm3Xt9uVuNn8ttOBWsTGsRXjZTeNDZEmRXQbRJoUaVLE5iDyyfZCpEkRm0W3f7ddJcRu9GPQzu3l99qFZvPrJg0IjU4P9G4npEbo5HjZbDCE7exbkSY7h16nmV6DSJMiTTaCyCfrQ+ST7S1bpMnGEGmyPrr1uxF0pRC7kY/ezDub/RitvN/rA7dVdHqgdzshbSe2YlyLNNl7EGlm+yDSZHMQabK38u9liDTZHESa7K38dzu6UojdyEfvtoHSan06Nfl1O7aiDdtlPtPJOmw1RJrs3Dvdhp3Qht0AkSY79063QeSTvQGRJjv3TrdBpMnuQFcKse1Crc7vxo+yEya/jWAr2rBd5jOdrEOvQqTJ7sdOaIOI5iHSZPdD5JO7CyJNdj9EmuwOdIUQ2ynCrNX5nfoozbSjFUd7+n43Tl7dhF7on3YHWejk+BBpUqRJEa1DpMnGEGly+9AL/SPySZEmdxN6oX+6OUBaVwix3S7pN0IrAQNaOYR4Ow6b3gi2ajDXK6eb+4dgswdQl7e/k+OjF/qzHkSa7A4Gs9Mh0mTzEGlS5JPNQOSTWweRJkWabAabpclOoiuE2F5H+cfcbVqorRrM3UI0nUS9sbMb2t8uiDQpjpV2QaTJ9kCkSZFPtgsiTbYHIk2KNNnrEIVYtJ9Ye0ULtZPQTRPuZurSybHTTX3UCCJNiugWiDTJQ6TJ3kc3jTeRT24eIk32PrppvHVTXZqFKMSiN4m1FwdbJ7HV37AXzUO6tV7V0Et1JRBpUkSr6KVx3kt1JRBpshQin2yMbq1XNfRSXQlEmiyFSJObgyjE9ih6cbDtJIj9L6Ic4pgQIaK7INLk9kLsfxHlEMfE9mKn9f+2CrG9eM7SdqPb2tNt9ekEdkMbCUSabB3d1p5uq4+IzUGkydbRbe3ptvp0AruhjQQiTbaObmtPt9WnE9gNbdxWIbYXz1nabnRbe7qtPp3AbmgjgUiTraPb2tNt9RGxOYg02Tq6rT3dVp9OYDe0kUCkydbRbe3ptvp0AruhjT1hTtzNZxSJ6A6I42FrIdKkCBHdBZEmRTSCOB62FiJNimgEcTxsDj0hxNY7o6iZw5ZbwVafG7WVA7hdZTXKZ6vKobEZjVMr5WxH27qxLJEm21tmp/MRGWV3QaTJ1soRabI9+Yh8cmvLEmmyvWV2Oh+RJrcun3ahJ4TYemjmsOV25NdukHK2cru/XWU1ymerymkXGIZpmjB7rW1bXVa98kSarF1mp/PZDWZFvQSRJlsrR6TJzufTTDkin+x8eSJN1i6z0/n02rjd6TTZDHpeiBUhoh3oNsIUIUKECBEiugkinxQhoruw22my64TY7diq3kyZW23CIaI6dmP/tNrmbjdTaleZIk2K2C6INNn+d7uxnF7FbuwfkSbb/243ltOrEPtnc+g6IXY7tAqbKXOrTThEVMdu7J9W29ztZkrtKlOkSRHbBZEm2/9uN5bTq9iN/SPSZPvf7cZyehVi/2wOsu2ugIj64DgOLMsJ2hqG4Qe9VNo5/cN2lCmiN8AV+HHBFh5rD6VSiTBGRIgQIWIrwHEcOI7/WygQXsVAImE6Nh9tR5kbAalfQZynRWwhCH0UCvT6sfvoQ8TOwa4TYjmO6xhzq5XvZsrMZln8+j/8NhYXggj4k9iz14Znnp3EL/zSuc1Ut4ky/6ZYZgJ7pmx4+tlJfPmXS8vsVF9uBN1Ul05gO8ZtNczMeHD3jhv/9T9dQDabh1arwG/++5cxMWnF4KBxS+rQjnx36njZqe3qRnQLTXYCvUCTLMvh1s11/OCV+/ibb94GAJw+M4JPfuYQnvzAOLRaRVvqXFHmrXW8+v0H+NY3bgEATp4exqc+e7hmmVv9PTmOw/17Xly/tob/8h/fAgA4B434xV95EkePOTHgMGxZXbYaIk22N99Wy8znCzj/5jzeeO0hfvTDBwCAp5+bxE//7RM4cKAfKpW8LXXeLLrhexJ0U116EbtOiN3IYGlmkNV7vqkQ2gUOa2tRLC6E4PXEoFTJEAwmN5xfU2VyHNbXIlhcCFJlJirSdRPhdVNdOoFm2reRybDV9JlMHpFIGnNzfmQzLHR6JRLxDPI5tqV8NlMHYHtpspuxU9vVjegWmuwEeoEmOY5DKpWD1xvH3KMAAGBwyIR4LFOyA0mnD/gT8PkSmLnrBgDodEocOuKAxaKBWt3MAptDuqxM56CxZpkbaVc7kMnkEQ6nhDrmcixisQxy+cKW12UrIdJkKbaDJuPxDDzumDD2pvb2IZ3KoZtcP7vhexJ0U116ET0vxLZbi1Etv14eZJ3Q8mw0z1rvdZMmqlFdmqnrdrWnV/qwHfl1S1s3ApEmdw+6pQ9FmuTxcNaHty8u4nd+6zUAwPiEBf/mtz6ME08MNynENo+dTJMin9w8RJqsD5FPtoZepsnNoOedHNvd4a3k1wtRxToxINsd+KCbiGYzWstW0mwG3T7uRJqsD5Emdx66fdztDprsrm+wk2lS5JObh0iT9SHyydbQCzTZCWz7TmwvSP7V6kjfa0cbWs2j0+lbwWbybuXddmvRNoN29P9G82AYpi35tVLXboNIk53Luxe+f7dApMnH2H6a3PxOSaP0DMPAbNbgwMF+fOgj+wAABw8NYMBhgExWf0+g22lS5JOtQaTJ2mU8RudpcjMQ164bS99NY3/bhdhu6Yh6qFZH+l472lBrwm2lTu1Mv1V5t/Juu7Vom0E7+n8zeTTKbzOTjEiTj/MQaVJEPYg0+Ri7gSalUgn2H+jH/gP9+NIvnG1r3p16dzvLEPnk9mI30ORmIK5dN5a+m8Z+V5oTb8TUodtNR5pBNw0MEb2NTmjvtuKdboNIkyLaBZEm2wORJkW0CyJNtgciTYrYLmy7EFuNgDdCEL1GRDth4tootrPt3dLv3VKPahBpcvdhN7e9FyDS5O6DyCe7px7VINLk7oNIk91TD4JtF2J7jYDbhd3abmB7294t/d4t9aiGbq5bJ7Fb2w3s7rb3Anbr99mt7QZEPgl0Tz2qoZvr1kns1nYDIk0C3VMPgm33id1O5HIsvJ44VpZD8HhimH3gRzSSRjyeQTSSRi7HgmULUKnlMBpVsFo0OHTEgfFJK/ZN26FQSFv6oIUCh1g0jUvvLGL2gQ/raxG43TFwBd6fwGLTYGTEjPEJC559bg802s2H/C8UOMRiGVx6e6F6mVYNRkb5Mp95bnJDB8R3KlCCzxvHvRkPvv6XN+DzxgEAP/v3T2H/wQGMjZmxuhLB+loEb19YgGs9ikgkhXg8C5VaBq1Ggck9Nhw56sTe6T44Bw2QSBrrbJYWQ7hwfg7n35hDOJwGAPyzf/kiDhzsh1Ila6qd3/7mbfz4hw/g8yVgtWkxPGLCr/6jp6HXKyvae+3KKm7ddOH737sHAJjcY8XP/N2TGBs3AwAezfpx9coqVlbCWF+NIJPhz2M1W9XYs8eGsXErnn1+AiqVvCSwSKHAFc9q8+P2LRfmHvkRi2WQiGehVMlgMqkxMmLGCy9NwTFogM2mbdiuRmDZAu7ecWPuUQB377ixvhZBOpVDJsPCYFTCYtFgdMyCp5+dwMCAHiazuuVxE49nEAmncfHCPNbXonCtRxEMJJDNssjnC1Br5DDoVeiza3Hk2CBGRk04eGgAEglTs6xEIotrV1fx4x/O4t6MBwDwkY9O4wNPj2PPlA1+XwJraxG8fX4BXm8Mfn8S0UgaUikDjVaB3/ytj6B/QF+SJ8dxSCay8PkSuPz+CubnAggG+DMqs5k8CgUOCqUUGo0CarUMFosWQ8MmDA4ZcOSoEzq9EhpN67RIl98umhSxPeA4DnduuXHvngff+PpNAIC9X4df/JUnMTRsglotx4P7Xty55cL8XBCrq2FkMnmwea7IS0yY3GPDs8/z87pcLi3J2+uJY2UljCvvr2BhPoBoNI1YJA2FSg6dToHJSRvOfWAMY+MW9Nm1dcdTJpPH//72Hdy57cbMXZ6GXnhpCn/nZ09CpZZDImk8FpcWg/iP/+FNhEIpgOPnwp/4zGEcPzG4qT5cXgrj5vU1/NlXryIcSiEUenzOutsVw+/+zpswGFVQKiuXQ6NjZkxOWvFzP38GSqUMLFvAg/teXDy/gB+/OgsAOHR4AC99aC+OnxiCWlPKszmOw62bLszc9eBb37gFAHA4Dfj5XzqL4WETFAoZ7s14cPuWC4sLweIcn0c+X4DRpMLAgAFDw0a8+MG9MJvV0BtUm6ZtjuOQzxfw51+9ivNvzSMey8BkVsPpNOCf/ssXWz5qaHEhiG/+9S3M3HUjGs1AKmXwS7/6ARw9PgiDQdnxRW80ksaNG+v43nfuYmE+CAD4zOcP44mTw9izxwaPJwaXK4a33ngEjzuGYCCJeDwDhUIGtUaOyT1W7Ntnx9FjTjicBsgoOikHx3F4/ccPMXPXgwtvzQMAhoaN+D//3ctQqWWQyWq/S5DJ5PFv/82rcK1HEY9lMDllw6nTw/j0Z4/UfOf2LRfu3/Pgr79WNg8MmaDWFOeB227MPwq0Pg9441hdDuPy+ytYXAgiEklVzANni/OAvcE80AjBQBIL8wG88/YiPO4YvJ4YUqk8JBIGeoMS4xMWDI+Y8cyzEzCZ1VCpNrYGTqVyiEbSeOfiAtbWolhZDiEYTCKbYZHNslBr5NBqFRhw6LH/QD+GR8w4fmIQUmntdUI2y+LK+yt45+0FvP/uMgDg7JOjePlj+7Fnjw2xeAarK2G8c5Fvm8cdQyyWAQCo1DL8k3/2Avbu66usazKLcDiNd95exPJSCF5PDF5vHNkMi3yehVIlg0olh0Yth9mqwcCAHiOjZhw+4oDBqIJOp6zIczdh1wqx+XwBsVgGV6+sYmE+ANd6BPfuehEKpxCLZRAJp5DNsmDzLDQaBUxmNWw2LWLxLILBFFi2gMk9NqhVcsgV9ScujuPAsgWsr0WxthrBu+8sYeauGyvLYayvR1EocJAwDGx9WoxPWOF2x2C18otas0W9YT+LyjI9WFkOUWUCtj4dxicscLtisBYX0harpuXA6O1YNJe/n07n4XbH8M7FBawshwEAL31oCv0DeqhVMty55cLDh35cOD+P1dUwwqEU4rEMVGo5dDolXOtRpFI5pFI5qNVyaHWKhpNiIp7B3EM/LhYFFoDBl758Fizb/CHxS4shvPP2IlZXInAOGjG93458jq1Ix3GA35/A7KwPr//4IQAgGEzi4z9xEG6XDOlUDu+/t4x331nC0mIIy8shZNJ5AIDVpoXbFYPHHceAQ4fBIRP6+rSQSBhk0nnEE1ncvLGOu3fcuHZlFbMPvIhG0ogV+8di0WB83AKDUYW90T6ojzuhUskhbRBhsxaisQxWVsK4enkV92Y8uHljDSvLYaSSOaTTeZhMKlhtWkzuifALh0krDhwcgFb3mKnWG0MsW4Dfn8D6agSrK2FcuriI5eUw1tYi8Pv4CT+XY6HRKmA0qtA/oEcymYPPZ4NUKsHQsAkajbyEgRPk8wV43DFcu7qKS28vAgAmJq04cKgf6+tRzD3y4/49Ly6en4fbzTOYcDgFuVwKo1GFVCpXkV86lcPsAx8WF4O49DavtPL74vB44sikcygUOChVMmi1Cmg0clhtWoyNWTAyaoJEwmByjw2jY5YNfQuCTtCkiM6h2vcKBpNYmA8K88PomBlf/OljggL18nvLuH51DbOzPiwthoqL14LAS7zeBOz9OgwNm+B0GiCRMMhlWcQTWdy57cLsA/7c1LmHPoTDKUTCaShVMhgMKqyvRSGTS5BIZHHq9DCUKllV+gF4pdnCfBDXrqzinSINOZ0G5PMFfqKrEqW0HLyydREeTwwcB0QiKTz17MSm+hTgFV/LSyGhDx+DQyqVw+1bripv8XU+eGgA2QyLQoHniBzHIRxO4f59r5BfLsfi8FEH8jV4RDCQxPycX0g/uceGz33xKOQyKTiOw+X3lnHtyirmHvmxvBxGOp0Dm+dgMqvgHDRidMwMs1mDsQkLxsYtdQXDVtYKrvUo7txyYWE+AHNRwUiUcwpF46Uhv8bg4PclcPHCAm7eWEMinoXRqEI4lAJXaL8CrBqNZHMsPO4Y3n9vGbdv8t/y2AknJiatcHtiuD/jxcMHPlw8v4D19Qj8vgRi0TSUShk0GgVcaxGEAimwLIczCikMRpWgQKxW3vpaBDN33ML33DdtRy7HQlFFCVINLFvA1csrmH8UQDCYRCiUQl+fru475fPAyKgZX/ipY5DLpZBIivPAtTU8fODDYtk8MDZhgdcT5+eBIVNRoc/PA4lEFnduufFw1oeLFxYw99CPcDgpzAN6fXEekEmQTGShbTAP1ALH8QojryeGq1dWcfH8PNbXo3C7okglc5BIGBiMKqyt9mFsPAK9Tom9033os+ug1zevCOE4fjx6vXEsFXnv8koYi/NBBAIJZNJ5ZDIsNFp+jTg4aEQ4lILHHYNaLYPDaYDBoIJMJqkos1AowOOJ4fYtl/AddHolzj45ivV1fnPo9i0XLl6Yh2s9CtdaFJFIGoyEgU6nwC/80rmS/Fi2gFQqh4X5IFaW+TXjwlwAbncUbleMV2blWKjUcqjVcmg0cthsOjgHDVhfiwAAxsYt2Ddtb+lbtBvbHam4a4TYdnZEM3kl4hncu+vBz//s18Cy9SfbSCSNSCSNpcUQrl5Zhd6gRH+/Hv/Xf/okpvb2YcBRuQtDl8/mC4hGM/jvf/AO3nxjDrP3vajGaxKJLJYWQzj/5hxee3UWn/rsYXzuC0dRaFC/amDZAqKRDP7oK5fw5uuP8KBmmaFimfN47dVZfPIzh/CFnzzWktC21QPY543j/Jvz+Ku/vIFHD/0VjDuXyyAWzcC1HsWF8wswm1X49//Xx3H4iANTeys1YbWxPYTJcRxe+e4MZu548Nd/dbPqUWuJRBbLSyG89fojvHtpEX/n507iU585DK1WgeXlEK5fW8Nv/qsfIhhI8gtJCtksi2gkjcWFIN69tITjJwbxr37zQ9g3bYfBqCqpR7Pf9vqVVdy57cbX/+I6EolsxXOfj9+FvH/Pix+/OosDB/vxD3/9GZw9N4o+O8/A65WVTuXwjb+6hddencWltxeRq6IUAHitfDSSxsoyv8NkMKowNm7G//GbH8ahwwOw2prXJCeTOfzpH7+Pty8s4PL7KxXPpRKm6qIxFk3jwX0ffvP/+CFm7rqRiFf2BwDk41nh2eJCCFcvr0Iqk+BvvnUXX/7lc/j7LUY/pSEKn51BJxl2K/mSOf3P/vRqVf61shzGynIYFy/M4/J7S/jETxzEl758FhqNAh5PDFcur+K3/+2PsbIcrqClbJZFLJopKj8XMT5hxe/+509gco8NtgaL7Vaw3Yuf+vN75+v1ox/O4t5dD/766zcEIZmGxx2Hxx3H9Wtr+OErD/DiB6fwhZ86hudf2AN1DSsNEim2EWQyCQ4fdSAUSmJ5KYRgIAmWLeD+PQ+m9vbBOWhsqg3xeAZrq2FcensR+TwLs1mDJ58ax8iYGUaTqnEGTaLRsTnVEItl8PW/uI7vf+8+rl1ZrbJOyCIez8LrjeOdtxfx//7pFfzW73wUx44P4vBRB4Ctn0dbpYnzb87h/j0yD1Su2cg88Pb5BVx+fxkf/+RB/PwvknkgjiuXV/A7v/VjLC/VngfW1/h5YGzcgt/9z5/EnqnW54FCgcNf/tk13Lyxhtd+VK5M4pFM5uB2xfD2hQV84+s38aVfPItnnpvEs89NotkuyecL+M637+Li+Xn84JX7yOfZquveWPTxGvHK5RWoNXLs+ZoN/+AfPY0PPD0Oe3/z7cvnC/jLP7uGa1dX8fqPH1U8r7XJlU7lcOeWG//1v1zA2xcWEC/u2pYjQa0TlpfCuHaVH5f/+29m8OnPHsa//NcfbLqu7UQ5TW4XukaIbedk0bzWBlUHePEpajGyVDIHtyuK/9//eA/PPDeJn/qZE1AopILJFF1+ocBh3RXF//zv7+Gdi4tYW400LLNQ4ODxxHHhrXmEQylEo+kKJldvsisUOLjW+TLfvrhQp8zHbSRlXjw/z+/YRdJdaUp457Yb83PBorYr0rCOhQK/4/7V/+cyPvv5o3A4DdBoFBXmbd1ydlkomMTFt+Zx8cICVpfDVQVYGrlcAfNzAVw8vwCpRIITJ4fw2o8e4m++dQeRcLqhMiKTyWN+PoD/8d8v4R/942cwfaBfML1tpn35HIt3LvJmMHduu5FO56qkKqWlXI7FwkIQf/j7b0PCMDh63InBIWPN8q5fXcXNG+v4X1+/ifX1CPL56gJsNSQTWSwthPAnf/w+Tp0ewd/7hTM1aZXG3CM/3npdhh+/OguvJ1bRBoADh9KdD47jUChwmJ8L4Cv/7W0szgeQTlXrjzrgODT86CK2DZ1e1DaaVxKJLC68tYDrV1cxPxdoqIAtsBwWF4J4/91l2Gw6HH9iELdurOOrf3IFHnesIS1lsyzcrij+5x+9h7/7907hnEVT1zS/FbS/L7eDblovMx5L4/wbc7wZ90KwqgBbXkQmk8e1q6sIh/ldu9ExM+z9+vrv1QDpd7KD+Of/7zXk8wXksvxcLpdLawqx5ePz5vV13LnjFoQFo0mFFz44BVuftq2L21aPhXn4wI9shsXrrz3E+lq0Tj34eZ1lOaTTeXz9L6/D709gfMICtUYOqVSypcqWphWsiSwunl/AjWurmHsUAFug+Xzl2rVQIPPAEvr6tDj+xBBu31zHn/4/V+Budh5wx/DHf/Qe/s7fO4Unm54HOKyvRfDW64/w2o8fwuOKNWxbocAhk8njh6/cx/JiCINOAwYchhIFezXM3vfi6pVVfOOvbmJ1JVxTgK3avkweS4shfP0vr+PBAy/+4T9+GkqlvOHZz2srYZx/Yw6v/egh3O4abSuuC+ipgmULcLtj+MM/eBszd9wV1ly1Qb4tB457vAbZjrVru49q2ii6RojdDkgkgFIpg1wugUIhg0oth1TKQCJhIJVKyFgByxaQy7HIZlhEomnkcyzi8Swuv78Mk1mND7+8D312HSSSSo1LPJbB+ipPxMvLIUHbotUqoFLLoNMpIZNJIJEw4Dh+sshm8wgFU1haDCEWyyCdylVMMvUGTTyewdpaFG++8QgrS2HBLl+rVUClkkGnr13m8lII8XiWLzPX/G7sVmGx6PPy4J4PeoMS9n4dNBoFpDIJJAzAshyyWd5kJBhMosAWkM2yuH5tDUeOORHwJ6AekgNlQmy3nF0Wj2dx+5YbD2f9iEXT6OvTQq2WQyaXQiqVgGULyOcLiMd5/9ZMJo9wKIWHD3xQq+RQqWS4dWMdN66tQatTwGhSQa1+bEZbKHBIp3NIJXOIRHjlSCiYwnuXluH+qRhGxswt+Vjk2QJm7rixuhrB0mIQRpMaqqIPh1wu4SfZAod0Ko9UOodYNI18voBwKIUr76/gzm0XjCYVBoeMFZMrqeuD+1688/YCZu66wbIFMBIGBr0SKqUMyqIvMM9Q+e+fzxeQzeYRCfN+7ZFIGlcurwAM8IlPHUSfXdfQ72t9jTe5n3vkh0Ihhc2mg1bHjzOpRAKGARRKGfR6ZYlpVTqVg9sdw3uXFhEO8/0rk0lgMKqgUsmgVMqLfjc8OyqwPIPL5wvIZPIosAXBREzE7kOjeSWdzuPuLRdm7/vg8cRg69NCpZJDoZBCKmWEsRSPZZBM8q4UkXAa83MBvPfuEhQKCW7fcuHq5RVotQpYbdoSPzmygEyncwgFU0JMhfffXcKLL00hfiQDg6F9O2ztRfW+UyplMFs12LuvD6lUDslkDgF/AgAgl0vRZ9dWxBQgGB0zY8Chr/NdWqdTYsI8O8u7GFgsGqjVciiUUsiKJsaFAm/qnExkkUhkkc8XeP//YBIzd91QKKRNWbDUg71fh4mEFXq9Elxx3MzcdWN6vx2FAgeGqcy7/Pejh34szgfBcfzurtGowsFDA0L8h+1a3K6uhJGIZ/DgnhdqtQJ9fVpodUphfceyHL+my7IIBhLI53n3q1s31zE4ZITPl8DgkAFSaaVZaTcgnc4J84DbHYPNpoVKJYNCIRPmAbboMpdMFfl9OI2F+SDeu7QMuVza5DyQRyiYRKHAIR7L4P33lvDCS3sQP+poch5gEAwm+bgcD/3IswVYrBrodArIZFJBSZDPF5BJ5xGJpoq+oAU8euhHMpnDvRkPVGo59IbqY4rjeFpZWAji7QsLuHvbhWTRRFmvV0KpkvJrKBnvgsF//wJYlue5sWgGmWwe0Ugat26sI53O4yd/+jj67LqGayG/L4Hbt1yCRaDVqoG2uKbnxw4/x2i0CqioNUcmk0cgkMR7l5YQiaTB5guQySTQ6ZRQa/h1nETC15Wsocjahh+3eWHO75a163ah54XYWlqFavdL7hUXoeOTFhw8NIDJSStOnhmByaiCTq+E1abjB1CBg9+fwPJSCA9nffirv7yO9bUofL4E3C7eBv57/3sGn/ncEVirBMd55+0FwQeWaIUkEgZnzo3ixMkhfOwTB2Dr00KvVyKdymFxIYTZWR/+6A/egWs9igf3vEJe1cZetXZeuriIdy8tYuZOWZlni2V+sqzMxRAePvDhj75yCevrkQ2VuVW49M4iJBIJVCoZXv7Yfhw95sQzz03AatNCqZQhEk5hdtaPB/e9+P3/chGRcArpdB6JeBYzdzz48asP8VM/cxwa2caC5rQy3jaCgD+BV39wHyqVHOPjFvzkz5zAqdPDGBwywmLVIBhMwuuO45Xv3sPrrz3EnVsucBxwb8aD+bkA3r64gEg4BYmEwUdensbxJwZx9twohkbMAMchkcjiyuUVXH5/BX/5Z1cFQXhtNYLr19ag1Spw5txo0/XN5wp46805MAwDpVKGz37+CI4ec+KJU8NwOA3gOD5wwdWrq7h+dQ3f/OubcLtjyGZYsCyHr3/tBhYWgnjyqbEKU7FMJo/r19bwyvfu4fvfvQeOAxQKKbQ6JT7+yQM4fMSBQ4cdcDgNUGvkUKtk8PuT8LhjePjQj6/9+TUsLgThWud9TG7fcOFrf34Nn//JYxifsArfrRoe3Pdi9oEPcrkEJ08N48mnxvHBj+yDrU8Lk0ldEtRNKn383efng5h75IffzwePUSiksFg1+Mm/dQJHjjpx+IgDer0CCqUMHAdEI7wPvscTx/0ZD+bnglic97ccYG37TTN3F9rd3+X51RqX8VgGr/7wAZRKGQYcevzc3z+DI8ecmJi0wGrTIhpNI+BP4Lt/M4NLby/i0juL4Dg++I7bFcOltxcFrf/zL+3B0aNOPP/iFJxDRshkEiTiWdy6uY5bN9fxR1+5xAtQuQLWVqO4fcsFh9OAp5+ZACS9sxia3GPFxKQVX/ypY3j3nSVcensR/99//zoAPijPv/rND+HEE0MYcBgq3iVN3IhSqdY3jEYzeO1Hs5BIGJgtGvzkTx/DmbNjmNrXB4fTgGwmj0Qii/ffW8abrz/C+TfnBKVaJp3HH/7BJXzqM4dw5Jiz5TrRMBh45eHZc6O4fcuF5SXerejgYQeSyRw0GnldM06OAy6en8fVK7yrxYBDjz1TNhw7Pljzvc3QTUvuLdfWIJHwPOmZ5yZx6swwXnhpClarBjqdEuFwEkuLYczO+vDf/vMF+HwJJBNZJBM5zD8K4Iffv4/P/+RRWK2Pl8hbZZnWTDvj8ezjeWBAj5/90hkcPebAxKQVVpsWsWgafn8C3/1OcR54+/E84HLFcOkdfh7gOOD5F/fgyDEnXqg2D9xy4Y/+4J2yecAN56ARTz0zUcL7amF1JYK11QgkEgZ79/XhQx/Zhw9+ZBoOpwF9fTokE1kEAgncvLGOv/rL67g/44XbHUOhwMHrjeF3/8Ob+Kf/4gUMj5iq5s8rH1z48auz+PpfXhcUKmq1HC9/bBr7D/bj1OkRDAzoodEqoNEqEAwkEfAnMDPjwXe+dQcP7nuxshyGz5dAoeDB1//iOj768QMNaWxpiY9VIpdLcfDQAF784BRe/OA+2Ad0sNm0UMilYCSP1wnk264sh/Fw1ge/LwGOA6RSCWx9Wnz04wdw5twojh0fhF7PC74cx29MxaJpuN0xLM4Hcf+eF4vzgZYUip1Yu3bDuqPnhdhaHcnV/6oAAQAASURBVFjtPn1PrZZjbMyCf/b/eQlmkxoGgxK2Ph3kCinkcklJACCpTAKdToHBISMcTgPevrCA73z7LoKBBAL+BK5cXsFHPrYf1ir1uHXDVfTH4H8bTSp84icO4QNPj2N6vx3DwyaoVDLI5FLI5VKMT1hgsfKa2Tdff4RXf3AfAX+ypslRtXbeurmOq3SZRhU+8alD+MBTY5g+0C+UKafLLGqD33pjDj/4/r2my2xHpMRW3pdIGAwNG/HFnzqOk6eHMTRswsCAHkoVr4GUSSU4cFCK/n4dEvEMXvvRQ1wp+jMG/Ak8nPVV+Ii2glbG28byB2QyKT7/xaM4csyJM+dGYevTQqtRQKmSwWrVQqNR4JOfOiho7t67tIR8voBCIQevJ4bJKRsOHhoQzKftdn4XkeMApUqGEyeHYDCowOYL+Jtv3REiP6+uhLG8FG5JiAX4xczhow6cPTeKT3zqIAYG9LDatNBo+AlYqZTykR8HDJiYsOB//vd3MT8fRDyWQcDHK4hmH/gxOGQsieCcSubw6vfvY2khVMxHhmefn8RTz0zgxMkhWK0amC0aaDRyyKQSSGU8I9DqFLD1aWG1qnH92hq+9ufX4SsGY7pwfgEf/PC+pr6bRiPHz/zsSRw95sSBg/0YHDIVtd3SmqZU2Wweuexjqwm7XYfPfOEInn9hD0ZGzTBb1JDLpUWGBsjl/C6txaqB02nAqdMZxGJpjI23FtRpO2lyN6Ld0dir7XjVWjTLZFK8/LH9OHV6GE89MwGLTQO9no+uK5VKoFEr8PFPHoDBqIJUJsF7l5aQy7FIp3PweeMYGjbh2ecn8ROfPoThERMcTgO0GgUYCQOlQoYjR50wWzQIh1L40Q9nsbjAW7+4XDEszAfxgacnIOuR8fG4fwGGkfA7F2UCqVTKW141Mh3cSNm1viHHAc88N4mjx5342McPwN6vF6w15HIplCoZnjg1jL4+HY4dH8T//Z/OIxBICq5MS4u8sntszFI1qnKz9VOq5PjA0+MIhXjLr3Q6j5WlEK5fW8WZsyM1AzzFYhm41vnTAUKhFADg6DGnIMB2gk+2uk6wWDT4u3/vFI4ec2J80gqn0wClio8gbJFqoVDK0WfXIRJO4Z2Li0Kwnkgkjdn7XmQzldZvWyHINttOmUyKj7w8jVNnR/DUMxOwWjXQGx7PA2q1Ah//xAEYjSpIpdXmASOefW4SP/GZ4jzgMECj5V2tyDxgsWgQDiZL5gG3K4r54jzQSps+/dnDOHLMiQ88NY7BISPUGgWUSimkUiUUSimUShl0OgXu3nHjf3zlXcRimaLgHMHCfBDz80GMj1sqFCS5XAGv/4g/WYCsN44dH8TLH9uPYycGYbNpYevTQa3hrS1kMgmsNn432GhSob9fh/v3vPgff3gJAX8SyWQOFy8s4MTJIRxBY0WRTCbBT//tJ3DoyACeODkEp9MIlfrxbmq175nLsiXjy2BQ4nNfOIonnxrHvmk7rFYNZHIpZDJGUN7rdUqYzRoMDZlw+IgDsVim4lSEctTjMfS32Si6YZ3Q80LsRqFQyGDrk+GjH9vfMK1cLoVer0R/MbR1JpPH++8uIxJOIRbN4NGsH5l0vmTAcAUObKGAxcUg5ucDAPjBbrZo8MJLUzh+YrBCsySTSaBUymCxamC364TgU+FQGoVCYz9AEpF4cTGI+bnSMp9/aQ+OnxjEyIi55B0pKdPCl5lMZnH3rps3hcw2LnOro59qtQoMD5vwkY9OY2zCUqGJksl40w2LRYN0Jo+5RwFcv7YmBNdaX4tsKFDWVkEmk8JoUuHJp8Zx+uwIhkdMJX2k0Sig0ShgtWqxVox+d/m95aIQy/v1DA4a8dzzkzh9dqTCbFahkGJkRAGFQoZ0Jo83X38kCLF+X0K4bgVKpQxTe2148YNTOH5iCCpV6bQil0sxNGSC3a7D2IQFb70xh2g0g3gsg0Qii0AgiaXFIMwWtSDEEnO6a1dW4fPGIZEwMJnVOHrMiY9+bD+GR028yX8ZtFoFbx5l1WBwyAitVom3LywiEkkjkczyUZqjaeTzbA1TMd7nRKGQwmRW48UPTmHv3j4MDZua6guGKV0ka3VKHDnixJ4pW1WGQ8y3jEY1BgYqd4I2gq2mSREbw0b6WSrlTTZPnh7GSx/exy/qqPFGdiBMZjWi0Qy8nhiuXVkVjqAC8rBYNXjuhUmcOTcKk0ldkr9cLsWgxgitVoHQc5O4fm1NWLyGgsmi31f3zp+9AIbh58xjxwfx3It7cPT4YMlOr1TKz9OjowrY7TpMTFjw7W/eQT5fQCqZQyyagdcTx9JiCEODxg0LsQCgkEtx6IgDl99bhlQmAZvnffXu3fXgiSeGoKhhEJKIZzA3x0fXTSVzYBhgam8fpqocIbIdUGvk6B/Q48MvT2N0zFxhJSeTET6qwXMv7EEwmMT5N+eQzxeQTGSxthqpGTywG0DmgSdOD+ODH96HsXFLyRii54FYLAOPO45rV1eLJ24UkEEeFktxHjg7CpO5xjygU+CZ5ydx4/o6NQ+k4HHFmhbopVIGqqKyhA+a5Sx7zq9BDQYVbDYt+vp0eOV/38PSUkgI1Li+zp+yMTZmBm3CzxV4s/Cb19exuhIGwPPS6f39+OgnDmBo2ARFlcBKZB1ltvDrhAGHAT/4/n2kkjmEwynMPvAhGEwin2MhrRKp+HE/SaDTK/HsC5M4cKAfk3tsTfUJw/DujARKpQyHjziwd18fRsfMFenlct4k2lA8eaFZ7AZe3l7V4y6ASiXD+LgVz72wB2qNHLFYGg9nfUinciU7l5lsHq71GFaXw3AXndlHxy144uQQPvLRaQwO1Y/+p9UpcPbJMXz5V56ETt+caWEmwxbLjDwuc8yCEyeH8PJHpzE0ZGpY5plzo/jyLz8JfdedPcX37dknx/Dih/bi0BFHxbmrNBQKKU6cGMS+fX1wOvVgJAxi0TTW1yJlQRC6C312LT7+yYM4etzZUHDav9+Op58ZF4Q5iYTB8IgJZ58cxSc/fahCmKRht+vw0gf3wmLRCO97vXF4PI0DL9CQySQ48cQgnnp6HM+9sAdKZe3Q+3K5FGazGp//yWP4xKcOCvcTsQzeu7SEUODx+Y3EF+fG9XX4fHGoVDJ87OP7cebcKEbGzE2Z9ykUUoyOmfHZzx+B1apBPldAwJ/E2loEnlpBGIoMcnKPDU8/yzP4wSYjdQLAyIgJTqdRqF8ikcHtW+s1Iw+KENEKDAYlPvbJA3ji1DC/W1+HDMbGLXj+hakSIcc5aMCJJwbx6c8egbFOoBSjSYWXPrQXDodB2KEMBpJwrUebDpYioho4aLUKnDo9jGeem8DZc6N1TXZVKhn6+nX4ez9/Gk8+NS7c93njuPzuMlKp/KZqo1BKcfr0MKYP9At88sF9L1757gwymdp5r69F8Z1v3kE4lOLPy9bIce4D4zhzbmxT9WkXjp8YxIc+sg+HjzhgsWpqppNIGBw56sT+A/0YHOTHeiKZxWqXC7F6gxIf+8QBnCzOA/XG0OiYBc+/uAeqsnng+BND+PTnjtSNIm00qvDSB0vngUAwifX1SNO6LLtdh9NnhvH8i1M4eNhRN61Wp8DEHit+8Vc/gMk9j20bF+YCuHFtteLYpkyWRSScxq2b61hfi0Iqk+CDH96Lp54Zx9i4BXJ5YxFHLpeiv1+Pz37uCIaGTWBZTpjr1tfrBWIFBodMeObZSZw9Oyq4KDUDx6ARwyNmYe2VyeRx57YLwWCywZsiyrFrd2JpBPwJhIJJ3LvnRTCQRDSaQjjMB3Bii4FXaHg9MSwuhATBNZdjkUrl+EOU1fygzGb4qI7p9GNGMDJiwtTePshkTN1FONGeWG1aTO+3Q62SIyJpHC04m80Xy3wc6Wy4WKZUKmm48GcYRihTpZYVAz9tfMWyUbPE6u/xv4dHTBgZMdU1WQIgRNfVahUwmzVYX4sil2eRSuWrTkrdYkKp0SgwtdcGrbYygnJFWi1/fjGptlTKYHzCAptNW3WXkgZvtsxrEbU6BaKRNLJZtu7CpRqkUgn2HxyAw2Fookx+PE3ssWJ9PcoHNyoGFltbi5ZE6AsGk3C5omDZgpDm/feW4fXF8aMfzhZTVX7I8m8bi/EHkIco5pCI80cr1EO/Q4+9+2z8eXEt+MNpdUqMjJrwwktTuPz+CsKhFN58fQ7xeBZDwyYMDZuKZl9K2GxamMwaaLWKquO5E2OyW8a5iI1BUbR6MBpVDecHtVoGs0VNReImgYoMTZnOyopuNDq9EuFQCrkcK5xT3Z3oBemagVqjwKEjTpjNGiGwTc3UDG/qPH2gH9evrQlzZiKRxdpaa5Haa0EilRSV3cNwu+4hGkkLZ3BLJAyM1G49x/F+uV5vHLduupBK5WAwqHDw8ACsNk1dxelWYsBhwPikFZIGgW/4dQLvXmaxauByxcDm+fM7G0aN3kYoFVLs2WeDoYV5gKHmgZFRPmDZhuaBLD8PNNc7HCxWLQ4dcUCtlje1BtWoFTh0eABG4+NxFyqe5VpeZjSSwtpaBLkcb4nGcByuXV2D1xvHlcurJfUoqVVZRqlUDksLQawVz18FIFg91IPFqsG+/XYolI/Xy83wV41GAYfDgOdfmsKtG+sIh1J46405BIMpnH9zjnc9MqthMKrQ16eDwaiCXq+sap6823l6d8w4HUatIE+FAodEnD9vc2kxhDdef4SV5RA8nhhc6zFkM3nkioJsPbAsH8ktl80L5pu5HAu/P4Espc3rH9BjeNiEZiMaGgxKSCQmqNQyyGSSqppBum3VyhwY0FeYpFYDea7XKzE8bCpGc2tcZjXQ50dtBPXes/fr0Vc8WqAZ4lWp5MJh2Wy+gEw2X3Wt02xdOz1hqFQyDA2XmojVKlOpkhUFIP6ZRCKBw2mEwahu8ntz0GgVUKvliEZ4pU2uRX9hIjhbqgQ1qwWHw4CBAT0fJbDAIZdn4ffFkaHM16ORVDHIAv+x8vkC7t5xY+aupySvagvARnqXdDrfMKS91arB8EhzO74EDMNArZbDMWjE089NYn0tgpXlMGbueuByRWGxanD4iAMjI2b02bUYG7fAOWiExaKBSs1HmJXLpcJB6+0Mm79ZmhRRiu1aOMjlUgwOGaHR1I+uDQByhQxanQJMcZ3KMAwGBgwwWzQNA3yQvyq1HBqNAuFQio/6nWO7WFasP/63GrXKVCpl2DNlg67JCL4SCYORETOsVq0QWTedzsPvS4BluU2NRfLe0JARR4468er3HyCZzMHvjWN1OQy9TlkixAK8YtDnjWNhPoBcjoW9X4ejxwZhMqkFoWi7F9ZWqxaOulGlS6FQSKE3qASelMlUV3ZvNWr1I++iY2wqAKBcwZ+CIaFoe8BhgKXGPECDnge02uI8UDytozkwMBhVmNhjK4niX69tCqUUY+MW6PV8NGmW5SMjBwOpCpoi5/wS6zqOA+7f8+DBfW/JebQbWSdkMnkkk7niu9XdjoxGFUbHLMK4F9wJG4x/pVIKW58WTz87gWg4hXvJLO7NeLG2FoXJpMaxE04MDhrRP6DH+IQF/QN8bBO1Wl6M28PH7mmFp283TXYKXS3EduI8IwKW5eBaj+D//r0LePfSEhbmA2BZXpvDcWhJC8eB1+Sk03kYipaH+XyB382lNKVmsxo2e/OLfYmE982zWrUIh9IIhaqbGpB+EsqkjsYxmdXo62utTHmxzFAoVbKDRdDsxNcJ6HQK6HSKpsuRySVQFoN0kbDzm1mFdXoSkMmlMJrUkDahIeWPgnrMGBiGV3yoVLVNesshl0sEkxu2wKHQ4FzZcjASBg6noaUoeSoVH8DBZFYjGuHPso0UhWiCRCKLSCRd8h7HtWcxms3mkW2w46zXq4SzDlvF6KgZX/qFMzhyZAB377jx3b+ZwewDHx4+8OPRrF/QpkokDFQqGfQGJc6cG8PZc6M4ctSJI8ccTUV9pLGdNCli6yCV8jtjcsrPqxaflDAMZFIp6AWYTq+ApsbxUtXykMmlQlmFAh9zoQvW9j2BWoGAFAopnIOGhsd80VCrZdDrFTCa1MXdsDyi0TTYQqEttH3w0ACMJhW+8l8v8sHpcgV8/5X7yOcLGKWCzHEc8NYbc7hyeQXZotKxf8CAz33hqLDO6IbFskYrh74FniSTSaFSycEwDArF41c2s07o5NoV4HfPDcbSeaAWSo6MLEKvU7Q0/mRyScnxO/zGTnP9o9Uq4HRWt/6o1k8SCW+erjcoodMrEQmnkUplEYulK4pMpXIIh1IlZsabWyc8FlhzORbpmusEPo1Gq0B/v66CXzfDj602Lb7082dw6tQw7s148I2v38T8XACLCwEsLQZL1gkKpRQajQJnz43h2AknzpwdxeGjjqb94buBJjuFrhZiO9npd2+7cOe2G5ffX8b6eqTE7HcjIMIvAVdxwS/4JS20SdCKS5iaSuaSPqq2wyipb7pcLT/etHEjJ+B1Ho3MiKu80bG61MNmZC2GYUpq3Up7+aSttrmYfgN1ZvB4zDSVniSkNYhFpkMXX9iAQF0dlVpUnsnVf0siZSBrwp+m6rtF5dPkHhv0BhXMZg1cLj4Il9+XQCScQrx4rE4omEQknMbN62sI+BO4dWMdH/buw9S+vpZ8bERsLbZnQcAVywboMV2zLgwqpgIGrU3sdBZbJrx2oKCtiizbLJgWGGzpnMlfcmjv7rJSJYPJpMa+aTvmHgXg88Vx97Yb09N2ZLOssOvDcRzu3HFh7pEfQNHSa9gEx6ABiuKCuhsWy2QN0/qL/B9O+K8Rmj81ovy1zX69Ta3RWuDZQLEcaiJope4MUzyiqnwuqlEB2hrk8c5m9TKJYq19eFynZoRhiWST6wSlDCNjZmi1CqhUcni9cYRDSXi9cSH4pbu4dojH+PgaPl8MD+578aGP7MPkHhv2H+hv3KouoMlOoauF2E6ADMpbN9dx4a153C2epcowvIZUUvQdlUgYgeGXf36WLSCXKyCbLZqcFP/RA55f3KNkJm1m8VytroVCk7NGycTNL945jmu5TI4DCi3WdUdjQ324kc7rvQ7nwEcIbLa5Qr9wlK95kVkxJekqx59KLeOP0mnge9sI5AiCepAwDKQSyYYXCQzDwDlohHPQiGPHB5FK5RCLZTD3yI+V5TC8njju3fVg9oEXrvUoFheCePTQz2tWGV75NDRsEkyLRYjoTrViGcp0quXKqUboZj/EdoG4MjXbMWTOpPkKUR62C3I5f/72gYMDiMWycLtjeDjrxepqGMlkFgaDEhzHnwt+b8YrRKodGjZhdMwMWwvuJDsCTOkF17zUC2Cz66veohHBsnEz472e0F2WtUola8uRWSo1f3RfPRCfdWYTc3N/vx79/XocODSAdDqPZDKL2Qc+uNaj8LhjuHvbjYWFAJYWQ1hZCWNhPoBLby+iUODw7HOT2DNl29XrhF0nxBaK/g4XLyzgRz+cBcfxjutGowqf/txh7Ntnx/CICc5B/qwnpUomHFhMxsid2268+dojfPVPLiMSTlcth+QppwgpFOQ1LK3UNZtlEfQnEGsiuikpk9cMMcUyU/B6m484WyhwyGVZBJosc6eBkTD85EfNB5ksi2yWRbNsOp3KIxrNbECQ7b1JiCtwcLmiGBk1N/1OOp1DPJ5BJJwCy3JQqRkYjWrIKJ8ZrVYBo/Fx9GmdXolf+41ncPLUMPYfbKx5rAeNWl5S1lZApZJBqZTBbFbj+IkhcAUOebaAVCoLnzeBr/y3d3D18goezvrwtb+4DpYtQKtT4NSpkaZMxkSI2G5IZaWWRmy+gHQ6D22Tke7ZPO9WkMuxW06fW4lcroD1tQj2tnAcTTKZQzyWQSScRqHAQa7gjySRStp3wIRSKcNPfPoQ4vEMbt1cRyKRw8OHfrz+44f48MvTSCVzmJ/zY+6hD14Pv4558UNTOHN2tG116AVIpRJIKes2crSdugk/dYAX6qLRdMO4DDsFiUQW62vR4hFfjUGO14tG00JgJbVaDr1OVbG9rlbLYDKphHlHJpfgV//RUzj+xBBOnh7eVL1VKrlwJvxWQamUQqFQ44mTQ7w1WoFDPl9AJpNDNJLGH/zXd3D92ipuXl/Ht75xG+FQCg6nASeeGIKmCf/onYhdJ8Sy+QIfgTiSQTLJTyLjE1ZM7evDCy9NFQNfqGEs+hvIZJLieZKPNZ9KhRTJZBZcHZqUK6To69OVLEDdriiWl0KoZuJYDdFIGqurEaTS+aZMJuRyvkxFlTKrO6dXKTOaxtpqBOl0btNmGu2NTrw14E1BZSWLMT6abQZmi7rOm/wOfcCfQCSSQjqd2xU72SzLYf5RAHuaPB8N4I9nWF+PCrsucrkUdru2xL/DaFTB1qcTeFaBLcDjiqFQ4GC19p7Wn2iSJRIp5NRaR62WQ6GQ4YWX9sDrieHhrA+ZdB5uVwwPZ/04fmIIcrRvQb+TfWNEbB8Y8Gev0778mWwekXC6OG/WF7ZCwST8/gTSqRxYloOseXe91upZZUdnq+fpTDqHR7N+PHFquFh+fZosFDgsLQXhpwLdqdUy2O2VvnibgVTKYHjUDOeQETabFoFgEl5PDDeur+H5F/cgGEjg5o11JBP8ubA6nQJ7pmwtKTA7j+bWOZuBTC4pWdcVCgVEwilom/AzTcQz8HrjSCVzJTEgdjIi4RQePfSXBByth0wmj4X5AOKxjDDe9QYlrDZNBe3qdErY+3WPBU0O8HriSKdzm1onbNfalV4n0NBo+AB7zz43iUQ8g5vX15HJ8MHdHtz34uBhBzS9tyxqC7rynNiNmGI2+04uX4DPG0cqmRWEtH377Xj2uUm88NL/n73/Do8jOw/832/niEYj5wyQAEiABPOQwzA5j6SRNGMFW+NdeW39nCRn++qur9d7fWWvrHWQ1iNbaytYYSTNjKQZTQ6cYQYzCZIACBA55wYa3eh4/wCrpwEio4FuAO/nefiw2ayuOlXdp069dd5zahOV2zPJyU3AFm8MzdCrDLAOBifz70dHJybvLPlnrpTBYBC9Xkt6RhxGozZU8drbRmhs6A9NBz7XvgSDQQYGnNTX9uJ2L2y69w+3qftwm+3DNNwcwOdb2DYHB8apq+3F7fItO7VrJWYnni7S45w0GjVGk27KY1WGh10MDbnmLYfPF6CleYiBgXE8E8tvoGJpDNdsZfH7A9Te6KW7a/JOa/hy0z+jpKpPTl4wGLp41Os0ZGbFYzJ9GMTaE0ykpcWFJqTw+QJcv9ZNT/coPq9/0cdmJY9lePqT3xeYnOXZ6789Tn7u7Wq1amxxBu67v2TKxWB/n5ObdX0RHu+zvsfGrIaVbJtiZb1LoprsuQifgdQ17qWvb2zW2f2VNicYDNLTPXr75uny2505iznDHBGTKc9L+F6XWAaXy8u1mm6Gh8bnrd/KOaXuRi9dXR8+o9ds1pOZZZvSY73c34NGoyYrO56cHDtZOfFo1Cp6usc4f64dt2vysTrnqttwubzo9ZOPbSkqTiYn176s7UbWws5vyzlWer02NP4XJtumvt6xycfOzLJe5Xc+POymtXmI8XHPgnsm77Ry+7gS55ShQRfXa7pxjc/fMRIMBnGNe7l2tZvhsCxHu33yemD6nsfFGUnPiEerm+xoCgSC1NX20t46+Zzfpe5PpK5d57pu8vmmXifMVVaNRo3JpOPwPUVsKk0NvT887KL2Ru+8E1WuZzHZE7uUH9CCp5m+naLrD2soVbfHoM233kAgyKWLnZw80cwHRxtxjc+cDqJSqTAYNKRn2MjJsdOUbqOra3Lcm9fr57Vf1rJjVxa5ubPfwXSOeTh1opnv/PtZxkbnfqalInyb6Rk2ujodtDQN4fMGeO2XN9ixM3vOu6bOMQ+nT7bwH986s2ZSiSN9UW4y68jJtU/pzT5xrImAP0Dlttkf1O3zBejvd/LP/3CMmpruiJQllgKO2cri8wU4f66NjMw4MrJs3H2oEOPt2aCnf8br9TM2OsGPf3SJC+c+fIabNc7A3v15JCR++FB65Q5rxbYMmhoH6e93cra6jZTUybuuj39ky4Jn5pur/JEQvu7jx5sY6Hcy7vRw34ObSE21olbPvX2fP0hnhwPn2Id1bmLCx9joxIbozV9LVrJtmt/UH0MsnR/U6skAKN7+4YywzU2DvPLza2wuTZ2xh0qlUuH3B/B4/Pzkx5c5ebx5xctpMNwZgAwu8abjUo++0+mh+kwLR99rRKVSsf/uglnH+7ndPgb6nfz7v53hVuNg6P3UNCt79uVNOa6z/x4WdxIpK0/jyY9uofFm/+S5bNzD5YudXLvWzXvvNOB0eigoTOSRx8tISrasarplpCyn7qSmWkm7/Zg/COIYcfPyz69hjZtss2YzMeHj5Ilmnv/BRcbGVv76auZ9nLuneiXOKT09o4yMuHj3nZtUVWVRuT1z1mXHxibnjfiXb5ykrWUo9H5hcRLbd2bdcZ1uMutISbGwtSKDm/V9dHY4uHihA4NRS1KKhUcfL1vUkxMibbbjee5sG12dDsZGJ9h/dwG5eQnzZlUEAkG6uxw4woJ75ZpqI8wlMJuoB7Grnd6m1qiIizNMuWPc1jLMlUudXKvpJiXVgs1mxGjUEfAH8PkDjI1OMDAwTk/3KMfev8WlCx23nx81+3ZUKhVarYqCoiQ6Okbout1TNTzk4u0363C5PAyWj5OXn4jJqEWn1+DzBRh1uBkadnHxXAdnTrXS3jay4N6YD7eZSHv7MF2dk9scGnLx9hv1uMa9DA6Mk1eQiNGoRR/a5gTDwy4unGvn9KkW2tsXvs25rMV0YpNJR1bW5HNaVSpCPYcmk44zp1rIzrFjizdisejx+wKhZ/M2NQ3SeLOf+ro+hgfn7rVdqvDjEku9MB6Pn/r6Pt58vQ6jUUd6RhwpqXFYLDoITl4o9vaN0d01yvWabm7W9zEw4ATAYtWTlGwhPz8Ri/nDMR2T0+zr2b0nl3Gnd/L5xx4/9XV96PVaDEYtGRk2klMtJCaYQ89OU2Yr9HoCTEz4mJjwMTo6OSuw1+tHq9WwtSJ9SsAcSWOjE7S2DHHlciejoxNkZcWTm5dAUrIFi2XygfFq9eTvyjPhY3jYTX+/k6PvNtDS/GGjbTBoJp/xGT5RTgTqhaQTR9b0OrmyxzZ2vze1WkVGho3428+onswkGufK5S6qz7SQX5BEZpYNs3nyN+33TwaP/f1O6m70cvliJ22tQ/NvaJnMZj3msPOMy+Xl+rUeNpWmkpBgul0/V/Z5ysEgTEz4uXi+Hb8vgMGoJT09jni7CYtFT8AfxOv109MzSnPTIPV1fbS2DOO4/cgxm81AaloceQUJocejzW1x+5KaZqV8Szomsy706MAP3m+kvW04dHM7MdFM1Y6s29/n4ta/svVk5dOJk5ItpKRM3kwNBCZvNFy50kXJ2TaCQGFRYigrwecLMDrqZmTYzZXLnZw60URjY//tR/1Fw509hSvdHihjho8dbWRk2IXX5ycnxz45I69Jh+/22PmB/jFqrnRzraabzo4RXC4farWKOJuBzMx4snPsMz6OR6fXsGNXNhMTPjo7HHg8flqah3j3rfrbWV42MjJt2O0m9IbJ697JrMogngn/5CP3PH5GRtwMDY7jdnvRajWUbEomPcO2qH1d6PEcd3ro6nRwrrqN/j4nuXkJFBQlkZBgIi7OQNzt8xCqyXPFqMPN4JCLo+80UFvbE1qPTqeZfAbwMm8kreXrgqgHsTN1vy/1omAhy+t0GpJTrBiN2tsnoSDXarrp7naQX5BA5bZMCgoTSUq24Jnw4XJ5aW8b4erlTs6dbePN1+sWNSC/ojID55iHE8eaCAZhZMTNj394id6eMVp2DfHYE+UkJ1uwxhlwu7yTjVZ9H//2L6fo6nQwODi+qJlfVSoVWysyGBvzcOJYM8Hg5J3CH//oEr09o7TsyuaxJ7dM3WbzIDfr+vjX525vc2Dubc50nGd6b6XTiVfit2K16CksSsJi0aPRqvF5A9TV9jI87CLebuS+BzZRVJxEekYcE+7Ju2CXLnXw5ut1nD/XTtOtgSnPLIuk8PJGIphZzLJzbU+lUnG9poeG+snHLmzbnsXOXdlkZNkIBsE97uXKpU4uXujgpZ9eobtrNPSMwaRkCzm5dopLku7Yhsms48FHNtPcPMSN6z0EAkGuX+uZnLmvy8G27Zns2JVNWXkaNpsRa5wer3eyQRxzTDA8PM7goIuW5qHbN548WCw6kn//IPYE04oEhBMTPlpbhvjFS9c4cayZnFw79z+4iW3bMsnMsk3OOKybbESHh1zU1/VRV9fLt/9vNYMDHz6T2WIxhC6Uwo/zYsoSyTop5j+eSvC21GO8Fm/6KdRqFXn5CaSkWNDp1Hg8fvp6xxgcGOfnL12jakcWBw8XkpERh1qtxu32cf1aD9dquvnJ85dobx3G6VxYxtFy2GzGKT0zY2MTnDzRTPmWNBLsJnJy7WhuDyGCDx/zodEsPrCd6xyrUqk4cayJ69d6CAaD7NmXx6ZNKWRk2fBM+HE6Jzh/rp3332vg2Pu36Lo9h4BKBWkZNnLz7DPOQxCJm5vpGTYMxsmJo8ZGPbhcXl564SqeCd/tG4FqUlKt7LsrP/TM9pnKMd8jVCJ1U27a2hdVloWsf/pnMzNtZOfEo9Np8Hr9uFxezp9tw2LR0909ykefqiAlxYLFqsc17qWleYjGhn7+77+doaN9hP6+sZjJsJnvuETq3BIEXv75tclrqaFxHniolIxMGympFsadXgZuj7f+8Q8vUXejl6HbHQEGw+RQo/zCBPLzE2Ysk06n5t77SxgeclF9unVyDHnzEK0tQ3R2OigrT+PAwQI2l6ZitxuxxRvxeQNMePw4Rtw4RlyMjLhpvDnA9WvdDAyMExen59O/unPRQexMx2qmY+jx+OntGeMXP6vh/aONpKXF8diT5ZSVp5GbaycvPzH0WKuhoXGam4e4WdfHd//jbGhSNZjsdElNsy5oJubVqpOrLepB7HTLuVBfyPJarZrEJDNbKtLp6Rnj8sUOvF4/fb1O/s8/nUBvmOzR0WjUoTz1yR+8jwn35EPAc/MSKCpO5sTxphlTisN/CPvvzseeYOLdd27S2jLEqGOy6//UiWYunm/nh/95Ac3tx/oEg5N3YL237wrF241sKk3F7fIy6phgaGj8jm3NtP/77y4gIdHEu2/fpK1lCIeyzZMtXLjQwQ+/f3HWbdriw7Y5OsHQ4NRtzvYjX8gFdKRF+rcSDAbR6TXE203sv7sAnV5D9elWAPr7xnjhx5d57ZUbaHWTE34pj0qYmPBN9swHgmzfnsXo6AQOh5venoXPCj2TlTyGygX3QpedjU6n5uChItrahmm42cdPn7/Myz+7hsGoRavVAEECgcngbsLtY2xsAt/tXn6NRsWnPl3FgYMFM27DYNCyc1cOH/3YGAl2E8//8CI+XwCfL8DZ6jauXO7kJz+6NDkRV+gic3J7wUAQfyAw2avhm+yVjY83sr0qC58vEJHjOt86hgbHGRudoLlpEINBi1arDpsKf/JOsNfjx+OdbEyV7AejUcuWinQeerQUvX7+U3Qs1cn1bCFB6nIn9VjNz0WSSgW2eCOl5Wnce38JR99twH17QsI3Xr3B0Xdu8tw3ToQmSQwEmOwBmfAzOjZBYWESBoOWvr6xO9qchZv/fJaUbJ4c+pBpY3BgnAm3j8ab/fz//uc7GG+fs8IPZ8mmFMq3pPFHf3ZPaJjEgkpy+3cy0znWZjOyb38+Vy510Nc3xn9+9zw//fEVdGHtSjAYxO2avInucnlDAazRqOX/+Z0DbK+aOSVzMef12Wi1aqxWA/c9sIlz1W1cON/O4ICT4O1HEe7Zm0vVjmySki2zpkAu5De5Gufg5W5npptWFquerOx4HnhoE2er2+jpnmznz55p5cqlTl748eUPr68CQby3xz46Rtwkp1jZsSObnt6x27Pvzvx0i2iZfn5b/ncUJCcngdLyNE4cb6KxYYCuznP89PkraG5Pmqr0iipDaDyeyfGdarWK1LQ4/vTP72XbtqxZy6TRqCcfYzfuhSD8+EeXcDo9BINw6UIH12u6+eXL12/PNPzhDapgMEjAP3kN5w98+NhMg0HLnr25eCM08dZ8x9Ax4sY55uHf/+0Mer0GnVZze4zv5Ocmx89ODrtwjLhCcwwYjVqKipN49IlyrAuYAX616uRqi7kgdqUpKbdbtqQz6pjMv3e7vJNjY+ZoPNW3H72yY1c2KSkWEhMts979CP8hWCwGMrPiuf+BTRx9t4FbtwYYdUyEGqfZJgwyW3QUFCZRuS2T0yebQzMpL4TFoicz8/Y232vgVuPUbQ7Ptc2CRLbtyOL0yeYZe5wX+iNfi5VBKbNGA9t3ZOHx+Ki70cvY2OQkYA7HBA7HzGNZzBY9SUlmDh8p4tq1bq5f6172MZiv5y36gmg0asq3pmONM+D3T05sNdsxUqjVKuITjJRvSWdrZQZ5t++wzpQqZDLp2LQ5Ba/XT0NDP20tQ/T0jOF2eXG7PIwsInVMr9dMBooreOwyM+MpLEpm0+aUyZnFx71MLHDSBY1GhdGkY8/eXMq2pJGWNrUndqHB6mzWYp2MNYvtDd8olN7KnFw7+w/kc/VKFwMD47hdXsbGPIyNeWDgzs9ptWpsNiM7dmVjMul45636yYv/pZVi3iW0WjV2u4ntVVmcrW6lv28ylbC/zznj8maznpQU66JPGXP9DkxmHZXbMpiY8KI3aGhtGWaE8GBG2ZgKJT1WrVaRmWWjuGQyqE7PsK3oDU6tVs3WinS6Oh1cON8eunBWqVRsKk0lvyBhyc/hXOv1RK1WEx9v4sDBArq7RnE6PYyNhl1fDU+/vprc33i7iU2bUti+I4tXf3mD8VXIPFisyH8vKhKTzVRuy6C3d5TuzlF6ekanTNo0E7VaxebSFMq3pLO5LJV4u3HOXkSTSUdefgIHDhbQ2DhAa/MgbW2TE8W53T4cDjcLTTMPWCaD6pW8xEpNi6OgMJFNm1Pp6pocGzvbdfl0arUKg1HL7r25VGzLJD09bsqs8EuxluvkhghiZ/qCDt9TRHpGHO+920Bv9yhjY3NPoqLTaYiLM/Cpz1SBSkVP1+iCTuKTY4Xi+O3fuxu324t7wkf9aN88M5GpSE21sv/uAj7x9Dau1XTTN0sjO9s2029vU+kBqxvrmzPNVdnmXXfn88yvVE1us3fmbS7mB78SKeGRMN927n+ghPh4IydPNNPcNDiZ6jbL4VOpICXFwubSVH79N/bwvW+fo/ZGz8wLR0hsnHBUaHUa9u3PpaAwgcQkMz95/hLjt++Czkan05Cfn8jnf3Mfu3bnkJI6+2QYAFsrMygsTsLnC/D6q7Uce7+R8XEvgUUMK1KpQK26PTNphI7dTL+hyu2ZmEw6+vvGeOXn1+nqGsHj8c/bIKpUYDBqSUmx8l9/cx+lZakkTntEQKQCqLXcYMWy5aYTR1skyl5alkp6ehxvv3WTYLCPrs7Z545QqSaDxIKiRJ76RAUGg5b33rn5YewWYcq+JSdbeOKjW2htGWKg37liF6uztfFWq4EDhwowW3SkplrpaB+ZnGgytHj4dzD5yA2DQcP2qiye/tR2yrekYZznUS7LpdGouetA/pTJpADUatizN4fyrelzfn4hqYurJdJ1MhgMkpRs4ZPPbOdmfT/Dwy4a57x+VKHRqskvSOCe+4t58qNb+eD9Rvp7V7/s0ZCRYePuw4X4/QEuX+qkt3d0zjqnVqswGLQ88NBmDh0poqg4eUE3c4uKk8nLT8Dr83Ps6C1+8bMaxm9nMRBc6I3eye0vZYzpYr6r0rJUbDYjTbcGefftm5OPIPL4FnSdoDdoiI838dlnd7FlazpJyQt7tk4s1clI2hBB7ExfUJzNyJaKDL75rU9y4lgT12q6OXeujeFBF06nB5VqctIZm83Itu1ZbNmaTuX2DLZtz6SxcYCeroWnimo0amzxRr7wuwf4yFNbeePVWmqudtPaMkxH+zDB4OSEU0nJFgoLEynZlMKTH91KVnY8drsJ9RKeBads87d+Zz9Pfmxym9dqumlpGaKj7fY21SqSUm5vsySFJz92e5sJpslHmyzieEZi2aUsv1TzpVqaLXp27s7m6899nDdfr6O+ro+LF9oZ6J9MQVOrITHJTHKylbsO5LH3rjxKy9JISbEuatbcyIluz+yuPbnce/8mKirTuX6th8sXO2htGWbc5WXC7cNuN5GUYqGkJJkHH95MYXESpWVpk5M/LYDRqOPRx8vYvTeHnu59vPN2A63Ng5N1qGMY1+3taLVq9AYtVoueOJuReLuJrOx4Npemkp0dT+W2THLy7BHZ55l+q0ajlk2lKfzWb+/niY9sob1tmBMnmqm93kNPzyhdHY5QmpLZoic52UpyspnK7VlUbs9g8+ZUikuSMZrm/g0tJ+1rLTdYsW4tH9tIlF2v15KUbOH/+3ePcr2mm9MnW6g+08pA/zjDQ+Oo1ZPZBknJFvbszWFzaSr33l9CZlY8zbcG599ABCQmmnnwoc1Y4wzU1fby/jsNtLePMDLsmhzu4AtEJLCdL7X3kcfKePjRMqp2ZnPhXBsNNwdobR2aTMP2BbAnTJ678vMTeeKjW8gvSCQvPwGDUbfivzO1WkVWVjx5+QnkFyTS3jaM0aglLT1uSvbMbGJpKEOktzuZdQBxcQb+n989wBMf2cIrL1/nek03HR0j9HaPoVJN9vqnpcexaXMKm0tTefwjW0hPj8Ns0U15Dv1qlj1a1GoVv/bru+npHuW+B0o4+k4DnZ0OujoduFxe1GrV5FC2zakUFCby0COllGxKISXFcsc957mOiUaj5oEHN7Nrdw6f+mwV773bSOvtMcldnQ7Gxz2Mj3snrxP0GqxxBqy3J1LKy0uksCiRrGw7O3flkJm1/PGwszEYtGTnxPOb/89dfPSprXR1jXL03QYaGvrp7Biho20k9Pgds0VPQoKJ5BQLlduzKC1LZdu2DIqKkzGZ9QuuW7FUJyMp6kFstA6kVqvGYtGzuTQVt9tHQqKJ+AQToyNuXK7Jh3mbzDosFgOlZZMXliWbUkhINJM25qGoJJn7H9jE6NgEapWKlDQrBuPMh1NJYc7IsBFnNTAy7CYp2UJnh4OenlEIgkqtwp5gIifHTl5eAmXlaZgteiDI3n155OTYGRl2k5Nnp2RTyrz7N2WbcQZGhl2T2+wcmRzDEb7N7Hjy8hM/DCpUKvbuyyUnJ57hofm3GT7+J/y7XO5EJSaTjsyseI7cW0xf3+Rg9rz8RGy2+fP/Fdk58ezek4PJrEOjURMfb5xxnOH0gECtnrxjXrIpmaHBcVLTrCQmmRkZcuHx+FGpIN5uIiHRRNWOLMq2pJGdbUerVVNUkszhe4oZ6HeSmGQmO9s+5eHoH27n9kyQ5Wk8/FgpAIWFSSQmmqc8/282Oq0Gm83Agw9vZsLjQ6/XUFqWRvIC78wBbK/KwmLR09/vJDMznk2b5/5txccbyctL4KGHS/H6/JiMOlLT4khJtZKUZKZqZzZ2u4nEBDOdXQ7cbh8ej4+4OAMJCWby8hOo2plNWpoVm82w4N+HWq0iIdGM2aInJdWK0+klN9dOV+dkHZqY8OGZ8KHRTDZOJrMei1VPXJyRtLQ4CooSSUmxkJeXiN4w9djqtGoyM23s3ZcbekRI+ZY0EhJMi5roUqWa7DUxmXQYjVqscQaSky0EgfT0OAb6nfT2juHz3h77atKRkGgiIcHE5tI0Nm1OISfXjtk8/0XqfP8f6TopFi6SMxYnJU/e+HnksVKCTD7eIzHJgsEw//lBo1FjNuu49/4SRkZcqNUqyremk54eN+9nFWVb0piY8FFWnkpKahx5+Qmz9lIEg8HbM/uqKSxMQqNWo1arscYZGB5y4Rhxh1Lh7AkmKiszyM1PpKg4GY1GjT3BxOF7ihgeck3O8lqYRErK7FkaarWKxCQzFRXpofPn1q0ZZGTa5syS0uo02BNMlJenER9vhCD0dI8yOupm3OnB7w8SuB185uYm3N6XyX1WqSbPQ1u3frjNLVvS593mTBISTFisBnbtycFs1pGbm0Bnl4OJCR8Bf5A4m4G09DiysuLZtj1rcubSsLZvrt9WfLyRgoLEUBlTUqxkZtlmfNTRbALBybGCPt9kJokt3kjJphTi402h8cFLvYCOJL1eQ2amjQN3F5CVHQ9MjmW2202hAGi+OpmSamXn7hxMJh2BQHDy2i9u9usMlUqFWgOZWfFYrHoGB8dJTbXS0zPKYP84qECrUZGUYiW/IIGCgkRKNiVjMGjx+QLsO5BPQWEio2MeioqSKCpOmnMfk5MtFIefB1KsJCVZpjwuaibBYPD2eUA/OfnRsAu1SsWWremLmrSorDwNt9tHWdnkeSA3b+bzwGQWoI1tVVm43JPD0XbszCYpyUx6ehxWqx6VWkXAH6S3d4y+Pidu92QQa7UayC9IJDvHTuX2TOx246LGocPk92JPMIWeejA+7iM3105uXgJ9faO4XL7J2Yc1arQ6NRaLAbNZPzkELyuenNx4Um5/Z9OPrVqtJiPTxo4d2aH5K6p2ZJGQaA51NM1WH6a/r/Q2p2fYsMUbSU2LY2LCR1Z2PL29Y/R0j+K7HcSazDpsNiMJCWY2l6WGfksms37G7yAW6uRqUgVXYXDdyZMn+Z//839y6tQpMjIy+OIXv8h9991HRsbkczfXy4XVfPsRjZkrV8LqPlYi+lZ6f2NxVtL18r1KnVw+r9eL0+nk8OHDNDQ0oFKp+OCDD9i1axdGY/SewRdpZ8+e5fnnn+fb3/42CQkJPP7443zhC18gOzt7weuQOjm/jVQnAY6+28jJE0387//1PjCZ9vjVf3ySsrJUkucI0qMpEAjS2zPK9759jv/1lfcIBILs3pPD05+q4mMfr8CeYLrjM9JOrl0bqU7KtevKrL+zs5N33nmHr33ta/T29nLXXXfxl3/5l+zduzei25xueaOBI2St/JCUWQPD/x1utv1QllvOfsbSMVpsGmNsTEI0s4WUbalpmws1X9rZdOG/p+m/yUiWaS2QOjlpPdXJtUjq5IekTk5abFliqU56vX5e+MkVzp5tIxAIotWqyc6xc+TeotsZYneSdjJ2SZ2ctJ7aybV47boSYiKIXSsm0wUX/6NYzo9nrhNPrJivjLG8/5Go2JEo41LHNE7/TW40UidntpJ1UtxJ6uSHpE4uTbT3PxicfNze8JCLttZhLl7ooL11GICkJAupqVZS0+KWNSvxcsso7eTSSJ2cmVy7rm6dXAlRHxO7UAvpCo/FtJHlduev9J2USFjJMq6V/Ve+22j8RqJF6mRs/yZnei0WT+pkZLc/3+fWa51cSZHY/2AQnGMTXLncxdnqVt56ow7nmAe1WkXVziw2laYuaLz+XGWUdnLpy6zk9uf73Hqtk3LtGrk6GS1rJohdyIFayYO5nBP3ctcRCbP92GLhRzifucoYK+WfqwzzHftY+Y0sltTJ5VnLdXIjWUvfhdTJ5VnLdXIp7eTIiJtv/p+TNN8apKdnFJ83wNjYBCMjbty3nxOv1al56OHNbNuRtexjIO3k0pdZye3P9zmpk0uzka5do2XNBLFieWa7o7aQH+H0z3i9fsbHPbS3jeC63dBFik6rxmDUUVCYGHpUzVxljHYlWsiJaLb/j3bZRXRFsk4KIZZvLdfJpbSTXo+fa1e7qbnaRUvz0B3/bzZPPg6peFPKoma1BvD7A4yNeejucjA6OrGoz85Ho1FjNGrJzUvAMssYXbE+bLQ6uVrWy7WrBLHr3FIq/nTTPzMy7ObK5U7+8v/1GjeuL+CJ3YuQnGKhqDiZ5771SXJy7RFd90Is9qQXS5VZrA0rUSeFEEsndXJmhUVJHDpSRGl5Knb7hzMSL6SdHB/3cv5sG//4tQ84cawpouVSHvfzd197nG3bsyK6bhEbpE4uzka9dpUgdgFm+nFEYpzBSlrZ7v7g7dnu5l8OVGF/z/R/09cbnUkAopUesdRxJ5H8Ta5FUidFrJE6KXVyrdNq1VitBuITjOy7K5+qHVnctT8fi8Ww7PFzH5re9s90LTDfKoIffnTOxaROSp1c32Ll2jVaYjKIXUplUQ7iSnyRM60zEuMMVlL0TtzhDdL0v8Mt9L3VEY0T5nLuNEbyN7kQUieXbyNfTG0EUielTs7EYtWTkmqltDwVgNzcyRRYzRJn+Y0kjVZFdo4dl8uL2axHp1NjizeSlGzh7kMFlG9Jp2xLGsohicyxWWYAu5gtSZ1c0HtLXddKkHZycdbatWukxWQQK2kDkbd6x0fZzmyN08o2WmvJWvrNSp2MPDk+YjmkTkZepI+PSqVi954cdu3O4b/+xt7Q+2p1bHwPdruJv/6bh2fs0Jzs3VnpEsTGcYgUqZORJ8cn9sTSdxKTQexKiHRaSbSnTY8ma5yB8q3pfPn/8wAjw+6Irttg1BIXZyAxyRzR9S7EWvq+Iv3bjca+S51cXRt531eD1MmFrW8py6xlHwaDd+5jtPddpVKh0iy+53AhZTYatZRvSeOLf3iIT392x1KLOCOdXoPNZiQnL2HO5aROLmx9S1lmvVqL+74Wyxwp6zaIXUh393K+9IV8dq5l1vKPzmjUkZGhIyPDFu2iRMxqfx/L3V6kP7uaY11WqhwbuU4uxHret1ggdfJOUifnttb2bTHfh06nIT3DRvoyrhOknZQ6udrW2r6ttWvXSIv+oIwVEksHeSaxXr6NZrW/j434/cf6Psd6+YSItFj/zcd6+TYaaSdXXqzvc6yXb6PZ6HVy3Qax691iZwOL5uxhc1mNcq3ENiKxzlj9TsTSSJ0UIrZInYzuNqSdFNNJnYzuNtZbnZQgdo1a7N2QWLt7oliNcq3WrH/RWIeIHVInhYgtUiejuw1pJ8V0Uieju431VicliBVCCCGEEEIIsWZIECuEEEIIIYQQYs1YU0FsMBiMqVxsITY6qZNCxBapk0LEFqmTQqyMNRXECiGEEEIIIYTY2NbUc2JjaTCxEELqpBCxRuqkELFF6qQQK0N6YkXUSHqNELFF6qQQsUXqpBCxRepk7JAgVkSN3J0UIrZInRQitkidFCK2SJ2MHRLErlHywOjobmO9PTBaLJ/USSFii9TJ6G5D2kkxndTJ6G5jvdVJCWLXKHlgdHS3sd4eGC2WT+qkELFF6mR0tyHtpJhO6mR0t7He6uSGDmLXyx0hiJ2yRboc63W/Imkj/47X076slFgpx0aykX/H62lfVoq0k6tvI/+O19O+rBSpk2vThgliI/FFht99WMj6VvPHEyt3RpRyRGrfV3O/5ipzrBxfRXhZI1G2aJzopE6ujkjXSTEzqZOTpE7OT9rJ1SF1cpLUyflJnVybNkwQO9MXuZwvdyGfXe8/nrmsxX1fS2WO9G83GvsudXJ1beR9Xw1SJxe2vkiuf61bi/u+lsosdXJh64vk+te6tbjva7HMkRKTQexS7oQEg0HpaZiDHJvYs5a+E6mTkSfHRiyH1MnIk2MTe9bSdyJ1MvLk2MSeWPpOYjKIXcpdBZVKtWJ3I2b6wpb6Ja7Wlz99Oxv5Ts1CRKNSqlSqKdtdTBki+ZtcCKmTyyd1cn2TOil1cr2TdnJuUieXT+rk4qy1OhlpMRnExppIpnOsVoVc6xV/qXc0lypaxyt8u4spQ6ykOkWL1EkRa6ROSp1cbdJOLvxzS/n8Wid1cvVJnVxdEsRuMKtdwZZqqXc0V1sspVWItWmt1EkhNoq1UielnRQbhdTJyFovdVKC2A1C+cFOrywL+SFH+87YXGWMdkVcyLGZrYzRLruIrrVcJ4VYj9ZynZR2UqxHUidXxnqpk2smiI32tOCRGEcQzS9+th9stCv5QsxVxlgp/1KmOJ9pSvdYOjnMR+rk8qzlOrmRSJ2M7Pbn+5zUyaWRdjI2SZ1cHqmTKytSdTJa1kwQG+1pwSMxjmAp64iVE8lcVrKMa2X/l1OpY2VswWJJnYzt3+RMr8XiSZ2M7Pbn+5zUydhad6RIO7m8ZVZy+/N9TupkbK07UiJZJ6MlZoPY5c5At16shRP3Ysu4mO8r0vu/Er+VtVDGSJA6OWmj18mNKFaPj9TJSRu9Tq6FNmgtlDESpE5OkjoZ+7/3tfAdzScmgtiZvpzlzkAXDfP9yJbzI4ylk91y7zBF8/uKxTuKS51SfrVTkKRORu6zkbaW6+RaIHUycqROLoy0k7OvH6RORpLUyYWROjn7+qMl6kFseHd2rFroD2G+/VjOfsbSMZp+90Y5JtOPTSTGYkRifcstw0rfrVpOus9KnKSkTi5MLB2jla6TYmGkTt75ejqpk9JOLoW0k4sndXIqqZORFQvf7aoEsSqVCr1ej0qlwuv1Mjg4iNvtxufzrcbml209dLkvx3wVUDkm049NJMZiRGJ9CxGLd3kXYiV+m2vhNy51cuXrZDAYJBgM4nK56Ovrw+fzoVKp0Ol0aDSadXfcNRoNBoMBtVqN1+tlaGiI4eFhxsbGQsdiIaROro3yRpq0kwv/3GqTOrk2yhtpUicX/rmlbjsYDDI+Ps7IyAh9fX14vV7UajVGoxG1euVDzFUJYk0mE1lZWej1evr6+nj55ZdpaGhgaGhoNTYvlmkjnPwifdISYiWt1u/O6/VSW1vLd7/7XRwOBwaDgeTkZMxmM3q9flXKsFri4uIoKChAp9PR1dXFq6++yhtvvMG5c+fw+/1RvxAXsW0jtAXSToq1ZCP87qJdJ4PBIDU1Nbz33nt873vfo7u7G6PRSGFhIWazOSLbmIt2xbcApKWl8eCDD3LixAlu3bpFfX09X//618nPz2fXrl1s3ryZ9PR0srOzUalUa+KHtxZSSZZjve/fSljNYybfz53W+zFZjf0LBAKMjIzQ0dFBU1MTZ86coampidraWsbGxsjJyeGhhx4iISFhRcsRDSkpKezdu5fS0lLq6uro7+/npz/9KceOHePll18OtVNFRUVkZmZitVrRarWh72S9//6WYr0fk/W+fytB2snoWu/HZL3v30pYyDFTel1HR0fp6emhoaGB7u5uGhsbqa+vp6uri66uLsxmMwUFBTz00EOkpqaueNlXJYi12WxUVFRQXFzM2NgYHR0dHD9+nGvXrjEyMoLD4aCgoIBAIIDRaESn04X+Vi4SYu1HOVd51kMlmq38C923tXgMllvmSO/vXOVZa8d2NUidnFv4ckqvos/nw+fzMTExgcfjYWJigvb2dhoaGrh69SpvvPEGAwMDjI6OkpCQQElJCXfffTdWq3XNH8/prFYrBQUFVFZW4vf7cbvd1NbWUl9fz5UrV9i1axd5eXmhNispKYm4uLhQerVer0er1aLValGr1evu+CyF1Mm5rcVjIO3k2iZ1cm5r8RhEsk4qwapybeDxeEKvx8fH6e/vp6WlhYsXL9Lc3MyVK1fo6urC7/djsVjIz8+nvLycrVu3EhcXF4ndm7vswVXIkVIOSktLCxcuXOAf/uEfqKmpYXh4ONTYGwwGsrKy2L59O0VFRezcuZPi4mIyMjIWfMG0mC9yOV/69IvBhdzBWG6liPR2IrX/kVhfJLa52O0vtbxr9ftezmdX6zhLnVy9OhkMBvH7/bS3t9PR0cH58+e5efMm9fX1XLx4EY/Hg9/vJxAIYDabSUxM5I//+I/ZsWMHd91117oM0pSm0OVyUV9fzy9/+Uuef/552traQm0VgFqtxmAwEB8fT1VVFQUFBWRkZFBaWkpOTg6pqakkJycv+vhIndzYdTISpJ2M7HakTsbedyR1cmXrZDAYZGxsjO7ubtrb26mtraWjo4OWlhbOnz/PyMgITqcztKxyjZCbm8vDDz/MZz7zGYqKirDb7cDK30halSAWJg+O0+mkr6+PK1eucOXKFVpbW6mpqaGpqQmHw4FWqyU5OZn4+HhSUlKw2+3YbDZycnJISkoiISGB9PR04uPjsdvtJCcnh+56r7bl/AjXgtU6ea3UtqNhNU+GK7mt9XD81+o+zGUp++Tz+RgZGWFwcDCUBjQwMMDw8DAtLS0MDw+HJmRQXvf39xMfH09aWhqVlZXk5eWxefNmdu/eTWpqKmlpaSu0h9GnNMojIyO0tLRQW1tLd3c39fX1NDU10dfXR1NTEy6XC5hMQbbZbJjNZhISErBarVgsFlJSUkhISCA+Pj7UYxsXF0dSUhIWi4W4uDhMJtOC2661+nuWOrly61irx1PayeiSOrly64j14xkIBPB4PDgcDpxOJ4ODgzgcDsbGxkLXBSMjI/T29jI2NsbY2BhDQ0M4nU5GR0fp6+sjEAig1WopLCwkJSWF3NxcSktLycjIoKioiE2bNmGz2dDpdKtyLFYtiA0XDAa5ceMGt27d4t133+XcuXN0dHQwPDyM1+vF7/fj8XgIBoNotVqKi4vJzs4mMzOT4uJi0tLSSE9PJy8vb0rasVqtRq1WT3mtzKK5GgdT+QHH+g95payn/Y6FfYlmGWJh/yNhPdZJ5ZStBFxKj2kgEMDn84XeU1Jie3p66OjooK+vj8bGRtrb2+np6eHq1atMTEzg9/unpMKaTCays7MpLi7mwQcfpLS0lO3bt6PX66NywzBalJSqgYEBLl++zIULF0LZRL29vYyPj4d6rP1+P16vl0AgAEBycjLp6emkpaWRm5tLUlISSUlJ5OTkkJiYSFJSEvHx8Wi1WjQaTai9Cm+zlPeV17A+0iPXY51cjPW037GwL9JOLp/UybW538q1gNL+T/+jTEiotFF+vx+n00lvby9DQ0Oh64LBwUHa2tro7u6mt7eXzs5OgFA8pdFoQkNmzGYz8fHx7Ny5k4KCArZu3crevXtJTEzEZDKt+jGIShALTDnILpeL4eFhTpw4wfXr12lpaeHcuXN0d3czMjISashVKtWU1waDgcTERDIyMigsLCQpKYn09HRycnJISEggIyODzMxMjEbjlAk4FmMpP265+xdZ86VFrtfjEUu/PSlLdNY92/YAxsfHGRwcpL29naGhIbq6umhraws1SM3NzQwPDzM6OkogEJiS/hOeBmSz2di1axeFhYUUFxdzzz33kJycjN1unxJgwfoIohZq+s2C8D+tra10dXVx8eJFmpqa6Orqora2lq6uLoaHh0O/idn+qNVq7HY7drudtLQ0MjMziY+PJzk5mdTUVGw2G8nJyaSkpBAXF0dqamroYiK8fLFSD2KpLCu97lgl7eTKfkbKsvrlWetWuk4qMVRfXx+jo6MMDAzQ09ODw+Ggr6+Pvr4+HA5HaNKlkZERBgYGQjdbw68Lpv+x2+2kpKRQVlZGZmYmubm5VFVVkZWVRUFBQSimCr/ZGo3vN2pBbDilx6C9vZ3+/n6Gh4fp7u6mv7+foaGh0JgkpZtbmVjD6/ViNBqxWq3Y7XbMZjMWiwWbzYbRaAylcJlMJuLj40Ov4+LisFgsoWXMZnPofaPRuO4eHREt6zUlQ4iV4PP58Hq9OBwOXC4XLpeLkZER3G434+PjjI6O4nK5cDqdDA0N4XK5GB0dDb0/NjYWeu1wOBgeHg71tCrnPyXN1WazkZ2dTVJSUuhGYEJCAgkJCeTn52MymTAYDNE+JDFLGRfU3d0depZsf38/IyMjjI6O0t3djcPhwOFwMDAwgNPpDKVvKd+twWDAaDSG0osNBgNmsxmz2TzltV6vx2KxTGmzjEYjBoMh9J5er8dqtWIwGNDr9cTFxaHX60PridYFhpiftJNCxJbVrpOBQAC3243b7cbj8eB0OnG73UxMTOB0OpmYmJjy2u12h9p6pe2fmJgIXR9MTEwwPj7O+Pg4ExMTodRgZRmj0YjRaCQhISEUDynXBTabjfT09NDr5ORk4uLiQkOM4uLiVm2860LERBA7G+VC7MKFC7S3t9PV1UVdXR3d3d2huwrh6XPh6XXKa+WhuykpKaSlpYW+iMTERGw2G6mpqaHXyhenjFWaqfd3ttfhf4QQG094z930PzP1hE7/t9KIKYHR8PAwXV1dofOgkpkyMDBAR0cHLpcLj8czJRV1+h+NRoPBYCA7O5uUlBRKSkrIzs4mIyODbdu2kZGRQVJSEhAbDdJap1xg1NXV0dXVRU9PD83NzfT399Pf309raysjIyMMDQ2F0sCVdK+ZesqV1wDx8fFYrVbS0tKw2WxYLBaSk5ND43BTU1NDwW5KSkro/YSEhDvuli/1j0J+K0KIjSo8bJqtJ3Mxf3w+Hw6Hg9HRUZxOJ/39/aHXytMBxsbGGBwcZGxsDIfDQU9PD6Ojo4yMjBAIBKbEJcq5Pvzv8D/x8fHYbDby8vJISUkhMTGR3NxcMjIySE9Pp6ysDLPZjNFojOJRXpiYDmJnGvMVnuPd3t5Ob28v7e3tNDc3MzAwQHd3dyilrquri/Hxcfx+/4KDUp1Oh16vD91xsFqtoQsCpSdD6e0Nf52YmBi6uyGE2HiCwSAejwePxzOlwRkeHg69HhoaYmhoKPT/Si9eX18fLpcLt9s9b7CrvFZSebKyskhISCAzM5OsrCwSExPJzs4mPz+flJQU8vPz0ev1M469DJ9lWAKT5Qv/fsL/hL+nPNKopaWFwcFBenp6pqR69fb24nA46O3tDY29dbvdoe9nscGoTqfDZDJhtVqJj4/HbDZPeR0XFxe6eavcfVdeh2cyKT2+Sx2aI4QQ64FyPvd4PLjdboaHh0O9oCMjI6HeUeV9JStHyZ5yOByMj4+HMneUXtfwMa6LCYKVsapJSUmhm5wpKSmhoSnp6emhbKucnJxQhs/0gDd8Doa10ikX00HsXILBICMjI6EfSvgMWkqqncPhCP2glPQvt9vN2NhY6MIg/LXT6Qx9kVardUrKlsFgwGAwYLVaQ2laymuj0YjZbA4FwAaDAa1WG0rt0ul0oc/P9L5yYaBMUqU8J1eZaEUIsTKUyQ6U56T6fL5QSo/X68XtduP1ekPve73e0PvKM9Rmeq2k83g8nlDj5vF4GB8fx+Vyhf5fabzGxsZCk9qZTKbQDTFlaET4a2ViBWUIhDKUwmazhQITu90emi03MTFxXT4SZ61SAtmhoSHGx8dDd9aVNmhsbCzUNo2OjoZ+H+GpYcrvRrnxMdNr5YZK+M1ZJRBVUpmVNshkMoVehz+r3WAwTHluu9Kzr7RNSnul1WqnTA6mvFa2q9Fo7nitfG6mdWykCcSEEJGltOvKxHtKm6xMwKe06eGvlTZf+Vz4c1Jne19Zh3LNoFwDeL3eUNuvPH9deT/8tXIt4PP58Pv9oXOh0guqBKdK/BD+Whk+otyIVK4NlNcWiyUUxyg3KpVrA+Vcvh6s2SB2IYLBIENDQ4yMjIRm5BwZGaG7u5u+vr7Qa2UsU19f35ReX2Ud0//M9D5M9mRotdrQ3Wul93b6XW2bzYbVag3d4VbG5Cqvlcc1KD/i8Dsi8/0933sL/ay4U7TGIMXS2KeVLsv001F4fZvp79lez7bc9PcnJiZC41CdTmfohpcSNCg3wZTX4+PjOJ3O0F3V6XdeXS7XlPOB8vdMaZnhkyUpfzQaDQkJCaEgVJnwJzExccrkP7m5uaGJF5S7pmJ9Un6f/f39oR7aoaEhRkdHQ735DoeDwcHB0HwRSs//2NjYjG1Z+L9nez1THVKpVKGbKsoNXuWmizI+12QyTXmtXGxNf63cHA4fB6z8f3hv70Lbq0i9nu//xNyknYytsoRbyXLN1nav1uvw85UStCo3j2cbN+p0OqfcHFSCyumvlaE+SkeYMk9FuOnt/Wyv5/o/q9Ua6lFV5rFISkqaMj5VyaJRhkcmJiaGHje6Ea37IHZ6SrKSijz9tZIaoHTvK7N6KTN+hU/SMTo6ekeKYHgqQPiPdabUr9nSwaa/r9Fo0Gq1d/TAKHfLw++eK+kB4XfPTSYTJpMJvV4f+lt5X7kQUQJl5f2FnODmOxFG6kS5WttZjPW8zdXct9m2FQwGQ3cxvV4vo6OjodfKXU3l/el3O5UJEZQ7ny6XK7RMeOaF0igpvVzh54Ppfxb7vrJfyuyzVquVpKQk7HZ7aAyjMrZx+uvwSRbC03rmer0RZw3eaOZLUQ7/v+ltns/nY3Bw8I4spbGxsTvS3pTJw8InB1Nu1oyNjU0p00LHzyp1YSGfAaakuisBcnhwq/wJb7OUxz9YLJZQD0N4L7PS26u0l0o2VHiPcnj7qPQGK+teaq+wtJPrc5ux0E7GIuW843Q6Qz2USrustNvhvZbTs5d8Pt+UNltZ3uVyhc5lyrqVyWBnCy6VZRaajgvM2XE1W0eWInxyWCVLSgk2p2dMhU84q2RPWSwWEhMTQ+evuca1zvV6I1rXQexiKBVQudhVGnLlwlepHEplUdLAwmcMC6+0yp2g8Moa/r5SQWd6rVRo5QeqBJpKMKqkHCg/+PCGV2mklWc6zfR++PJKelf4Msof5WIi/HPKHfLwiqPcAVLS1uDDXunwAH36RbiSzjD9/5RnUynrCX9ocvgzgMOFp6DNFhzFWkO/UpRUmulVW2kIlBNxePAWfqMHCDUCyuemXzj7fL7QepVnOiufm35hrawnEAiE0nKUP8p2lLSf8GWUFF5lmfC6oaTgKI1l+PvhKUPhqUTK+pR65nK5QsdD+e0qF7hK/Zrp9UzLKPVHGQYQngakNFjKTOrhvU7hyygN4Wo9JFysb0o9nH6Bp9zkGR8fD11UKu+73e7QhaQy82V4Wv30lDql7s32/vTXSj0Pr5/K6/AMKLVaPWWoTXjdU9o9pY1T2gODwRBqR8LbRqV9CR8XHt4eqtXqKe2gsu7wzyqvlX8rf8LbyJnarvB2UNkv5TMKpe1a7DLTxyYr543wZZT2OHyZmdIIZyrrTNZTO7nSlB7B8MAnXHh7rPB6vXcEVl6vd8rnwp9HrSwbvsz0dnemNnumZcKvB5TyTX/+uPJaab+V95RyBwKBKTeGw9vg8OdpK+tTzg/K8uHpv+Epwcp2JiYmpmxz+vAe5Tpa2Q+lToZfLys3q8KHNcz1OvzcED5kIvx6WTlXhQ8tVDqawt9XruGVm2wmk2nKbPTLuWm2UUkQGwHBYDA0BXb43WsltUu5qz06OhpKS1TSFZSJXcbHxxkeHg6lN7hcrtCJStnGTK8j8e9wSi+vUuGUfyuVzGQyhRp6pQIrk1lptVosFgsw2YCGV0rlBKA0tMp6gSmBgHJxYDQaQ422xWIJNbzK9qenTigni4VYiUZ4tsA50hayTuVErjRQCqVHUmlslBsrSmPhdrtDn1HueAaDwSl3RZVlXS5XqDwOhyPUmCp3TcMbq4mJiVC5wm/4KDeJPB5PqFdUudidyVwpfwtdZqaURKWRs1gsoWwH5XVCQkLo0V3hr5XUf4vFErrDqjzqS0mtFGI9mW1OCSVAVsb1Tr/xq9zsVXp6lZ6T8JQ+JYNi+kU9zN32rcR70ylzZIT32io3gsPHFCsXv0q7pgSiRqMx1H6FX/QqyygBurJM+PhgmDxXhfc4K8sobabCbDZPuZmr9E6Hn+ssFsuM7aRSVrPZPO/xCLfaAe1qtbOzWcy2gsFgqE2d3hYDoZtG4YHj2NjYlGV9Pt+ULIhgMBi6+QQfPidUadeB0BwPyjJKUBg+1CV8HKiyjNLOK9edSnustNXhc0MoN8KU6wJlAtX5js9C2uzZ3l9se690lig3lJUhDuFjRZV2fqabzTO9Dl8mfL6KjdwTGm0SxEZAeHrBTLNRLva1csdJuQhQLg7CXysBQPhAcSWdUjm5KL1OM72vBDCjo6N37M9CZr+EmccqzfZ6rv+f7//C70xN/7/53p9pOavVOu+ySuBtMpnmXWf43T1gSq/DfOYL3BTKjRLlDuZ8y4b/Hf7+9AvC8GXD/2/6DZTp65ztswtZbiGpOvDhxVv4pDTKn+nvKxeS4e+Hp9KH34hRGjAlWFVu2iwmbWch/y/EejI9hXmu1/P9/0yvlQtpZSza9GclKq+VC2a/3x+62Rae+RR+ca20dcpNNSXVMPxiPHyCFqfTOeOF+Gzt32zvTf9c+L/D/57vM7P9vZBtAXech+ZqJxfahoYL75laKOUG92Iu/JWMrOlPf5grSJxNMBhkdHR0UQFp+I3exZitLVbem/7+9LZ9vmUW0u4udN0z/Tv8/fDe4envz3YslZs/Go0m1AERnrlksVhC/z89xV/pSAnvAFFu5mi12tDEqspztMOfux0+5E6ZM2K+x2Mu9rGa4a9BhvREiwSxMUhJQwlP+5qeAqY02ErjrNxFUxrw8Dtryl246bOqKe8rqRxKCofSS6fc5Zue/hmecqqcwMKfzTs9fSU83WV62spMY7zCPzdTyutyLSQwVe7iKXfM5xKevgYfpuFMTwOaSXjv5lyUYxh+13YppqeMhaeuzjQWQ9knlUo15Q5+eKq4RqMJfT+9vb1YLBaSkpKm9KyHry88DS88NTC81z48JT58xtPw3o/w95XAdfry4e+H95ood2fDU/WlERIiepRzf/jM4NNnCVdeK21GeBATPtvo9H+Hrzs8TVFpB8PH2YW3Q+Fpl9NTKMP/rZyfpwfw4ed15d/hwcD0ZaandIYvo9y8NhqNU26Uha9X+dz0NNbwNjiSwocdLZRKpQrtw2KCWKU9CBeearpQSsbQYtrR8BTWSJs+fGR6SjrcOVxKacfDPxOeijrTMjPNozB9PGV4Wx1elvChY8oy09vt6e27chM6PJ0/vG1XAtrw9P3wFP7wDIXwQDc8wyF8GE/4Te3w6wW5oby+SRArQnejw4Nlh8MxZYyU8v7o6OgdKadKz3H4+AblLjlMNgCjo6OhxlkJqMPHQynjKpUJeYAZx0TOlCYbLYupOrEQICkNjTJxEHx4p1S5sJg+floJ+DUaDTabDZjcFyVVXGmclIvCU6dOkZ2dTVVVFTabbUqqndLwKIFj+Gyl099XUnyEEGI1hbdf4fNVhD8aQ2kbw8fihbdxSnsVPuxCac+U9is8PVNZJnxeDGUZpQe5r6+P7u5ukpOTpwzNCW8nlTYpvG1W9mlsbGzOXrNYs9RyxkJbu1AqlYq4uLgpvXpKD6VCabPD5x5RUsWVdYSPGwdCgV/4ZJ3KjV/lRoASOBoMhtAy4dcAyjJxcXGh9SntsrKe8PGdStCoXBts1NlyxeqSX5kIBS1Go/GOntXpd5bD73iG3zGenlaiLB++7GzLLeVzwJSxIXNRZsybr1FU7lYvJGVI6QWYLw04fEKA+RrX8GcozmX6JCZzCX82o7L98M9MnywEpqaVhS8bfrd9ehrNq6++yk9+8hNaWlpwu92YTCb++q//mrS0tDu2MT2FZ6b31tKFiBBi/VDOSTabbcY2ED5sp2b6P+X/Z0vXnJ76OdvQDeXfbrebb37zm5w5c4br16+j0+l4/PHH+dKXvhQKFKZ/Lryc099TKAHzYrJ7gsHJicIW0/O51FTcxaYKK9/bYsf1LiUlevq8HQuhUqlCKbPTyx2+zEzvzZQ6vpBlpvfwhm9jrs9M/9z01Nu50nKXkpYuxFJJECumnJDWEiUVej6BQCB0R3y+5ZRJERayrJKaNpfwVJr5hKfOzEVJ7Z1plubpwlN2V7JhKSgooLy8nNOnTzMyMkJLSwtDQ0MkJyeTnJy8YtsVQohICk+tjLaxsTH6+/vp7OxkcHCQYDBIWVkZ5eXlFBUVLeu8rqRTr3Qqbnj69mLLFz5j/nyUa5jp42bns9B2N5wyo/VSxvUudAJKIcT8JIgVa9ZCxrYqlFRYsTKqqqpISUnhZz/7GZ2dnVy+fJk333yT8fFxHnjgAWBtpXkJIUS0KEFiT08PV69e5fXXX2d4eBi9Xs9nPvMZduzYsex0TSX9c7Hi4uKWtV0hhIgUCWKFEMsWFxdHXl4en//85zl69ChvvfUW3/3ud+nt7aWoqIjs7GwZ4yqEEAsQDE4+SuXtt9/mu9/9LmNjY5SUlLB7924OHTpEenp6tIsohBBRt7byR4UQMUmZ9GH37t1s2bKF5ORkuru7qauro7q6etHjqIQQYqPy+XzU1NRQU1NDfX09BoOBgoICDhw4QEpKyqLHfQohxHokQawQIiI0Gg33338/9957L7t370aj0XDlyhW+9rWv0d3dHTOzSgshRKxSxp1+85vf5L333mNwcJCMjAzuvvtuPve5z02ZuVYIITYyCWKFEBFVVVXFl770JbKzs/F6vdTX1/PCCy/w/vvvR7toQggR0+rq6njjjTd47733aGlpwWKx8Hu/93s8+OCDUx6HIoQQG50EsUKIiFBmuU5KSqKiooKysjJSUlIYHR3l/PnzXL16dcpzhoUQQkxSHqfT0NDAmTNn6O7uRqfTUVBQwK5du8jLy1vxWeaFEGItkSBWCBFRRqORlJQUvvCFL/D4448TDAZ55ZVXePnll7l27Rrj4+PRLqIQQsQUn89Hd3c3r732Gv/6r//KxMQEO3bs4Nlnn6WiooLU1NRoF1EIIWKKBLFCiIhSnte3Y8cO7r77bo4cOYLJZKKuro6vfvWrNDU1MTExsahnDQohxHoVDAZxOBx8/etf58yZM3i9XkpLSzl06BBPPPGEpBELIcQMJIgVQkScSqUiJSWFoqIi9u7di81mw+FwcObMGRobG+nt7Y12EYUQIiaMjIzQ3t7OyZMn6ejoQKPRUFFRQXl5OQUFBWg0mmgXUQghYo48J1YIsWK2bt1KXl4e586d48qVK7S3t/O9732P1tZWfu/3fi/axRNCiKg7ceIER48e5dy5c2g0GjIyMvh//7//32RnZ6NWS1+DEELMRIJYIcSK0Wq1WK1WPv3pT5OVlcX3vvc9zp49C8DBgwcpLi7GZrNFuZRCCLH6PB4PHR0dHD16lNdeew2fz8ddd93FwYMHyczMxGKxSBqxEELMQm7xCSFWjFqtRq/Xs3fvXnbu3ElCQgLd3d3U1tZy4cIFhoeH8fv9Mj5WCLGhKLMRX79+nWvXrlFfX4/FYqG8vJyDBw9is9nQ6/XRLqYQQsQs6YkVQqy48vJy/H4/t27d4vnnn6exsZH//t//O6mpqcTFxWG326NdRCGEWDUej4e2tjb+/M//nLa2NrRaLffeey8PP/wwDzzwgPTACiHEPKQnVgixopTnx2ZmZvLUU09RWlqK3W5naGiI119/nddffz3aRRRCiFV1+vRpfvnLX9LR0QFAZmYmn/nMZ9iyZQtqtVqCWCGEmIcEsUKIVZGYmMjevXspKysjIyMDt9tNdXU1J0+exOl04vP5ol1EIYRYUYFAAJfLxcWLFzl27BhDQ0NYrVYKCws5fPgw2dnZ0S6iEEKsCZJOLIRYFSqVCr1ez2//9m+zdetWvvjFL3Lp0iUcDgd79+7l0KFD5ObmRruYQgixYkZHR6muruYXv/gFx44dA+ATn/gEH/nIR0hKSpLH6QghxAJJT6wQYlUo6XGZmZmUl5fz0EMPkZCQQH9/Pz/96U+pq6tjZGREJnkSQqxLLpeLjo4OfvCDH9DU1IRer+fw4cPs2LGDkpISSSMWQohFkCBWCLFqVCoVCQkJFBYWcv/995OamorT6eSdd96htraWnp4eAAlkhRDrRjAYJBgMMjw8TFNTE6+99ho9PT3ExcVx6NAhtmzZQlZWljwTVgghFkHSiYUQqy4rK4vf+I3foLGxEa1Wy9WrV/m///f/cvXqVb7+9a+j1WqlR0IIsa58+9vf5r333qOvr4+MjAwqKir43d/9XeLi4qJdNCGEWHMkiBVCrDq1Wo3RaOTQoUNoNBrq6uro6uri+vXrnDlzhs2bN5OamhrtYgohxLKNjo5SV1fHxYsXqa+vR6VScdddd3Hw4EHi4uLQ6XTRLqIQQqw5krsihFh1KpUKtVrNwYMHuf/++4mPj2dkZISbN2/y3nvv0dnZid/vl7RiIcSaFQwGCQQCDA8Pc+zYMa5evUpbWxsWi4WDBw/y6KOPotfrJY1YCCGWQM6cQoioSU5OZvv27fz5n/85mzZtYmBggH/8x3/knXfe4datWxLECiHWtO7ubs6ePcv/+l//i1u3bpGRkcGf/MmfcO+995Kfnx/t4gkhxJol6cRCiKjRaDTYbDb27dvHmTNncDgcdHR0UF1djcViITc3F51OJz0VQog1RZnM6eTJkxw/fpzBwUESEhIoLi7m7rvvJi0tDa1WLsGEEGKp5AwqhIiquLg49u3bx6lTpxgZGaG1tTV00ff0009jtVrR6/XRLqYQQixYIBDA4/Hw2muvceLECTweD7m5uWzbto27775bbswJIcQySRArhIgJTz/9NKWlpVy4cIGRkRGuXLnCN77xDR555BF27doV7eIJIcSCNTc388ILL3Ds2DHa29tJSEjgv/23/8aRI0ckgBVCiAiQM6kQIiYkJiZSUFDAoUOHSE5OZnR0lOPHj4eeHxsIBKJdRCGEmFMwGGRgYIDGxkY++OAD+vv7MZvNHDx4kE2bNpGWlgYgjxATQohlkiBWCBETTCYTmZmZ/Nqv/RrFxcW43W7eeustqqurqa+vJxAIyERPQoiYpZyfmpubuXjxIq+99hojIyOkp6fzq7/6q2zatIm4uDgJYIUQIgIknVgIETMsFguHDx+moaEBnU7Hm2++ySuvvMKtW7f4j//4D+Lj42V8rBAiJvl8PlwuF//4j//IuXPnCAQCHD58mAMHDvDggw9iNpujXUQhhFg3pCdWCBEzNBoNcXFxVFRUsH//fmw2G8PDw9y8eZMLFy7Q3d0d7SIKIcSMBgcHOXfuXGgIhMViYefOnezcuZO4uDiZjVgIISJIglghRMy5++67efrpp8nKyiIYDNLW1sb3vvc9rly5Enp0hRBCxALlnNTY2Mi///u/09DQgNvtJj09nSeffJKHH3442kUUQoh1R4JYIUTM0el0ZGRk8OUvf5k9e/bg9Xp57bXXeP3113n//ffxer3RLqIQQgCTQeyZM2d4++23ee2113A6nZSVlfE//sf/YPPmzRiNxmgXUQgh1h0JYoUQMUetVmM0Gtm+fTtlZWXk5OQwNDTEjRs3OHXqFE6nE5/PF+1iCiE2OGUcbHV1NVeuXGFwcJDMzExKS0upqqrCZrOhVqtlMichhIgwGaAhhIhJer2e0tJS7r33XgKBAM899xynT5+mubmZj33sY2i1WqxWKyCPqxBCrL5gMMjExAR9fX18+9vfpr6+HoAHH3yQw4cPU1ZWFuUSCiHE+iU9sUKImLZv3z4++9nPsmXLFiwWC729vfzv//2/ee+996JdNCHEBqWMg7148SJ/+7d/S2trKzqdjtLSUj7+8Y9zzz33RLuIQgixrkkQK4SIaUlJSRQWFrJz507S0tKYmJjg7Nmz3Lhxg+7ubgKBQLSLKITYYILBIF1dXdTV1XHmzBnGx8dJSEhg9+7dFBUVkZqaGu0iCiHEuiZBrBAipqnVauLj4/mjP/ojDh06hEaj4eLFi7z33nu89tpruN3uaBdRCLHB+P1+fvnLX/L6669z8eJFAKqqqvjyl79MVlYWarVcXgkhxEqSMbFCiJimUqnQaDRkZ2dz+PBhxsfH+eEPf8jly5cZGxtj165d5ObmYrfbo11UIcQG4HA46O7u5vnnn6e+vh61Ws3TTz/N4cOHyczMRKfTyTh9IYRYYXKrUAgR89RqNVarlU2bNnHXXXeRkJDA6Ogo165d49q1a3R1dcnzY4UQKyoYDBIIBOjr6+Pq1avU1tYyODiI3W5n7969bN26FavVikajiXZRhRBi3ZMgVgixZlRWVvL000+zd+9e0tLScDgc/P3f/z2vvPKKjI0VQqw4r9fL+++/z1/91V/R19dHSkoKhw8f5oknnmDXrl3RLp4QQmwYEsQKIdYMlUqFyWTi85//PIcPH8ZkMtHU1MTp06f5xS9+gdPpjHYRhRDrlMfj4YUXXuDo0aO0trZiMpmoqqri85//PHa7XVKIhRBiFUkQK4RYM1QqFTqdjj179lBRUUFWVhYOh4OGhgaOHz/O8PAwHo8n2sUUQqwzHo8Hh8PBiRMnuH79Og6Hg6ysLMrKyti7dy8mkynaRRRCiA1FJnYSQqwpKpWKlJQU7r//fiwWC3/6p39KTU0NDQ0NHDx4kMrKSgoLC6NdTCHEOtLe3s7Vq1f54Q9/yMjICHq9nj/6oz9ix44dJCYmRrt4Qgix4UgQK4RYU5SUvezsbPbv38+ePXuoq6ujvb2dH//4xwwMDJCdnY1Wq5XHXAghliUYDOJyuaiurubFF19kfHyc7OxsysvL2bFjB7m5uZJGLIQQUSBXeEKINSkhIYGSkhJ27txJfn4+KpWKkydPcv78efr7+/H7/dEuohBijfP7/fT09HDlyhWOHTtGMBgkJyeH/fv3U1BQIL2wQggRJdITK4RYs/R6PX/4h39IVlYWDQ0NdHZ28v7772OxWPjSl75EZmZmtIsohFjDnE4nf/M3f8OZM2fo6+ujoKCAhx56iN///d/HarVGu3hCCLFhSU+sEGJNs1qtVFRU8Mwzz2C1Wunu7ubdd9/l6tWrtLe3R7t4Qog1qqWlhTNnzlBdXU1XVxcGg4FPfOIT7N27F7PZLGnEQggRRRLECiHWLJVKhcFgoKioiEceeYSkpCTGxsa4dOkSV65cobm5mUAgQDAYjHZRhRBrRDAYxO/309zczNmzZ6mrq2NsbIzExEQeeughtmzZglarlSBWCCGiSNKJhRBrXkZGBklJSTz99NOcPHmSo0eP8s///M/U1tayZcsW4uLi0GrldCeEmJ/f76ejo4MXX3yRH/zgB3g8Ho4cOcLDDz/Mzp07sVgs0S6iEEJseNITK4RY89RqNXq9nnvuuYd9+/aRlJTEyMgIdXV1vPLKKwwODka7iEKINSAYDDI2NsbPf/5zrl69itPpJDs7m6qqKg4ePIjRaJRZz4UQIgbImVgIsS6oVCoOHDjAnj17yMnJwev10tTUxC9+8Qv6+vrwer3RLqIQIsZ5vV6GhoZ46aWXqKurIxAIsGnTJrZv386ePXsko0MIIWKEKiiDxYQQ64ByKuvp6eH69et84QtfoKmpCbVazV/91V9x4MABDhw4IOPYhBCzeuONNzh27Bhf+9rXUKlUpKSk8KMf/YiCggJSU1MB5BwihBAxQG4pCiHWBeXC0mazUVxczK5du9BoNNy4cYPjx48TDAaprKzEbDZLb4oQYgqfz8fAwAAXLlzgxIkTTExMsHXrVnbs2EFubi42m02CVyGEiCGSTiyEWFfMZjPZ2dkcOXKEHTt2oFarOXr0KO+88w69vb14PB6CwaDMWCyEACazODweD7du3eL06dMcP34clUpFVVUVH/3oR0lJScFkMkW7mEIIIcJIECuEWHdUKhVPP/00zzzzDJWVlQBcvXqVv/iLv6C+vj7KpRNCxBKPx0NLSwt/8id/wunTp9HpdDzwwAM89thjPPDAA5K5IYQQMUiCWCHEuhQXF0dhYWHo+bEul4urV69SU1NDY2NjtIsnhIgRdXV1nDlzhsbGRiYmJkhKSuKBBx6guLgYs9ksacRCCBGDJIgVQqw7KpUKtVpNfn4+//W//ldyc3Px+XzU1tZy/Phxzp49KynFQmxwwWCQQCDAiRMneOWVV+ju7kar1ZKTk8OnPvUpysrKol1EIYQQs5AcGSHEumUymcjJyeHXfu3XKCws5Dvf+Q4vvPACjY2N7Nixg8zMTOLi4qJdTCFEFIyNjXHx4kVeeeUVjh07BsDHP/5xHn30UZKSkiSNWAghYpj0xAoh1i21Wo1Op6OyspKqqioyMjIYHx+nubmZDz74gL6+PgKBgPTICrHBeDwe+vv7effdd2lubsbj8VBWVkZFRQVlZWVotVrUarlEEkKIWCVnaCHEurd7924OHz7Mjh07MJvNdHZ28i//8i/U19fj8/miXTwhxCpRhhE4nU6ampp47rnnaGxsJC4ujscff5x9+/axadMmCWCFECLGyVlaCLEhFBQU8OUvf5nKykq0Wi21tbX87Gc/48UXX5SeWCE2mO9///v8y7/8CwMDA6SkpLBjxw5+8zd/k9LS0mgXTQghxAJIECuEWNdUKhUqlQqz2UxJSQmVlZWUlJTgcrm4du0aZ8+eZWhoiImJiWgXVQixwtxuN83NzVy+fJnr168TCAQoKSlh165dZGVlYTabo11EIYQQCyCzFgghNgSdTkdSUhKf+MQnyMjI4Pz585w8eZLu7m6eeuopSkpKSElJAZBHagixDgWDQQYHB3n11Vc5ceIEtbW1GAwGnnzySR599FH0er3UfSGEWCOkJ1YIsaFUVFRw5MgRHn74YVJSUuju7uav//qvqa6uxu12R7t4QogVEAwG6enp4cKFC/yf//N/aG1tJTU1lS984Qvs37+fnJycaBdRCCHEIkgQK4TYUGw2G1lZWezfv5/09HQCgQBXrlzhxo0bNDU1yfhYIdYZZTKnuro6Ll++TGNjIxqNhszMTA4cOEBmZiYmk0l6YYUQYg2RdGIhxIaTlpbG7/3e79HS0kJvby9dXV28+uqrjIyM8Jd/+ZcyM6kQ60gwGMTv9/O9732PEydOMDExwZYtW9i/fz8f/ehHpb4LIcQaJEGsEGLD0Wg0mM1mnnrqKdLT0/nKV77ClStXGB0d5ZFHHqGoqIj09PRoF1MIEQHt7e28/fbbnD9/ns7OTmw2G8888wyHDh2SAFYIIdYoCWKFEBuOSqVCp9NRVlaG1+slPT2dwcFBmpubqa6uxmQykZSUhFarlRRDIdaoYDCIy+Wio6ODY8eO0dnZSSAQYPPmzVRWVoYepyN1XAgh1h4JYoUQG1Z+fj5Go5Ff+ZVf4bXXXqO2tpavfOUrAOTm5pKYmCgXuEKsYfX19Rw7dozvfe97+P1+ysvL+ZM/+RO2bdtGfHy81G8hhFijJIgVQmxYKpUKu93Opz/9aQYGBhgZGaG/v593332XYDDIb//2b2MwGKJdTCHEIvl8PtxuN//5n//J6dOnCQQC7Ny5k3379rF//34SEhIkgBVCiDVMBoMIITY0o9HI1q1b2bJlC8XFxfh8Purr6zl58iSDg4Py2B0h1qDx8XHa2to4e/YsdXV1aLVatm7dSlVVFVlZWRiNxmgXUQghxDJIT6wQYsPT6XR84hOfYPPmzZw7d47GxkZ6e3t5+eWX2bdvH5WVldEuohBiEWpqanjuueeoqanB7XaTnZ3Ns88+y65du6JdNCGEEBEgPbFCiA1NpVKhUqlITk5m8+bNfOQjH6GwsJDx8XF+9KMfcebMGQYGBggEAtEuqhBiHoFAgKtXr1JdXc2JEycYHx8nPz+f3/zN3wyNgRdCCLH2SRArhBCA1WolPT2dw4cPk5+fj1qtprq6mqtXr9La2orf7ycYDEa7mEKIWQQCAXw+HzU1NVy9epVbt25hNBopLCzkgQceIDk5WWYcF0KIdULSiYUQ4ra4uDieffZZnE4nDoeDc+fO8corr9DU1MR3vvMd7Ha7XAALEaNcLhf9/f187Wtfo76+HpVKxSc/+UkOHTrE9u3bpe4KIcQ6IkGsEEKE0el07NmzB7/fT21tLcPDw9TW1vLBBx+wZcsWSkpKol1EIUSYYDBIMBikrq6O119/nc7OTlQqFTk5ORw5coSqqirUakk8E0KI9UTO6kIIcZsyPra8vJz77ruP1NRUfD4f7e3tnDhxgsbGRrxer6QVCxFjxsfHqa+v55e//CVDQ0OYTCY2b97Mzp075caTEEKsQxLECiHENHa7nZKSEv74j/+YAwcO4Ha7ee655/jFL37BzZs38fl80S6iEOI2n8/H888/z0svvcSZM2cA2LdvH1/96lfJzc1Fo9FEuYRCCCEiTYJYIYSYRqVSYTAY2Lt3Lzt37qS0tBSPx8Ply5f5yU9+gsPhwO/3R7uYQmx4TqeT7u5u3n77bWpqaggEAhw5coQDBw6QlZWFTqeTsbBCCLEOSRArhBAz0Ol0VFZWsn37diorK1Gr1dTV1fGzn/2M/v5+JiYmol1EITYsZRzsyMgITU1NHD9+nIaGBgwGA/feey/79u0jKSkJrVam/hBCiPVIzu5CCDGH++67j02bNnHx4kW6u7upra3l3/7t37jnnnt47LHHol08ITYsr9fLW2+9xXPPPUdfXx/p6elUVlby1FNPkZOTE+3iCSGEWEHSEyuEEHOwWCxkZGTwwAMPUFJSgsfj4eTJk1y4cIHW1la8Xm+0iyjEhuPz+Thx4gQXLlygubkZrVZLSUkJjz/+OImJieh0umgXUQghxAqSIFYIIeag1+ux2+189KMfZfv27ajVas6cOUN1dTW1tbV4PB6ZrViIVRQIBHC73bz22mucPXuWnp4ebDYbFRUVfOxjH8NqtUa7iEIIIVaYpBMLIcQ8tFotBw8eZHR0lNHRUV555RVOnz5NT08P3/nOd8jPz8dkMkW7mEJsCK2trVy/fp3vf//7DAwMoNfr+fM//3P27NlDUlKSPBNWCCE2ADnTCyHEPFQqFUajkZKSEu6//35SUlLw+Xy0tLRw+vRp6uvro11EIda9YDDIxMQEtbW1vP322wwPD4d6YLdt20ZOTg4ajUZmIxZCiA1AglghhFig0tJSPv7xj1NQUIDRaKS/v59f/OIXnDx5kkAgIGnFQqygYDDI6OgoZ86c4fnnn2diYoK8vDzuvfdeKisryczMjHYRhRBCrBIJYoUQYoG0Wi02m40//dM/5aMf/SgAb7/9Ni+//DJvvvkmo6Oj0S2gEOvY2NgYX/nKV3j11Vfp7+8nJyeHhx56iN/93d+VcbBCCLHBSBArhBALpFKp0Gg0bN68mS1btlBeXo7H46G5uZl3331Xnh8rxArp6+vj5s2bnDt3jo6ODtRqNQcOHKCiooLU1FQ0Gk20iyiEEGIVycROQgixCGq1msLCQnbv3k17ezudnZ3cunWLb3/72zz88MPY7Xb0ej2AjM0TYpmUFP2GhgZOnjzJ6dOn8fl82O12nn32WTZv3hyqb0IIITYOCWKFEGIJtmzZQmpqKhcvXuTGjRt0dXXxjW98gyNHjvA7v/M70S6eEOuC3++np6eHl19+mZ/85Cd4vV727dvHkSNH2L59OzabLdpFFEIIEQUSxAohxBKYzWYyMzPZs2cPfr+fzs5Orl+/TlJSEs3NzWRkZGA0GqNdTCHWrGAwiNvt5uzZs9y4cYPOzk7sdjubN29m3759xMXFSS+sEEJsUDImVgghlkCtVqPX63n22Wd59NFH0ev11NXVcebMGd58802Gh4dltmIhliEYDDI8PMzXv/51qqur8Xq9lJaWcujQoVCdE0IIsTFJECuEEMuQlZXFXXfdxX/7b/+N5ORkbt26xT/90z9x6dIl+vr6JJAVYomOHz/OD3/4Qy5cuIDD4SAtLY0/+7M/49ChQ6jVcvkihBAbmbQCQgixRCqVCqPRSFZWFvv37yc9PR21Ws2tW7e4cuUKN2/eBJBAVohF8Pv9OBwOrl+/TnV1NSMjIyQmJlJeXh6ajVilUsnEaUIIsYHJmFghhFimnJwcMjMzefvttwG4evUq3/3ud2lpaWHv3r3y+A8hFsHj8XDz5k3eeOMNXnnlFQKBAEeOHOGjH/0oWVlZ6HS6aBdRCCFElElPrBBCRIBarebZZ5/lmWeewWq10tbWxtmzZ3n++efp6uqKdvGEWBM8Hg8dHR185Stf4dKlS+h0Oo4cOcI999zDgQMH5IaQEEIIQIJYIYRYNiW1sbS0lIqKCoqLi/H7/XR0dHD8+HG6uroYHx+XtGIh5tHT08PNmzc5d+4cQ0NDWK1W9u7dy6ZNm0hNTZWxsEIIIQAJYoUQIiJUKhUJCQlUVVXxB3/wB2RmZtLV1cW3vvUtTp48SXNzc7SLKETM++Uvf8m///u/09LSglqtprCwkC9+8Yvs2LEj2kUTQggRQySIFUKICFGpVCQnJ3P48GHuvvtutmzZgt/v52c/+xk//OEP8Xg8+P3+aBdTiJgzNjZGdXU1R48e5dSpUwA88MAD/Pqv/zrx8fEyDlYIIcQUMrGTEEJEkMlkIicnh6qqKsbGxqirq+PGjRvo9Xo6OjpIS0vDYrFEu5hCxAxlNuJz585RV1dHd3c3KSkpbNu2jX379mEwGCSNWAghxBSqoAzSEkKIiAoGg4yOjnLq1Ck+//nP09/fT3x8PJ/61Kf43Oc+x/bt26NdRCFixvDwMBcuXOCzn/1saBzss88+y9NPP82uXbsA5HE6QgghppBbm0IIsQJMJhOFhYV8/vOfJzs7G4fDwRtvvEF1dTV1dXUyyZPY8ILBIMFgkNdee40XX3yRoaEh4uPj2bx5Mx//+MfJz8+X58EKIYSYkQSxQggRYSqVCp1OR0pKCvfddx+5ubloNBpu3LjB1atXqa2txe/3SyArNjSfz8fIyAhnz57l9OnTTExMkJGRQXl5Odu3bycpKSnaRRRCCBGjZEysEEKskPj4ePbv389HPvIR7HY7L774Ij/60Y+4du0a+/fvx2azYTAYol1MIaKit7eXX/ziF7z55pvU1tai1+v51V/9VR5++GGpF0IIIeYkPbFCCLFCVCoVarWagwcP8uCDD5KWlobX66WlpYWf/OQnNDU1RbuIQqy6YDDIwMAAtbW1vPjii3R1dREfH8/HPvYxtm3bRmZmJiDjYIUQQsxOglghhFhh5eXl7Nmzh4KCAjQaDX19fbz55ps0NTXhdrslrVhsGMpvvbOzk9raWo4fP47T6SQlJYUHHniAoqIi7Ha7BLBCCCHmJEGsEEKsML1eT3FxMX//93/Pjh07cLlc/PKXv+SVV17h3XffJRAIRLuIQqyKYDCI1+vlG9/4Bs899xxut5uysjLuvfdePvOZz5CbmxvtIgohhFgDZEysEEKsMJVKhdFopLCwkD179uB0Ojl9+jTnzp0DYM+ePcTFxck4QLHu9fX1cf78ea5du0ZPTw9ms5l7772XgwcPotfro108IYQQa4T0xAohxCrQ6XSkp6eze/du7rrrLrRaLTU1Nbzzzjt0dHTgdDpDjxwRK0s5znKsV08wGMTn89HV1cWbb75JY2MjDoeD5ORkDh06xMGDBwEZByuEEGJhJIgVQohV9NBDD/Hss8+yfft2zGYzbW1tfPnLX+b48ePRLtqG4vP5JI17lV2/fp13332Xb33rW/T09FBYWMj/+B//g507d5KQkBDt4gkhhFhDJJ1YCCFWkcFgIC0tjaeeeoqXXnqJq1evcv36dS5dukRubi4VFRVoNJpoF3PdCQaDOJ1OWltbuXXrFg0NDaSmplJUVERFRQVGoxG1Wu7rrgS/34/H4+Htt9/m+PHjjI+PU1xcTFVVFTt27CA+Pl6OvRBCiEWRIFYIIVaRWq3GbrfzzDPPUFdXR319Pbdu3eL8+fMkJyezefNmDAaDXNRHgJIu7Pf78Xq99Pb2Ul1dzTvvvMPbb79NWVkZ9913H+np6SQlJWE0GtFoNJLSGmFer5fh4WFeffVVrly5AkBlZSV79+5l69atcryFEEIsmioog4KEEGJVBYNB/H4/r7/+OseOHeNrX/saRqORrKwsfvjDH5KTk0NycnK0i7nmBYNBPB4P1dXVnDlzhv/4j/9gYGAAh8PBxMQEOp0Oo9FIWVkZ+/bt42Mf+xg7d+7EYrFEu+jrSnV1Nd/+9rd54YUXcDqdJCUl8dxzz7Fr1y6Sk5MliBVCCLFo0hMrhBCrTKVSodVqKSkpYWJigvz8fPr7++nt7eXNN9/k8OHDJCYmolKp5AJ/ifr7++nv76e6uporV65w/fp1WltbUalUxFktbCouYnhkhJ7eXm7dujVl4qH8/HxKS0uxWCxotdJMLlUwGKStrY3r169z9uxZnE4nqampPPjgg+Tn5xMfHx/tIgohhFijpHUWQogo2bRpE/Hx8Wzbto2LFy/S2trKD37wA6xWK9u3b1/wI3eUhBploqKNOqZWmXHY7/fT3NzM5cuX+epXv0p3dzfDw8NoNBoy0lLJycniwL693Gy8xanqcwwNDdHX10d1dTVXr15l//792Gw2cnJyMJlModTujXhDYfoszgu9sRIMBgkEAly9epVz585x7tw59Ho9hYWF/Pqv/zrZ2dnySB0hhBBLJunEQggRJcFgEK/XS21tLf/8z//MT37yE9xuN/fffz+PPvoozz77LGazed71eDweHA4Hb7/9NjqdjqeeempDBly9vb20trbyzW9+k8uXL9Pc3Mzw8DAGgx5bXBwf/8gTbKvYQnlZKWaTiXHXOINDw/zil69z9doNzl24iFarxWQyYbfbeeyxx9i5cydPPfUUJpNpQ/bKOp3OUABqsVjYunXrgsZrj4+PMzg4yOc+9zmuX79OT08Pn/70pzl8+DC/+qu/il6vl3HfQgghlmzjtchCCBEjVCoVGo2G3Nxctm3bRktLC++99x6NjY2cOHGChx9+mNTUVKxW64yfDwaD9PT00NnZyfnz5zlz5gzp6ek8/vjj6HS6DREkeL1exsfHaWho4Nq1a9y8eZNz587R1taGw+EgJyuT/Lxc8vNy2b2zirzcHNJSU1CpVFgsZmxxcezZtYPEBDv2eBu1dfUMjzhoaWmhurqakZERAMrLy0lLSyMnJwfYOL2ybrebmpoahoaGUKvVTExMkJubS0pKyoy9ssp98Y6ODs6cOUNTUxPj4+MkJyezZ8+e0EzQQgghxHJIECuEEFGk0Wiw2+0cPnwYq9XKiRMnqK+vp6uri8985jOo1erQREMqlWpKamcgEODGjRscP36cr3/964yMjLBnzx6cTidWq3XdpmsqxyAYDOJyuejs7OTHP/4xr776KnV1dXi9XrRaDVarlQN37ePew3eze+cOzGbTlKBLq9Wi1Wq578gh9uzawf33HOZb3/4e12vruHrtBmfOnOHSpUu8+eabfO5zn2PPnj1kZGRMSddez8Gs8liiEydOcObMGYaHhxkaGuKJJ57Abrej1+sJBoN3HAO/309NTQ3f+ta36O7uxmw2U1RUxAMPPEBJSUmU9kYIIcR6IunEQggRA9xuN729vfzhH/4hly9fpqmpid27d/PMM8/w+c9/PjQ2MxgM4na7uXbtGi+//DIvv/wyHR0dDAwMEAgE2Lp1K3/7t3/Lrl27SElJifZuRZwyRnNwcJCTJ0/ywgsvcP36dZqbmxkdHUWtUrF1SzlHDh1gW8UWigoKsFotmE2msJ7DIHBn4OXz+xkaGqanp5cbdfW88LOXaevoYGBwCLvdTnJyMpWVlXziE5+goqKCzZs3r+sgNhAIUFdXx2OPPUZvby9ut5uEhAQ2bdpEaWkpf/zHf0x6ejp2uz30Ga/Xy4svvsgbb7zBj3/8YwKBAPfccw9/9Ed/xK5du7Barev6mAkhhFgd0hMrhBAxwGg0kpSUxMGDB3E6nXR0dNDY2Mi1a9eoqalh+/btBINBRkdHuXjxIpcvX+bEiRM0NDQwOjoaWo/L5eLWrVuUl5dHcW9WhtfrZXR0lIaGBlpaWjh27Bjnz5+nra0Nn89HTnYW6Wmp7Nm1kx3bKykpKiIxwT5D0KS6I4zVaDRoNBrS01Ixm03o9Xp6+/poam6ltv4mHZ1dtLW14vV6SUxMDE0WlZubS2JiIgaDYd0FZ2NjYwwODjI4OMjExAR+v5/+/n4ARkdHef3119myZQslJSXk5OTg8/lwOBycOnWKGzduMD4+zvbt26moqKC0tBSj0bjujpEQQojokCBWCCFihMlk4nOf+xxOp5OamprQuEKj0Rh6HE99fT1/9Vd/RUNDA729vXesY2xsjIsXL3Lo0KEo7EHkhScLOZ1Obt68yT/90z9x6dIlrl+/DoBeryc7K5OPPPYIu3dWsXtnFSq1mrnCpSn/Ny2itcXFEbfZSklxIZ1d3bxz9AN+8tLPaW5po7GxkcbGRux2O/fddx+f/exn2bNnD+np6VPXvw6Cta6uLpqamhgdHQ3NfA0fPr7oL/7iL3jkkUd45JFH+PSnP83Y2BjNzc28+OKLdHV1oVarefrpp7nrrrvIyMiI4p4IIYRYbySIFUKIGDE52ZCFBx98EJvNxl/8xV/Q2NjIwMAAOp2Ovr4+Ll68SEtLCy6Xa8Z1OBwOTp8+zec+97lVLv3KmJiYwOFw8NOf/pSrV69y/Phxuru7cblcmM1m9u/dTdnmEu6/9wgpyUnE3U5XVUJIJT69M4E47J1Z4k2NRkNaagqPPfwgW8vLaGlr4813jnL5ylUGh4Z57733qK2tJTs7m4997GPs37+f0tLSdTOLcV1dHVeuXGG2UUcTExMcPXqUq1evcvbsWVwuVyjATU1NpbS0lEcffZT8/PzVLbgQQoh1b320tEIIsQ6oVCq0Wi3Z2dns3LmTrKwsOjs76e7u5vTp0wwODlJfXz+lV2w6r9dLT08PDocDl8u1JlM4lWeMdnV10dvbS0NDA8eOHaOuro5r164RH28jOSmRwvw89uzawabiIso2b0Kj0dyekTnsuaZM/vPOQzDLMbkd2yrHzGAwkJKsx2wykZiQgMMxikatprW9g/b2Dppu3aKnp4ekpCQCgQAjIyMUFRVhs9lCE3KtVd3d3bS2ts76/4FAgMHBQUZGRjAajXi9XpxOJ4FAgKysLPbv309WVhY2m20VSy2EEGIjkCBWCCFiSDAYJDU1lbi4OO69917OnDnD+fPnOXny5II+7/V66e/vp6Ojg56eHvLy8la4xJEVDAbx+/1MTEzw6quvcuLECV544QVcLheBQAC1Wk3FljK2V1bwa59+Bltc3AyzMKsIBkGlUiLSebeKslBwyuKT76tUKqxWM1ZrHkWF+dx75BA3G27xb//xHRpvNdPf388PfvAD3nrrLXJycviDP/gDdu7cyebNmz8s0Rq8kdDQ0EBNTc2sPbEKv9/P1atXQ4+Mslgs7Nmzh9///d/HbrfPOIOxEEIIsRwSxAohRIxQgoX6+nquXLnC0aNH6ezsnDeImEl9fT3Z2dlrKogNBAJcvHiRixcv8vbbb1NTU8PAwABut5u8nGwKC/K5/97DbCouJjkpkXibLfS4m+npwpMx00IDJ9UMr6b/68ME5bTUFGxxVtLT/oiaaze42XiLV157A7fbRX19PX/zN39DaWkpZWVlfPaznyUtLY2EhITFHYwo8vl8OJ1OWltbaWlpWfDnlBsQTqeT8+fP881vfpNf//VfJzk5ed0+7kkIIUR0SBArhBAxwOfzMTExQUtLCxcvXuTs2bO0t7czNja2pPV1d3fT3t4e4VJGnvLIoJGREfr6+jh58iTnzp3jgw8+YGhoCL1OR052Ftsqt1K6qYR9u3eRnpaK0WhECV2DMNOg13k2DHcMnF3Q51SYjEaMBgMJdjsGg4GEBDsdXV20d3TS3z9IbW0tDoeD3t5eCgoKKCoqIjc3l8zMTHQ63ZTnzMYin89Hb28vw8PDOJ3ORX02GAzi8/no6Ojg5MmTVFRUUFhYSG5uLhaLJeb3XQghxNogQawQQsSA0dFR2tvb+bM/+7PQc0+Xo66ujsTExJhP5QwEArS1tfHuu+/y4osvcvz48dCkVclJiZSXbuYjjz/KkYMHsNvjw/blw8gz1OkaFozOG5fO1Ml6x5rn+RxQUlRIcWEBBw/cxfGTpzl74SI/+slLdHV10d7ezunTp9m2bRv79+/nS1/6EqmpqTE/VnZsbIwzZ84wMDCwpCwAgLa2Ntra2rhy5QpHjhzht37rt9i+fXvM77sQQoi1QYJYIYSIIrfbzcWLF3n33Xc5ffo058+fn/Lc16Vqbm4mJSUFj8cTc71/gUCA8fFxampquHDhAq+99hptbW10dnYSCPjJy8mmvKyU++85RFZmJjnZWVhvzzpM2MzDd1DN+HJGcwWqd85mfGe37fQbAwaDgaptFeTmZLOpuJhLV65y/UYd127U0tDQwNDQEK2trVRUVLBv3z4OHTqExWK5PRFVbHE6nVy4cIHh4eFlr6u/v5/333+f9vZ2PvKRj1BRUcHhw4fRaDQxfXNFCCFEbJMgVgghVpkydnBoaIi+vj5OnTrF+++/z+nTpyMSwAKMjIzQ39+Pw+EgPj4+6kGs0qM3Pj6O0+nk1q1bnDlzhuPHj/Puu+/i8/kw6PXk5eZQXFjA7p07OHDXXhLs9hUZT6map6926nNkVWETPt35GZVKhUatITUlhaTEROx2O0ajAb1ez+jYGMMjI3R0tNPX10dfXx8+n4+UlBTS09NJSkrCZDLFTDCrpHc3NjYuOpV4Jm63m/b2drq6urDb7YyPj5OZmUlWVhYmkwmdTheBUgshhNhoVMGl5goJIYRYEp/Px8jICP/5n//JW2+9xRtvvIHP54v4dkpKSvjGN75BZWUlaWlpEV//YiiBe3V1NWfOnOEf/uEfGBgYCAVK2VmZlJVu5nd+8/NkZaSTkGAP9dStpR678CbV6/Vy4fIV3vvgOO+89wHNLa34/X7UajXl5eXcfffdfOYzn6Gqqipm0mwDgQDnz5/n8ccfZ3h4GI/HE9H1JyUlUVZWxpe//GUqKytJT09fU9+vEEKI2CA9sUIIscq8Xi+3bt3ixo0b1NXV4ff7V2Q7LpeLK1eukJubG9UgtrOzk46ODn72s59RX19PU1MT/f396PU68nJyeOC+IxTk51FYkE9udhYmswmVWr2AuZYWO5vTygsPyLRaLcWFBVgsFrZXVHDy9BnqbjZwvbaO9vZ23nnnHW7dusX+/fspLy/nyJEj2O32qPZOKhOCORyOFbmxMjo6Sl1dHa+//jojIyN88pOfjPlx20IIIWKPBLFCCLHKAoEAbrcbAL1ej9FoxOPxRDyYnZiYoLGxcckzHC+H3+/H6/UyMjJCXV0d169f5+c//zldXV2MjIwQF2clMz2dvNwc7j18kLycbDIzMxa8/tsjU5cex87xuUiFxmq1muSkJBITEigpKkSjUWM2mxl3uejs6qatrS00Xra3t5fU1FSKioqw2WyhMcCrHdz19fXR3d0d+n1GUvj+DA0NMTQ0FPFtCCGE2BgknVgIIVZZMBgkGAzS399PU1MTf/Znf0Z9fT2dnZ0R3Y7JZGLTpk383d/9HQ8++GBE1z2fgYEBWltb+cY3vsHJkye5efMmfr8fo8FAfHw8n/2VT7JrZxXbK7ai02mjErAtyrTINhhUnkW7gI/ebmaV8aaO0VG+/6OfcvHKVU6dqSYYBJ1Oh8lk4tOf/jT79u3jk5/8JHq9ftXHMn//+9/ngw8+4F//9V8jvm6j0UhFRQXPPvssH/nIR0hPTw+NBY7p714IIUTMkZ5YIYRYZUrAZrPZKCws5Itf/CLnzp3j8uXLvPnmm3g8niU/2iScx+Ohvb2d/v5+RkdHP5zhd4UoPa+nT5+murqa+vp6Ll26RE9PD1qNhsqtW9haXsrmkmIqK7aSlpqMTqdjctLhyJVrRZKMp61wMcUNH9trMBiwq9U8cN8RNm8qZnvlVj44fpLevn4GBoc4evQoDQ0N1NTUcPfdd1NYWMiWLVumrGclNTU10djYGNF1mkwmEhMT+fjHP05FRQX79+8nISEh6pONCSGEWLskiBVCiCgxGo0YDAaeeOIJUlNTSU5OpqamJjTh0XLTi/1+PwMDAwwODjI8PIzVao1QyScpgXYgEGBiYoKhoSHa29t59913efPNN2m4eZMgQcwmMxnpaeyoquTuu/ZRVbmVuLi4GYMyJQCd/vccpbhjiWWFekHCZiKeb0uLp9Fo0NwO6PNzcykpKmRkxEF9QyMej4fGhgaampq4evUqXq8Xh8NBSkoKVqsVvV6PVqtdkWBWyQ7o6Oigvb09Yus1m82kpKRQXFzMk08+yebNm8nOzo7Y+oUQQmxMkk4shBBRFB4Iut1uLly4wAsvvMBLL71Ee3s7gUBg2dv4nd/5HR544AEef/zxiD7KRSl7f38/x44d4zvf+Q5Xrlyho6MDv9+PXq+ncks5jz50P7t3VlFYUIBOp41QCukqDGpdyrYX8TElcPR6ffT29XGl5hrf+f6PuNXcwuDgEFqtFrvdzo4dO3j22WfZuXMnxcXFKxLEer1exsbGePrppzl69GhEJnXSaDQ888wzHD58mKeffhqLxYJGo4mZxwkJIYRYu6QnVgghokgJSDQaDUajkeLiYh577DGys7P56U9/Sltb27LHyra3t3Pr1q2IpCgr3G43AwMDHD9+nIaGBqqrq7ly5QoDAwMYDQbKSjeRn5fLgX17KC4qJDM9DYNBH8EAbI71rHjW7RI3cEdKsup2irGepMQEtpSV8qlPfpzm1jYuX63h+o1axp1Orl+/zve//31OnjzJ/v37qaqqIicnB5PJFLHjOT4+Tl1dHQ6HY9kZABaLheLiYnbv3s1jjz1GUVERVqsVjUYjY1+FEEJEhASxQggRIzQaDRkZGSQmJrJt2zY6Ozs5d+4cDoeD8fHxJffKdnV10dTUFOr5W2ogoXze7XYzNDREXV0dL730ElevXuX69evo9TqMRiMZ6Rns272Lqm0VHLp7/5J63mbv64zGY3VWfptms5m83BwyM9Lp7OohId6Gc8xJS2sbPT3dvPZaJ3FxcXR1daFWq9HpdKSnp0+Z/Gk5AeL4+Dj19fU4nc4l3+wIL9fu3bv51Kc+xb59+zCbzUsulxBCCDETSScWQogYEx4s1tTUcPr0af72b/+W/v5+PB7Potdnt9upqKjgrbfeQq9fem+ox+NhdHSU7373u5w9e5bXXnstFFxrNRruu/cw2yu28pHHH8VsNqHX6ZY9hjM8fIzuU2EjsPV5VhGeWu7z+ejt66e5uYUfv/Rzzl24RE9vH1qtloSEBDIyMviN3/gNDh48SHl5+bJ7Oa9fv87f//3f8/rrry+557+oqIjKykq+/OUvk52dTUJCwoqN4RVCCLGxSU+sEELEGCXN1Gw2k5+fj1qt5nOf+xxXrlzh7NmzDAwMLCrlc3x8nOHhYbq7u0lOTsZisSz4s8FgEL/fz7Vr12hububixYucOnWK1tZWHA4HGelppKelUbWtgsqtW8jNySLBHo9arUatUi877lPN8nr1RWDr86wiPLVcrVaTlJiIRq3m0YceICszg+aWNs5fvMz4+Ditra288sorNDc3s2nTJg4dOkRqaioJCQmLKpISOCs9sePj44v6vFqtRq/Xc9ddd1FVVcWePXvIy8sjLi4OnU63qHUJIYQQCyVBrBBCxDBl1uLExETeeecdBgcHcblcjI+PLziQ9Xg8OBwO2traMJlMCwpileDV6/Xicrk4ffo0p06d4qWXXgoFOgaDgZKiQiq2buFTn3yKhAQ7RoNhWfu7kQQB1Sy9s5M3MUyYzSYyMzMoLirkZkMj/QMDtLV3MjwyzBtvvMGFCxfIzs4mLi6OiooKjEYjer0etVq94B7QQCDA2NgYN2/eXFQQq1arMZlMJCQk8Oijj3LgwAH27dsXKr8QQgixUiSdWAghYpwSULpcLoaHh/nWt77F6dOneeuttxY8fjE1NZU/+IM/4JFHHqGysnLe5f1+P+fOnePkyZO89NJL1NbWMjY2htvtJi83h7LNJXzsySco21yC3R6PyWhcVOC0Jk0JOMP+EdFM45lX5vP58Pl8OJ3jXLx8lWs3avneD3/M+Pg4Pr8fi8VCWVkZFRUVfPGLXyQ9PX1BvbLBYJDGxkbee+89fuu3fmvB4641Gg2FhYU89dRTPPbYY1RWVmIymUK9r+v6dyCEECLqpCdWCCFinEqlQqvVYrFYMBgMHDp0iMTERCwWC6dOnWJoaIiJiYk51+HxeLh58yYHDhyYdZlgMBjqsb158ybHjx+ntraWmzdv4nSOYYuzUrGlnN07t1OYn8/mkiKSk5M2Tu+rapZ/RDTTeOaVabVaNBoNer2ekuIiLBYzLreLxlvNtHd20tB4i1u3buF2u/ne975HSUkJxcXFVFVVYTQa0Wpnb+7b29vp6OhYcACblZVFdnY2jzzyCHv37qWkpIS4uDh5dI4QQohVI0GsEEKsEcr4w/vuu48tW7ZQXl5OX18f9fX19Pf3zxmETExMUFtby9DQUKj3VqVS3TGZUGdnJ8eOHeNnP/sZH3zwARMTE6jVauz2eIoKC3jo/nt55IH7SUxMQKNZmaAluhM4raBl7pgyVjovN5uc7Ey2lJdy/NQZzl24RFdXD0ODg/T19VFTU8P27ds5cOAA2dnZJCcnYzabZ30+761bt2hubl7Q9nU6HeXl5ezfv58vfelLmM3mOQNkIYQQYiVIOrEQQqxBPp8Pj8dDc3MzFy5c4N/+7d+4dOkSDodjxuWViaK++tWv8tnPfhaLxRIKYl0uF+fPn+fUqVN897vfpb+/H4fDgdfrJTcnm53bt/GJjz1JRnoadns8ZpPpduowTInKgnP+c3YzLTjrh6MY4q70pmdLV55p0bAZrMddLhoab3H85BlOnz3H5avX0Gg0mEwmCgoK2Lt3Lw899BD33XcfVqt1ShAbDAb54he/yIkTJzh//vys27NarWRmZvKHf/iH7Nixg8LCQux2eyiwFkIIIVaT3D4VQog1SEkvzc3NJRAI8OSTT2I2m7l16xY3b968Y6ysEqwODAzQ09NDQUEBAwMD9PX1cf78eWpqarh69SpNTU2o1SribXGUl5VSmJ9HxZYyigrysdnmmHF2hphrwaHNDAsGVbN9PhoB0+2dW8KmZwxFZ4tPZ0tXnmnRsBmsDQYDRYWFTEx4sFotWC0WOjq76Orp4datW6jVagKBwOR45rw8ioqKSExMRK1W4/V66erqoqenZ8btKM99rayspLy8nN27d5OTk0NiYuKCj4EQQggRaRLECiHEGqVSqbBarWzZsoWysjLS09M5fvw4ra2teDyeO9KLA4EAHR0d3Lx5k+zsbBoaGjh79ixf/epXGRgYwOl0olarycxIp6S4iC/8xq+Tk5VFWmrKjNufEotFOLaMrb69aaVZRI/sjItFeOc0Gg0pyUkcPniA/fv2UF66maPHTvDu+8fo7OziwoULXLhwgVOnTnHgwAE+85nPsG3bNnQ6XehxPTM9G1YJknfs2MF/+S//hbvvvpuEhATpeRVCCBF1kk4shBBrnHIaHxkZob+/n4sXL/Ktb32LK1eu0N3dPWXZAwcOsGnTJtxuN42NjbS2tjIwMIDZbCIxIYFPffIpNhUXUVxUSGJCAjqddk2MeVxYXLmC+cDLWPX0jy52VeHLB4NBxl0uxkbHGBoe5s13j3Lp8lVOnz1PMBgMPRLnwQcfJC8vj4KCAv77f//v1NfXh9anjH194okn2Lt3L5/85CdDE4mt+xmohRBCrAmxf2UihBBiTkpQYbfbMRgMqFQq7rvvPhITEzl58iT9/f2h5392dnbi8XhCAe/Y2Bg52Vnk5WRTWJBP1fZKsjIyyEhPC60/GIRViVtmfWrN/GHdHKNHARW3p7JauR7e5UzYtMxVhS+vUoHFbMJkNGK329m5fRsmkwmj0UB9wy2Gh4dpbm7m7NmztLW10dLSwsjISOjzFouFhIQEtm3bxpEjR6isrCQ3N1fGvgohhIgp0hMrhBDr0Pj4OI2Njfzt3/4tx44do7W19Y5l9Ho9cXFWnv74Rzmwdw+7d1ah0+mWHKzE0qzCq1WWtbCd8XEXwyMjfO9HP+bylRrOnD1PIBBApVKhVqvx+/2hZQsLC6mqquKv/uqvyMnJwWazRaT8QgghRCRJT6wQQqxDWq0Wm81GeXk5169fp6urC6/XC0wGr5UV5Rw6sJ9dVdvJy80hLs66wLTh4KyzLqlu//es0dY8kdjiU4Lv/ITyTkQDyzkKFvEANrStqRtd8HaU29JhHzAYDSRrk/i1Tz1Dz3330HCriRd//gqtbe10dHYBhGYzfuKJJ9i/fz+FhYXo9fpl744QQgixEiSIFUKIdcTj8YRSRltbW2lra8PpdKJSqbCYzQCYTEbycnLYvKmYLeWlxE177Mrc5pmld6n/N/9/AxCckhK8uOf5LLk3U7Wy/a0RnSBrhs9r1Go0ejUZ6WlYrRbi4qzcutWMRqOmu6cXFZPPIA4GgwwNDdHe3k5NTQ1ZWVnY7XZMJpOkEgshhIgpEsQKIcQaFz4qxOFwcPr0af71X/+VS5cu0dHRAUz2vmZnZQFBzGYz5aWlZGdkYouLW+hWbgdb03tBZ+j6C/vMbFHZ4sPC4JQA9o7Pq2YqxUJ7Mz9cbureTO/Xnb3nd2FmXjp8Wx8uoZqnz3nhwj8bZ7VitVj4+MeeIDUthUtXalCrVPj9fpxOJ9/97nex2Wzs3r2b//Jf/gt79uyhqKgo9BuTYFYIIUQskDGxQgixxrlcLvr6+njxxRepqanhzJkzdHZ24na7MOj1HNi3l7LSTezft5dgMIjf72NoaIRNJUXk5eYsebuLnXxpRa3axMOxNPJ3aYLBIDcbGxkZGWV0dBSdTkf/4CAnTp3h5OmzDA4NYTKZyMrKIjs7m0ceeYTDhw+zadMm6ZUVQggRE6QnVggh1qBAIIDf76enp4fe3l7q6ur44IMPqK2tpba2lnibjZTkJIoKCti1s4qyzZuo3FpOMBhkwuOhofEWZpNpWWWY2g+7uNTeec2yjll7J2fZ3qKLMsMHwvtEg0HVHTM1L7d/dv5iRD5wNhqMGFONbC4pQqvTMTA4iNfjxTk+TmtrO13dPTQ2NNDZ2YnVakWn0zE6OkphYSHx8fFYLBZAemaFEEJEh/TECiHEGuTxeBgbG+Ob3/wmp0+f5tVXXw3NMqvRaLjn8N3s2FbJZ3/lkxiNRjQazYzrmTcImTd+miudeKHrWLwZVznrI3qWuvb5n+Aame3M/E6kkrFnCohna/p7enu51dTC95//KecvXqantxcAq9VKWloaX/jCF7j33nuprKyUZ8YKIYSIGglihRBijQgGgwQCAaqrq7ly5QrvvPMO165dY2BggN7eXgoL8inIz+OBew5TWJBPSnISWZkZqNXqyYl7uDP0WUg4tJYTaFel7Gv5AE0zMTGBc9xFR2cX167foOFWE6+/9Q4Oxyj+QIC8vDxKS0vZvHkzzzzzDFlZWaSkpES72EIIITYYSScWQogYFwwGGR8fZ3R0lP7+fk6fPs25c+d46623cLvd6HRacrKzqNhSTlnpJg4euIvEBDsGg4HwCGumSXYXEntN/dx8Pa8rEdEtcp1hHakL6iicb/Xz/f9CZy+edbHYiYINBgMGg4HEBDtWi5nUlBS6urppbm2jr7+f+vo6hoaGaG1tJT8/n82bN1NQUEBaWhparXaBj2kSQgghlkd6YoUQIsb5/X6qq6s5evQozz//PHV1dbjdbgCyszLYUl7GMx//GNsrtxJviw8FbstP9YxkcBWBdc2W5btKggsNimddAYudxDmCKdJzbHK28cfBIMFgEJ/Px8nT1Vy4fJXv/uBHjI+78Hq9qNVqtm7dSlVVFX/6p39KRkYGdrs9QiUUQgghZidBrBBCxKBAIMDIyAg3btzg/PnzvPnmm7S1tdHS0oLH4yE9LZXtlVvZv28P2VmZFOTlYrfb0et0C1r/HXHLtDeiESdGYhKm2d5fdgC6YpbxgNsFBr8L3cyMq7kdyPYPDDAwOMT1G3VcqblGfUMj5y9ewmKxkpCQwLZt26ioqGDHjh3ce++9mM1m6ZUVQgixYqSFEUKIGKEEDG63G6fTSUNDA2fOnOHdd9/lnXfewefzYTDoyc7MZPOmIg7s28vhgwew2+PRqNXzrZ0pz0ydHtRMTzOOQhR75+bmmaN3tvLN8P5SAtjQ9lb0WCxgxYvYz1n/b4nlV6lUqFQqUlNSSE5KIjMjA5stDqvVQk9vLyMjDjo7O+nq6qKrq4vR0VGysrJIS0vDbrdjsVhmnVRMCCGEWCrpiRVCiBgRDAZxuVxUV1dz7NgxnnvuOYaGhkKpw3m5OVRtq+A3nv01MjPSiYuzhlKGF5U6PEsvXVSydCPUYxhTVngfIrX6xa5HuVwIBoN4vV7qbjbwznsf8P7xk9Rcv0EgEECtVpOVlcVdd93Fk08+yeOPP47NZotAaYUQQogPSRArhBAxoKOjg/b2dn7+859z8+ZNbt26xfXr1zGZjCQlJnLv4YPk5WRTWJhP2aZNmM0mdAtMHV6QGAgeI5ZOLBZuKanK3E53dzjo6OiivaOTsxcucqOunhu1dfh8flJSU8nPz+fIkSOUl5dz1113kZqaGtnfrBBCiA1L0omFECJKfD4fPp8Ph8NBfX09NTU1/PjHP6a/v5+xsTEsFjMZaWmUFBfy8AP3kZWZQWpK8tSVzJjzuoTobqaJfeZdy8K3uZASLazEYWtaxu7GnPkGKa/UpmbbZtgEWjOVRK1WY7fbSbDb2by5hAR7PBazGadznNa2djo7O2lpaWF4eJiurq7QhE82mw2z2SzPmBVCCLEs0hMrhBBR0traSmNjI3/3d39HXV0dHR0deL1eLGYziQkJPPurn6Jyazlbt5Sj1WhRq1Urc+EfzSAwItteoR2IpeA4lsoyjfL8Yo/Hw9j4OD958Wecu3CJE6eq8fv9qNVqDAYDTz75JHfddRe/8iu/Qnx8vPTKCiGEWDIJYoUQYhVNTEwwMjLCqVOnOH/+PHV1dZw6dYqRkRF8Xi/bKreyqbiYkuJCqiorSElJJiU5KXIFWPRAyEUuv9rrEzEjEAjg9fmoq79Ja1s7Nxtu/f/Z++/oRq8rwRf9fciJYAZzziymCixVVpWyrGRZLbdstdtuj5/dMz3d6615q2du98yd1e/dnntnOtx509NvpqezgxzlIEt2SSqFUpVUObJYzDmTYCYBEPF7fzAUAwACIECyqs5vLVsk8J2993fwHdbe2Pvsw6Wr1xgeGWFwaISioiJyc3PZu3cvx44do6CggKqqqpXmUQKBQCAQhIooJxYIBIIYszpTNTExwcDAAL/+9a85d+4c7e3tKBQKjAYDaZZUjhw6yMH9+6itrkKjUYfp3IfQJSncWMHv9eGc7RKKvFAQ0e9uR6FQoNVoqKnaQ3FhAfvqavDJPhqbmpmemaWnp5u+vj6uX7+OzWajvr6ejIwMDAYDGo0GlUolglmBQCAQhITIxAoEAkGM8Xq9jI+Pc/r0aX7yk59w+/ZtrFYrHo8HtVpN/f69PP34KQ49Uk9WZgZqlWrlWJL1Tv39FsrtRntjatMO3PAWvlKIDTLILB4X5XK5GbNaaWvv4J/f+AHdPX0Mj4yiVqsxm80UFBTw9a9/nf3793PgwAERxAoEAoEgJEQQKxAIBDHC4XAwPDzMtWvX6Ozs5OLFi9y5cwer1YpBr6O0pJj83Bz27a2lrKSY3JxsTEbj7nTkI4mGdmMEK9h2bDY7E5OTXLtxk97+AZpb2rjdeBebzY5er6e+vp6ioiKOHDnC3r17yczMJC4ubneuA4FAIBDsCkQ5sUAgEESR5dJht9vN5OQkjY2NfP/736ehoYGenh5USiV6vZ68nBweP3mC+n11VFaUo1Aogggl7E68Ud/KKoV/nKssgbTFpskh2RYbsRERDVvu9z5b62UYjQYMBj3ZWZmMjI5x7cYtZufm6O7tY2pqinfffRez2Ux7ezs+nw9JklCr1ajV6oAVCQKBQCB4uBGZWIFAIIgidrudkZERvvvd73Ljxg3OnTuHw+FAln3odToeO3mCuppqPvfUkxgMOtQaDSqlcktOekgBJesCymgriAEh39cusGQ3BdK7hTXfXyy5GsvNnyYmJ+np7ePtX73H+QsXGRuzolAqMZvNZGRk8Bu/8Rs888wzVFVVodfrRRArEAgEgjWITKxAIBBsEZ/Ph8fjoampiZ6eHm7cuMGnn35KX18fMzMz5GZnkZ6WRm31HqqrKsnNySExMSFqR+aEIkEK9cJIFcSAkO8r5myuRYRYG1k9J8vPuVKpRKFQkJKUhEJScOrRYyQmxNPbP0BDYxMzszP09fVx9uxZ5ubmaGho4NChQ2RkZJCUlLRGlkAgEAgeXkQmViAQCCJgdWbJ5XJhs9l44403uHjxIr/4xS/weDxIgEaj4eSJY+ytqeaLr3wevV6PWr34/eFWTrsJbezuyA9u6VSflV+2Pxu6nbMny7Cl2MyfsVu8gU1titIEDY+M0tnVwz+/8QOamluwjk/g9XiIT0ggMzOT3//93+fQoUOUl5ejVqtRKBQikBUIBIKHHBHECgQCQQQs7309f/48ly5d4uc//zk9PT3YbDbsdjtlxUWUl5Xwhc+/SEFeLvFmM0ajYetnYu6OuDR0tsXe+21SdhGBpm4bp9Tj9eJxe5i3zXOnsYmW1na+9+M3mZmZxeVyrXQxLi0t5Q/+4A/Iy8sjPT19e4wTCAQCwa5ElBMLBAJBGMiyzOTkJMPDw3R0dHD+/Hmam5tpb2/H43YTb46jtqqSvXU1FBXkU1JcSGJ8AlqtJkKFrKvL3IrxEY7fSkAT5eygf1lSgNejrGYbiarOYMKkAJdtQwZ2WZRKqUSlVKLTaSkpLsJgMDAzN0dXdw9DwyO0dXSufEH0s5/9jPLyckpKSqitrUWn06FWq6NjjEAgEAjuG0QmViAQCDZh+c+kLMt4vV7u3LnD2bNn+fGPf8zt27dZWFhAoVCQmZFORVkpL7/4HIfqD5CYmOBHVpASzQiPsVnfOXiDvGB1yJvpXHo/ksZQIV8e5MKV+QpwzfI/YDtxFmpU2/iGW08c8ZFH9wZuXi686oJtbLssyzIej4eLV65x6/Yd/vmNH2K32XC53QDU1NRQX1/Pv/23/xaLxYLJZFrp7i3KjAUCgeDhQASxAoFAsAk+n4/JyUmuXbvG+fPneeuttxgfH2dmZgZkmdycbA49coDnn3mKjPQ0EuIT0Ot1S8eDROD9RxT9rQpO/A0PEuyGGMdu8npk5wAFtSnQjWxpo+fG4ZHef9gDwhIUy+cmCgIC7cElXBs2Clp2SxyOBex2O919/Vy4eJkbt25z4fJVlEvHVOXm5nLgwAGOHTvGyy+/TFxc3MqRPAKBQCB4sBHlxAKBQOAHWZaRZZmJiQmsVivXrl2joaGB69ev09nZiUqpJCU5ibKSYgrz86irraaosIB4s3mNIx1RXBHygNUhpLTym9/h689sDUNdKONW6w/5BgJlkJclBMi8bilOi+T+w9W/WelumEICf1kQot6QCUOABPK6Tz2y+HfjoOVsqsGgR6vTolKrWFhYwGDQIykkhoZHsFrH6ezsQJIk3G43BoOBvLw88vLySE1NRaUS7o1AIBA8yIhMrEAgEKxj+c+iy+XiypUrfPrpp/y3//bfmJ6exul0IkkSBfl57Kur4Rtf+woZ6WmY4+I2k0psil53U1Oj3WRLNLif+x3Hmu2/F7fbTUtbOx+ePcfHn3xKU0vrYhdwSSI/P58TJ07wxS9+kePHj2MymVbGiRJjgUAgePAQQaxAIBCso7e3l87OTv7u7/6Orq4uBgYGGBsbwxwXh8WSwm++8jKFBfkU5ueRkpyEWq3evIwxZj5/tM9WCWfsTnSK2kYeADN38y2EffSSLLOwsMDs7ByTU9OcPf8ZN27d5ur1mzhdLoxGI0lJSRw+fJgDBw7w/PPPk5mZiVarjdUtCAQCgWCHEPU2AoFAADidTux2O52dnTQ3N9PS0sKVK1eYmprC4bCTn5tDTk4WRQUF7KurJSPNQmpqSugKpFgFFBv3wa4t8gxX62bXrt57K63SGY6W8GYh5oFYoH2yyz2N/PQ3irVN4cgPdl3on2b4u5ojPf93+b8hzeOqCyRJQq/Xo9PpSExKZG5+HrVahVqtpq29g6npmcVSf5UKh8OBVqulrq6OtLQ0MjMzUalUIisrEAgEDwgiEysQCB5aVv/5Gx0dpbu7m//8n/8zt2/fpre3FwCjwUBSUgJfe/3L7K2tpramasNZr9uTjwz16o0NnqITcG3YARlEc+BXQtO0WW55c7mLV0TWqCicRsFbynkH1LP6k4NgdxKdYHN1Ryb/V4fbqDh8e5c+sdVzEoIip9PJvM3OD37yU67fuMWFy1dxuVxIkoRKpeLVV1/l6NGjvP766xiNxjUVEyKgFQgEgvsXEcQKBIKHFofDwcTEBL/+9a/59NNPaW5upru7G7vdDsCxw4+wv66W2poq8nJziDMZMRqNwGYO8OqAbzcXdO5iAk7b6vB0B+Y22tXbAYdHGIAvvST5eS8SS2LS8HjNa1vT4PP58Hq9jFnHGbNa6e3r5xfvnKa3r5/evn5SUlJITU2lqKiIF154gcrKSg4fPrzhiyiBQCAQ3F+IcmKBQPBQIcsybrebqakpent76e3t5dy5c1y+fJm+3l70Bj2Z6WmkpqZSv38fe2ur2VNRjk6nFU6vQLDLUCgUKBQKsjIzSEiIJzUlhaHhUZISEtBqNAyPjtLb28vo6CgJCQlMT0+j0+nIzMwkLi4Oo9Eo1rVAIBDch4hMrEAgeKjw+XyMj4/z7rvv8p3vfIebN28yOTkJgE6n49DBAzz71BMcfqSerIz0NQ5uIGc3klxS+GNCGxF4X+PWMl6hyFqfI2VLGtfqCXe/ZnhXrs/rRl+D/6s3K7oNNIvRbty1eTlx6LaHqjPQNaHr2XDlKnfGOj5Ba1s7f/uP36Gzu5vhkVEA4uLiKCsr43d/93epr6+nurpaBLECgUBwHyKCWIFA8FBgt9vp7+/nnXfe4e7du1y/fp3BwUHsdjvx5jgeqd9PZXkZj9Tvx5KaSkJCPDptNLKvu7+ceCctjFUwv31ytlv2bmd3zKvL5WLeZqO3t5/e/gGuXL/BuU8vMDU9jUqlJi8vj6ysLI4fP87jjz9OSUkJiYmJIqAVCASC+wRRTiwQCB5YfD4fHo+H8fFxxsbGaGho4OzZsyt7X81xcVhSUygtKaJ+/z6q91RSVVmOQqGIohVhdMOJiK1v0ox8F+TWW1qFPzpakxiCnIg/s+0NhHbXETvRb1UWiWyNRkOiWk282UxaWioKhcTk1BR9fQOMjI7R0tJCX18fbrcbk8mEw+GgtLSU+Ph49Hq92DMrEAgEuxyRiRUIBA8sy42b/tf/+l9cuXKFDz74AJ/Ph1KpxKDX8/QTp9i3t5aXX3gOtVq9ErzGxnmNVTixm7J+u8mWaBDt+3mQ5mf338t692Zqapqunl5++tbbnPv0AsMjo8iyjE6nIy0tja9+9as899xz1NbWotFoRBArEAgEuxgRxAoEggcKr9eLx+Phs88+o6mpiU8++YTm5uaVbGxpcRH5+bk8cfJRCvJzSU1JISszA4VCsei0Rtk33/xgmmjpCcHsGJ4FtF0hzXbNZ2D9UbjPMIVEc29zNIn0swj7DqJwy8sN3Ww2O/2DQzQ1t9DV08uHZ89hHZ/A6/WSn59PeXk5xcXFvPDCCxQVFZGRkbE1xQKBQCCICaKcWCAQPBDIsozdbmdubo7x8XEuXrzIjRs3ePfdd5F9PtRqNTnZWVTtqaCyvIzHT53AaDSiUavXCopyfBCbgGujVx9SSbCfl0KKDwL2+9mkLDgG8dbm8xnbIC8qksMUEuyT3kkifbbDHhWFW5YkCY1Gs1hmnJhAUlIi2VmZjFmttHd0MWYdp62tjbGxMdra2khNTcXpdOL1eklOTkatVqNSCZdJIBAIdgsiEysQCB4IfD4fn3zyCZ988glvvPEGAwMDOJ1OZFmmoryU6j2VfOVLXyQ3OxuT6d6xGsv/lQEpSPwTvDuun4EBGstupcfrThL02FY2vhmd7sSbHhcbHWSQpU26H294MVA33YjUhyUhWn2mw+kZvBUCavSzqDa8FKM1Kcsysizj8/m4efsOjU3N/MO3v8fU1DR2hwOFQkFpaSl79uzhj/7oj8jJycFisYR34wKBQCCIGSKIFQgE9y0+nw+r1UprayvXrl3j3Llz9PX10d7ejkKSsFhS2Fdbw8H6/eRkZ1FSVITJaEC9PvsaKaGeRhILHdspazfYEI6sqJeEb/8XDVHVGaKwkHVG0bioz20Yz8Sy+zMxOcnk5BR3mpq509hER1c3V6/fxGAwEB8fz759+6isrGTPnj089dRTmEwmtFptNK0WCAQCQZiI2hiBQHBfsZw9cTqd2O12WltbuXjxIu+88w7Xr1/H43aj1enIzEinrKSYUyeOc7B+P4kJ8UB0mjat+MOB0nXR9Mq31ng4uKxYj4ON9sZkbtYpiXoJ8/YTVZ3BhK2aOr+J5nDlhUnUv88IY00u/y1ISU4mKTGRnJxskpMSSUxMYHBomJnZWUZHR/jlL39JV1cXg4ODFBQUkJ6eTnJyMkajUXQxFggEgh1CZGIFAsF9hc/nY2Zmhs8++4wzZ87wgx/8gJmZGTweDyqViqKCfI4dOcQXv/ASaWkWDHp9jLsOh8aKk70qONhKGWloY3dHsfKWymX9TVyU9IRlR4yRZdjS47n1k5bCt2l3PF4Rs/rRkpdqjX0+H263m/6hYT7+5DyXLl/l3GcXV7qaJycnc/jwYZ5++mm+9KUvERcXF+UjuQQCgUAQCiITKxAIdj3L2df+/n56e3t57733aGtro729nZmZGQx6PRZLKiePHyEvN5fS4iIsllT0Oh1KpXKnzQdW+fpbSBiGn9DcHRHGVu7T78RFSc92ywuqa6vK/I3fosxNbdodj1fErH60lptUKZVKJEkiLTWVo4cOkpudRV5uDi1t7XR0djMzM8OtW7eYnZ1lbGyMiooK9u/fT3Z2NhqNZsfuRSAQCB42RBArEAh2NR6PB4/Hw+zsLC0tLVy9epXvfOc7TE9P43Q6Mej1ZGakU1FeyovPPUtmRjqJCQn+hW2WObrPM0ubEkYW2H829AFlN95fhDZtqaHWbtz8uwM2KRQKzHEm9lSUL34hlppCfLwZt8dDR2cXw8ND9Pf3Mzg4yOHDh9Fqteh0OsxmM/qlyg9RYiwQCASxRZQTCwSCXU1HRwetra38+Z//OT09PYyOjuJ0OklKTCAjPZ1vfv2rFBcWkJ+Xi0ajRlIoUOyQAxkzfzv8OuKYl9aG3Nk2Atu3attOEt1uvtvP/W7/erZqiyzLeJdKjG12O++f+YiLV65x/sJFbDY7kiSh1Wo5ceIEx44d4/XXXyc9PV1kZQUCgSDGiEysQCDYddjtdmZnZ7l48SK3b9+mubmZtrY2bDYbSqWSI4cOUlxYSFlpMXsqyklKTECv1+202bFz3CNojBT10toIeidtOB4lRhO0WwImiI4tO3k/97v969lylbYkoVIqUSoUqJQq9tbWkJAQT2FBHpevXmdoeITBoSGampqw2+1MTExw+PBh8vPzqaqqQq1Wiz2zAoFAEANEECsQCHYFy+c2ulwuxsfH6evr48033+TKlSt0dHSgVqswGU2kJCdx6sQx9tbWUFtdhUKxu7uD7qas1JaI5CYekKxrtHQ+MM8C9/e9RGK7JEmo1SoqykspLMjjkfr9qFVqbt+5w/TMDAMDAwwODnLlyhVGRkZ45JFHyMjIID4+Ho1Gg0qlWpEjEAgEgq0jyokFAsGuwOl0YrVa+cEPfsB7771HY2MjMzMzeD0eNBo1j596lGNHDnFw3z5SU1NQq9WoVItNm+4nxzBqAdFWu9neJ4QzX7t/Tra/w3Ik8u+nztfRIOzu2UtfuC04nUxMTNLXP8A/fff7dHb30NPbh1arJS4ujoyMDH77t3+bffv2cerUKeD++lslEAgEuxkRxAoEgh1DlmUWFhbo6+ujoaGBjo4Ozp49S1NTE1arlaTEBIoK8snLzeGR+gOUFBWSl5uNTqd7eJzBnT43Zqf1CwS7jVXPsN3hYGZmlguXr9Db209LWzsNjXexOxwoFEoOHTpESUkJR48epba2lvT0dBISEh6ev18CgUAQI0QQKxAItp3lTIbb7WZ8fJyPP/6Y733ve9y+fZvR0VEUCgUGvZ69tTU88+RjPFK/j/y8vPD3lm17wBRE4W4O3u73TkKiY9T9wwO8JkfHxrjb1MI/fOcNenr7GLOO4/V6MZvNVFdX841vfIO9e/dSVlaGSqXaFedXCwQCwf2KCGIFAsG2Mz8/T3d3N9/5zne4desWN2/exGaz4fP5iI+P59SJo+ytqebxkycwGAxotZqV8xu3Row9aL/it0tn9NsAh1f8Gvzq6M2CH0kPQoC34R5id1OBJa97Z+nXQNdv11MWffGx0en1enG73UxOzdDX38+5Ty9w+v0PGB2z4pNl4uLisFgsPPHEE7zyyitUV1eLrKxAIBBEiGjsJBAItoVlB6+lpYW+vj6uXLnCxYsX6e3tZXp6muysTNIsqdRWVVFTXUlBfh7JyUkoJEXU/E1Zllb2TMbEjfUr+95PsdUp+dUZBdEhXbFWfySyArPpfMY4CbstMfK6YDGqz2qInaVX61x9YaAYMDp7ux+cNalUKlEoFFhSk1EpFThdTmRZprevn+a2dsasVvr6+rh8+TJqtZq2tjb27dtHTk4OSUlJ4nxZgUAgCAORiRUIBDFj+c/L8t7XmZkZvv3tb3Pp0iXefvttZFlGqVCg1+l44vGT7Kur4ZWXXkSjUaNUKkNQwI6Vou5485tl0cFU+Htvp/fERkr0OhJFKCSMvHSQS30+GVn2sf6fXkmSVv2PewKi3a3K7zOxWscWJ1GsyXsZbFlmamqKzu5efvzTn3PxyjVGRsfwer0YjUbS09P56le/ylNPPUV1dfXKXn8RyAoEAsHmiCBWIBDEDJ/Ph8fj4fTp01y/fp23336b4eFhbDYbNpuN6j2VlJUW88pLL5CZkY7ZHEecybQNjtz2RmbLf2R31jX1Xyoa6uU7w1ojttukUILScLnb3MrFS1fp7O7B5XKtvJ6Xm83JE0cpLizAYDBER9l9xYO3JmVZxufz4XK7mZubp6mllda2Dn7ys18wZh1nwekkPj6evLw8CgsL+da3vkVZWRnZ2dkxtEogEAgeDEQ5sUAgiDqyLDM+Ps7o6CidnZ188MEHNDc309railqlIt4cR111FXU1VRQVFlBSXITJaECj0WwimCh5nVtNT24yLMTyzU3FRzUJt1aQvL4cdH2MG6Vy0XDYOJ3BfvM7IODrkcyltOGHreN0OpmcmmJkdGxNEGs0GlhYcOLz+fleOZLk8Pr3YhUjijUZEEmSUCqV6JVK9DodHo8Ho8HA9PQ07Z1dDI+M0tndTXdXFzMzM5w+fZr+/n5KSkqoqqpCr9dv/jdRIBAIHlJEECsQCKLC6qIOr9dLS0sL58+f54033qCzsxOn04kkSWQV5LOnspzfeu2LlBYXYTbHrRJCcAc0Qs9T3nQPX4SCAzW92cQfX/NrEF89ogA2RN9/M5ulcISFxOayNtW0voQ60AA/r0fjy4Atf6kQSd3TqmnbMIPhbEJeH9QT2jMo1uQ6MVtYk5kZ6WSkp7F/by1Xr9+kofEuf//P32N2bo7Jjg7+8i//koqKCmpqavgP/+E/kJGRQWJi4kpViigzFggEgnuIIFYgEEQFWZYZHh7m2rVrnDlzhnPnzjE+Ps7U1BRqtZrCgjyOHznMY48eJzMjneSkRLRa7VohgZzKrfpuMcwqhiTXb4AYjgA59NRokGvuzWmoZbrRDGVXR5/+bNrcmpWXQzUm2tnHKDyH/gga2wbKHkZyb6vGRBIMizW5msjXpCRJVO2poDA/j/376rhy9Tp37jbzwcef0NPTw8jICHfv3qW2tpYDBw7wW7/1W5jNZpGVFQgEglWIIFYgEESMLMt4vV6mpqawWq1cvXqVmzdvcunSJdrb21EqFKSmJFNaUkRBXh71+/dSWlxEfLx5032vEoRQGhiaJ78r8xdhBSH3nOXljLfL7cZutzM7O4fT5cK54MLr9SIjI7HYKVWlUqHX64gzmdDpdRj0+qVUkrRGvcS9/cvNre14PZ5VqiUUCgXlpSUoFBI2u4Op6WmcThcupxNZBoVCQqPREB9vxqDXYzbHBfhspZUzgufm5rE7HNgdDhyOBbxeLz6fDwlQLNluMhkx6PXEx5tRBTliafk57OsfYHp6Zq3tkkRmRjopKcnMzMxis9ux2ewsOJ34fD6QITc3G4NBj06rxePxLM2tA5vdjtvlxuly4fV48C3ZrlAoUCgUqNVq9DotWq2WxIQE1GrVUkOy5c4+i/+ZmppmYnKSuXkbnV09zM7OLepeNf82m52u7l7cbg963b0vd9QaDakpySTEx6Nben15r+Xc3Dw2ux3HwgIOxwI+rw+fvDSHCgVKpRKDQY9er8dkNGIw6Be7fQeZw66eXubn5tfNoYLcnCzi483MzM4xPz+P3bGAc2kOJUkiLzcHvV6HTqvhYVuT4bD8DBsNBvQ6HUaTEbfbjdFoxGa3MzQ8wsTEBK0tLXg8HhwOBxkZGeTm5pKTk0N6enqUjhsTCASC+xvR2EkgEITF+j8ZdrudS5cu8eGHH/K3f/u3zMzM4PF4UCqVFBbkc+zwI3zlS18kPS0NvV63KIN7/p9/vzFQzjAkC/2MiLzjbPQ0bl3X6m7PE5NTdHX30HCniTHrOMMjo9gdDrxeLwpJwmQ0YDKZyMnJYk9FOTnZmRTk562Rt9oRdrvdzMzO8h/+5P9kbt628rpCoUCr1fJ//Mf/DY1GQ2dXNxevXGNszMro2Dg+rxfNUqC1t66G/Lwc9tZWr5Uvg8w9291uN3ebW+np7aenr5/+/gHsDsdSybliMfCOi6OitJj8vFz21lVjMhrXHEGyejZ9Ph8LCwv83T99lyvXbq65R41GwxdfeYknTp3g+s0G2ju76OjsZmR0FKfThc/n45tf/23y83LJykxnZmaGyckpunv76ejqZnJymjGrFZvNhsvtwev1olGr0Wo1JCYlkp2ZQXqahcMHD2A2m1ee8dVze+nKNT45f4GmljY8q78gCIHkpCQeP3WCgwf2kZ6WujKHCwtO7ja30NHVzeDgMH39gzgWFnC5XCgkCZ1Oi0GvJz8/l7ycHEpLiigsyEOtVvv9/L1eL06nk//7v/8NzS1ta65Rq9V842uvs29vLTdv3aG5tY3evoGVOVQplfzu/+Nr5GRnkZ5m8XMXD+6a3PyPWQg6ZHB7PAwMDvLeBx9x/rNLXL52Ha/XiyRJWCwWTpw4wUsvvcSLL76IyWRaGSqCWYFA8LAiMrECgSAi2traaG5u5rvf/S79/f0MDw8zMzNDfLyZ7KxMXnnpBfJyc8jPzcGSmopGs8p5ZrMtdZKfn/zhryx2nZsq4zfwWZEeph/r7/JgzvK9n7fubHo8HhwLC7x35iMGB4cZGBpezBa6PbhdLrxL2T0vMDs3v5g1nZmho6uH+DgTNdV7qK2pIi8nG4XCf0bOH7Is89nFK9gdDhoa7zI3N4/b7cbt9iDLMh6Ph6HhxSA4MTGBgcEh9u+tJSszg+Vbl30yzgUnt+400tTSRlt7Jw6HA6fThdPlxOv1Ics+QMLr9eJwLDA/N8fd5lYuXL7CU4+fIiszg/T0tJXnJtSPrrWtA5fLxcVLV5mz2VhYcOJyuVayqouSFrOsb/7iHQYHh5menWXBsYDH68Htdi/Zt3iN0+XC7fGw4HQxMTFJS2s7txsa2b+vjvLSEooK82MSXPhkGYfDweUr1+no7KKjq2clcF0OyJczo167F8eCE5vdTkfn4hcPtdV7KC4qoK6mKrQjrFbR0NjE6KiVi1euYbPZcTqduNxuZNmHSqlc2uQKD9uaXCPC70MZgg4JVColGelpvPT85zh+5DAXL1/l2s1b3LzdwPT0NB9//DENDQ28++677N+/nyeffJLi4uKNWzIEAoHgIUEEsQKBIGQWFhaw2+309PTQ0NDA7du3uXDhAvPz83i9HvLzcsnJyqSkpIgD++pIs6SSlJjoV5YUlYzL2g170tpfF4OdNXsK/egMdf+bX7fX/z2s92u3ynIGdnZunoHBIdo6OhkZsTI5NRWw25DH68Xj9eJ0uZibm2d6ehqNVktCQjw6rXYlGAwFn89HV3cPNrud4eHRDe97ZRmv08mC04nd4cBkNJKVmUGcyURc3GLWyOPx0NPXT0dnN20dnQwODW/I6i/dLV6vF6/Hg8vlYnZunonJKfJyO/F6fSQlJqBWqxezsiHO3eiYFbfLxdDIKF6v1881LGaLZZnh4VEGBoewOxxBZXq93pXs5RwwPTNDfHw8arWa3JysFRujh4zL6aK7t4+Ozi7aO7oYHh0LYp+M1+vD7XYzN29DmpxCr9MhKSTSLKmkpVnQrMrKBrtXWZYZGh5hZmaW4ZFRv5/b4hxu7Jb0oK7JgEQoXJIkdDodGek6UpKTcHvcKJQKVColLW0dTE9P09nZicfjwWazodFocDgcWCwW0tLSYvC8CQQCwe5GBLECgSBkRkZG6Ojo4E//9E9pb29naGgIgHizmYz0LH7vm/+C8rISSouL/Ixe71z6qcFbu5XQ7yh/yGyM4yR55f/86AwoJcB7gfJ+wayUV13jvwlMOE1hfT4fHV3d/PJX7zIwMHSvLHVNlBC4fa7T6aLxbjNul4uRkTFe/cKLKFSqTaxY1Otyubh9527Aa1brdzgWuNXQSFJSIh6vl/p9dcDins83f/E2IyOjTM/Mbi5r6T58Ph9Op5MzH3xMb0kf2VkZpCQnoQ1x76Xb7aavf4C+/oEgZvtWyp0jxePxcquhkb7+Qer31RFnMqHRRtCIJ8Bn6PPJTE1P8eOfvsXo6GJ5c8gil+S2tncwPTPD3Nw8X3jxOZKSEvA7h+tscLvddHX3rpG34WmXfWtm8GFYkwHf3BjLb2rV6tfUahW11VVU76nktd94mV+8c5oLly5z9vxndHV10dnZyVtvvcXzzz/P8ePH+a3f+i2Sk5NFECsQCB4qRBArEAiCMj8/j9Vq5Wc/+xk3b96kra2Njo7F8kyTyciJY0eo2VNJTfUeCvPzMRmNAZv6rGVjQfGyTxlu1sTvNVIwnSFLWTUqmCX+SiBXl0tudJaDa1z7nizLNLe00d7eyejo2JpsoiRJpCQnUV1VSUFeLnq9Dq/XS2tbB0PDI7S0day5j/7BYZwuN8eOPEJSYiJGoyGIFffQabVkZmawt7Z6cW+mJDE/b+PK1euMjFmZmppeE7W0tXfgdrvZX1fD8MgovX0DDA2NbMhwqlQqDh7YS2b64vEjbq+HoaERmlpa6e0bwO12A4uZ5THrOB+ePc9Tj58MsPcSv0GgJC02nqrfX0e6xUJqagomk3GluVh2VgZ6vR5JkoiPN5OnyCE5KYnMjLSVxkg6rRZJkvB4PExOTmGdmODSlevYl8q5YXFfqWPBQWtrOwUFeWRkpANQXlqCJTUVm81Ge0cXN2/foW9gcM3+2Iz0NA7W7yMvJxudTrfyukatJjkpiYnJSQaGhhkZWdyHei+rKaHVanmkfj+ZGWmkJCXh8XoYGh6ht6+fu02tuJf0yMDU9AwNd+5ycP9eJEkiMTFh4xyuX7+yjKRQYNDrObCvloz0NJKSEjEZjSw3/srJylzZDwwP/prcYM9qcUESy6H8ZQQJSbq3H/3kiaNUlJXw5GOneO/Dj+jq7qW9o3Olgd5HH33EM888Q2VlJSdOnEClUomAViAQPPCIIFYgEGxgufnO1NQUvb299PT0cPbsWe7cuUN/fz/mOBNpllRSU1M4uH8fNVWVVFVWoFKpwt8LuMrRjGmZ3xYIya41F60uddx62bRvqZzTah3H4VhY857JaMRiSaWivJTiwgIMej1erweFpECj1dDd24/b7V7p/Gu32xeDMOvEYnfUEIPY5OQkcrOz2FNRRmZGGpIkMTs/z/jEJJIkLQaxq5icnEav17PgdGIdn2Bwaf/u6gBcq9USZzJRVlJMbnYWWVmZuD0eEsxmXC43o2NWPJ7Ffbeyz4fNbqezqwfboUU5qxs9reDn+TPo9SQkxFNeUkxWVgZpFgtxcaYNjr7P5yMrMwOLO4W0NAs5WZkYjYbFQFanQ5Ik3B4P4+OTDI+M0NXdy8jIKC63ZzG3J8t43B7GrONYVgXZCQnxJCTEA4sNfDq6ujfoNhj05OfmUFlehslkZH0E1t3by9DQMHb74pcAy+/odFoS4uMpLysmJysLS2oKXq+HhPh4NBoN3T392Gw2PF4vEuByuZiccmMdnyDebPYfxK5HkjAZjSQnJVJeWkJ2ViYpKcnExZl2rLHQTq/JrYkIbbAkSSiVSjLT00lMSCArM5Op6WnijCZ8Ph+jY2P09PTQ09ODXq9nZmaGxMREMjMziYuLwxjwC0WBQCC4/xFBrEAg2IDH42FiYoKf/OQnvPnmm9y8eZP5+XkkSUKv03H86GGeOPUoRw4dJCkxMUJHKfaRq9+mMduuZ+s6ZZ+PltZ2BoaGN7xXUV5CZXkZhw8eWPP64UP15OXl0NbexejYGDabfcXWxe7ALRgMelJSkoPrBhSSxImjhyguKqS05F6puNFo5JknH6OlrZ2WtnZ8vnsFpXaHg6mpGUZGx2jr6KS5pW3NsTKwmH0sLy3myOGD6FdlH+MqyigqzKe9qwuX241zwQmShN3uoKOzi/GJCVJTk4lb1aU1kO0SUFiYT82eCo4eeWRNd971SJLEF156LqhMlUpFTnYmiQnxzM/bOHv+szXdnL0+H0Ojo+QX5AWREgprn5vevn7aO7s2XJWbnU1pSSGHDx5Apbr3T/qeynJKiotoa+9iYGiIiYnJlfdkWaa9swu1Wk1eXk5AC1Y/1+VlxVSWl3H0yCNbyvI9KGsyom28W9Cv02rRabV89fXXmJyaoq9/kP/5d/9Ie2cXPb19/OxnP+O9997je9/7Hr/3e7/HgQMHOHz4cNh6BAKB4H5BBLECgWCF+fl5WlpaOHPmDM3NzTQ0NDAwsFjSmZuTzf69dVRWlLG/rmYpmxW36Xmvq4ntoRr+d91GS/ZmegJd4a9Xa9j6ZJmJqSnm5zfug8zOyiQ9PY3lEsTVerQaDQV5uczPzy8GsbK82LnW52N8YjJo86LlstzlktXsrEwslpQ1n7Usy5iMRhLi40mIj2dufn6xY/HSXXp9XiYnpxkfn2Ricmoxo7pqBlKSkyguKkSlXJvBXz6DNSU5ifn5eUYWrGtmbWJikvHxiU2D2OUxaZZUSkuLQzpf0+V2MzMzQ2/fICOjo9hsdubn53G53UvNnBYDcY/Hw9TUNNbxiXXTJuNYcIZ9lE4wZGBmdo6pqZk1r0lASkoSebk5frPSCoVEbnYmjgUHExOTa+Z+anqGmdm5kIt5MzMyKC4uRPKX/d7E9gdxTYZk05rK9q3pWT3ncSYTBXm5fOtffJW+/gFuNTRy9tynTM3MMDQ0xD/+4z/y/vvvU19fz5NPPklhYSFpaWkiKysQCB4oRBArEDzk+HyLHUwnJycZHR3l8uXLnDlzhqamJibGxzGZFkuHqyorOHzwAHU11RQV5oeXjVny36T1L/l5fStsJica7ura3jSBJPrbjxeKhYGx2x04Xa4Nr8ebzcSZTOuqaBd/UapUJCcloNEsNRhaPtZE9jFvs6/sN/XLKoGSBPHx5sU9kGsukdBo1Oh1WowGA3aHA/dSaS0sZpDtdjs2m21DGSyyjE+W8Xi9DI+MbDjyxefzIftklMtdiFdFBPM2O/NLmeVQiDOZsKQEb3zj8/nwer2MjlkZGR2jta2Dvv4B5ubmmJmZZcHpXBPEBmbxyKH1WeewWNdzSAIWFpxrvnRYfs9oNJKQkOC3jFqSJBIS4jEaDGvGwOLztOBcCPmJjI+PIyU5Kewn+EFek5vhb01GA41Gg1qtZl9dLVmZmZiMJqzj4/T1DzI8OkpT0126u7uZmJggLi4Ou92OLMuYzWZ0Op3/MnyBQCC4zxBBrEDwkONwOBgYGOBv/uZvuHLlCpcuXUKWZZRKJUlJiXzu6Sep37+PJ06diGzPKwRuoLINflSUiwjX2e1H4rp+VVHJMMssnk3qJ+jU6/XodGvPilw2QalUYIozrSkzZenIlIWFBTx+jpvxhyQtNphZX4q7rEehVGI0GZmcngGcK3p8sszC0tE7rvUBuCRx4+Ztbt5qCPhMrQkEV11jdziw20MLYpVKJXq9DtMmWduFBSdTU1P803e+z9DwCDabPcARQBtZ031WXrTbF+JYv/j5Ysftdq+Zw2WdWo0Go0Hv/zmTJIwm48pZoqvtdLlcuF1BvsRYhVKpxKA3bPgSI1IehDUZLrHK96ZZUrGcOsGRwwfp7evn3TMf8stfvcvg0DCXL1/mxo0bWCwWXnnlFV599VVqamo2XQsCgUBwPyCCWIHgIcTj8eB0Ojl37hytra189tlnNDU1YbVakSSJ8tIS8nNzOPXoMQoL8kmzWFYC2J3+Bj92xX9RUhAL4yRQq9QolcoN55w6XS5cLrffBlk+nw+HYwHf6jHSojev0WhQKtZmPwOx3OjL4/GsCWRX9Hh9LCw48fnW6pEkCY1ajUatQaVS+Q3C5aVgN9i0rf9Ils/ADQWFQoEihOd2zGrl2vVbjE9MsrCwsBLAGg0GcnKyKCkqJN5sRq9fbPDkdDrp7RugqaWVMet4yLZHikqlQq1Wr8zhclmu2+1mwekMoFzGueDE7Xb7PcZlzZcbAZCWug8HW/sP5ZoMhRg2rVv/WWi1WrIyMnj6icfITE+nu7ePS1eu0tPXz8TEBO+//z59fX0UFhby5JNPUllZSVZW1q74my4QCASRIIJYgeAhYdkpt9sX9/iNjo5y7tw5bty4wYcffohKpUSj1pCZkU7VngqqKst59qkn0Gq1ITm7EVhEJK5dRO6Wv1LDIFWH0SWM+wxwqQRotYslhOuDWIdjsSx07bhFQT6vD9u8DY9n7RhJktDptChVoQexDscCLpdrTRAryzI+nw+Px4NjYWFDqe3y8S9arQatVrshiNVqteh0ixnecKbdaDDcK5HeBEmSVgLqYMzMzNLS1r5hvvQGPUWF+ezfV4slNXWldHveZkOpVNI3MBA0iA3nvtZmftc+DGq1Go1Gs2YOJRa/xLDbHQGzxjabHafTtcEOjUaDWhO4ydVqFgOdjYHTajvC5j5fkyGN8bMmo8nqY5ZUSiXx8WbM5jhSU1Lo7evH4XDg8XgZGR2lo72d/v5+UlNTV0qKFQoFSUlJqNXqGP2NFwgEgtgh/moJBA8RXq+Xjz/+mM8++4zvfve7TExM4HK58Pl8VFVWULWngq+9/hqW1FQMRgNKf3sIg/liYflp2/jt/3LaarUTvl59zNJJYQgNcKkkSVhSU1hwLrCwsPaIna7uHnRaLaXFRatHAIslss2t7czOza0Zo1QqyUizYDKEdryOLMt0dvcgKRSUlRSteW92do6JiUmsVuua7sQAKqUSiyWFjIw0pmdmsNlsa4KtvXXVHD96mLLiwrCc6Fjs6Zubt9Hd04trXaCdkpTE04+fIi4uDrX6no0up4uOrm7m5ufDV+bHdllmqfHV8vysvSYxMZ7UlCRstrXNvUZGRmlv72RPRTnrthXj8/lo7+xidHRsg77UlBSSEhLCtz1a3OdrMvwx616Mwr352wIsSRKpKcmkJCdRV1NFU0srzS1t/ON33mBkdPFInv/yX/4LP/zhDykpKeHf/bt/R0lJCVlZWVszRiAQCLYZEcQKBA84Pp+Pvr4+Ojo6uHLlClevXqW3t5fJyQn0eh15udkc2LeXuuoqcrKzSLOkotfrUa33iJcJ5njt5qq0zWzbxbZLkkRuThYOh4PRUeua93r7BlAqlGRmZpCZnoZWo8Er++jrG6Cnt58x6zjOdeWmapWS/Lxc4uPNIemXZZk7d5tZWFjAZDSQlJgASDgWHFy/2UBnZ/eGAFar1WAymUhOTCI7MxObzU53T9+aIHZgYIjLV66jVatJTEwg3mxGo1EvNnzyeHAuOFcyjdbxxTNy5202Dh08QHJSYkRzGewevV7fin3LsYHNbqeto5PS4iJMJhM+n5fBoRH6Bwfp6Oxmfm5jx+hgKBQKNGr1hjh2YcHBwOAwBfl56HW6DUF9usXCVOY0Pb3992wGRsesyEBLWzuW1BTizXGL3afHJxgcGmF4ZJQ52/yaWEeSJLIzM0izpAaeD7ZhSdzHa3LLROve/FVuLFUeKBQKcrKyMBgMaLUaGhqb6Oru4cr1m4yPL/5d+Ku/+iv27NlDeXk5TzzxBGazGb1eHyXjBAKBIHaIIFYgeABZLvN0uVw4HA6ampq4ePEiP/3pT+nu7sbj8aDTasnMSKe8tJjPPf0kleVlJCwFNcFa0qw9NiL09zY7YCcqTvMaITIyUvCGpfcJkiSRlZnB+MQkSoUC76qGR6NjVhQKBW3tHSgAo9GAx+ultb2D7p4+ZmZn18hSKpXodDqyMtLDatTT3d0DskxGehperxdJkpidnaOxqYX+/oEN1xsMBuLjzcTFmUhPs2Cz2VCrVLjc7pVAcWzMis1mJzPdQkZGOi6XG4Neh3fp2Z2fX+xqPDU9Q0/v4r1MTc9QWV4W9SBWkiQUSiWS14vs861keu12O23tnZjj4kh0ufB4PbR3ddHT28/Q8EjYelRKJVqNZvnJXMGx4GRoeJjx8UkkFrs+w1JTJaOB1JRkZjLSUCmVeH2LwbbE4lE5TqeLtvZOnE4nHosFt9dDT28fbe2dTE5N43LdKydWKCTUajXpaalB5zBqy+UBXZMhs+7+Y3vTG+UnJSWSmJhAQV4ultRU7lhS6R8cZHpmlnGrlV/84he0trZSXV1NXl4e2dnZpKSkYDAYxH5ZgUCwqxFBrEDwACLLMlarlYsXL/LOO+/wzjvvMDMzg9vtxqDXU1ZSzDNPPc7TT5zCkpqKVqNFqVxVOhzE1wrm0/h7756oQAPXvuu/mDJEpHW/+N2bxsb72+UOtUKhoK6mCq/XS3d3L0MjoyvnkPp8PoaGR/jZW79aLP+WFus0vV6f32Ne8vNyKC4qICcna0O34WDM2+zcbW6lpa0DhWJxUuWljKm//Zg1VZVUVZajVCooyM8lISGey1euM2K1Mju7WN7scrtxTU/z5i/eQaGQkCTFSpUpLO8RlVc6/qpUSowGQ1TPYF3GZDKSl5tNT2//mi7Ak1NTfHj2PGfPX1hy6Be/IFqfeQ4Vo9FARkb64n7kVQnyqalprt24xc3bjSgkaeV5zM3J5l998+vk5eUQF2fiyrWbWMcnsC11Z5ZlGZvdzi9/9e7KHC7aKK8cG7Sa5KQkykqLyc/PC/5FQPBvpELnAV2TIbP+/rdP2RqUSiWP1O9n395aXnjuWc6e+5RrN27y6/fO0NraSnt7Ox988AGHDx/m0Ucf5etf//pSCX3ofyMEAoFgOxFBrEDwgLAcUCyXDn/yySe0t7fT3NzMzMwMer2OosJ8jj5ykPy8XPZUlpOakoJ+qcnHarbku67foxXm8A3Xb8GZDXgf61+/D5xltVpNdlYmx48e5txnF5mammZ+aX/k8mfvCRJ4qFQqMtPTqNlTSWlpUcjHJUmShFKpJDsrE6fTyfDIaNDrNZrF5mDFhQXk5easjDcZDRw7eoi7Ta10dnczMTm1EvyGGpQqYpgVSkpMpK6mCqt1Ys05r7LM0vmw94JBhUKx1A02ndGxMebmQy8pNsfFkZ+bjV6vZ2HBuUau1+vD6117FJHL6UKW5cXGPWYzx48e5lbDHfoHFrNpy4Qyh5kZ6RQW5FG/fy9GoyH4Wc/B5lqsydDZBcH48jpXqVSLzZwSE9hXV0NqSjIJCfG0tnXQ09vHxOQUjY2N2Gw25ufnKS0tpbKyksrKypAbqQkEAsF2IYJYgeABwOv14vF4mJpadELOnj3Ld7/7Xebm5vB5vej0ejIz0tlXW8OrX3iJjPR0TCYjMUl/bDo8TJ1hy4uMXeBrBmS5rC89zUKcyURvfz8KhQK3x43X68Xnk5eaAq0bA0gKBUrlYgazqDCfPZXllBQXhlwmKEkSKpWK4qIC5ubmmZyawuPxrpSsL6NY0hNnMlFaXEhBfh5ZmRkr72u1Wg7V7188o9bpxO5w4HZ7lrKaPpYzrmvvGUBCoZBQKJRoNOqVzqrRJikxgZo9lVy/cRuXy8WC04nP51uTZV4MyBXodDrMcXEUFxVgt9vDCmJNJhM52VkkxJtxLizOw3o9/pAkBSaTkcOPHMBmt+NaOlrH6/Hik30rz8DaMdJKF1qVSkV+bg4VpSXU1VShXLPnPcyssliTobPLbkChUKDX6agoK6W4sIDcnGw+OnsOhaRg3mZjaGiQ/v5+mpubOXz4MM888wxpaWnEx8cvHsulVIoSY4FAsCsQQaxA8ADQ0dHB3bt3+Yu/+AsGBgYYHx9nYWGB1JRkCvLz+PpXXicvL4fszAy0Ot2qrsOLzsjmJb/RJNo6Qx8fzCmO3Z1HzxVXq9XEx5v57ddfY3x8gq7ubu42tzI+MYnVOo7dsYDPt7hf1Wg0YjQYyMrMoKykmKzMdIqKCtCo1esCmM2RJInHHj2GWq2mtmYP127cwmqdYHxiAq/Xi1qtJiU5meo9FeTlZrO3tmZlT+dqGQajgePHDlN/YC/NLW309w/SNzjI4NAwDvti52Wfz4dKrUan1WIyGTAaDSQmJpKfm0tKchI5OVmkJidFZT5XYzQa0Omy+Z3f/jK9/f1cu36Lvv4B7HYHTpcLo0GPyWQiLzeb+n17SUpKYMw6QWdXT1h6NBo1CQnxfO3136Srp5ebt+/Q1z+I3b54VFKwWFahUBAXZ+JzzzzJo8eP0tjURE9PH0MjowwNj7CwsIDL5UahWDzaSK/Xk5OdRU5WJkUF+RQXF6DX6f18/tF++h+eNbnbNIajR6VSLVZM5GTzm6+8zMUrVzn36QXOfXaR8fFxfvWrX/Hhhx/ys5/9jGPHjvHKK69QWFiIVquN5S0IBAJBSIggViC4T5mdnWV6epqLFy/S3NxMW1sbnZ2dLCwsoFKpOHLoIEUF+VSUl1JWWkxiQgLGAI18duJ79YdFZzS1LmdADHodycmJgIxeb1gp/3O5Pfhk31JjIA1arYb4eDNpqakkxJvR63QRZ1E0Gg3xZjOF+XkolUrm523M22zIPt9iptdoJDMjnaTEBHQ67QY9y79r1GpUSiV5OdmY40xkZKYzPTOL2+XG43bjk2WUSiVqlQqNVoNWo8FgMJCclIjRaCAhIR6VauM+PZVKxf69dVhSV3XclUClVFGYnxfS3CqVClKSk1AqFaiUKkpLinC5FrPdGrUarVZDUlIiuTnZGPR6tFodx448Qllp8YocpVJBakoKmelpAfUoFAqSk5ORlsqSS0uKcbnceDzuDUFsYmICBoMepVKxkpHXaTUolQoK8/OIN5vJz89lZmZ2saTc413Jnms0ahITEkhIiCc1OQmjwYgqwNnAy2MOP3KAooL8dfOiXJNVjyb3+5rcbRrD0bP8matUKtQaDZXlZYvHb2Wkc/X6DQaHRhgaHqGlpQWXy8X09DRHjhwhLy+PioqKmFVFCAQCQShI8mY1TAKBYNcgy4slg263e2Xv65/92Z/R3t7O4OAgKpWKuLg4UpKT+NrrX6J6TwXVVZWbSYV7hzauey3w1SG9F7Azpz+dIZgYNjHOf/gVH+a9RUXnli4EwO12MzM7y3/4k/9zTXns8v7P/+M//m9krAnMQpC/pS5dmxFEf8zTXhEqCPuzE2syOuLvzzUZvritr0m3x4Pd4eDNn7/F1es3uXj5Gna7HVmWUSgUvPDCCxw+fJhXX32V1NTUlRJjQJQZCwSCbUUEsQLBfYTNZmNsbIxvf/vbnDt3jrt37zIzMwOyjFar5aXnn+XAvr3s31tHQvzimZu7q7tk8GN2tibjfiWG9xNGPOIJO4jdVhPv4499txsu1uRGdsealGJsil+9S1+UOhwOpmdmGbNa+cGPf0pzWzuNd5vR6/UYjUZSU1N5/fXX2bdvH08++aTYKysQCLYdUU4sEOxyfD4fCwsL9PT0cPfuXTo6Ojh//jxtbW1MTk5iSU2hIC+X/Lw8jh5+hKKCfNIsKaE7FTLI0nb5Sfe0yIC04qCFVQQXsfbd6WpHxyK/9xai6GhYEOnchjxmBz+4rT03kWVsxZrcSXbRmtyCKZHM7XLJutFoRKVSYdDrePT4UbKyMkmzWLjb3ILdbqe3t5dPPvmEoaEhJiYmqK2txWKxYLFYRDArEAi2BRHECgS7lNWlw1NTU3zyySf8+Mc/5tatW8zMzCzujdPpKC8r5eknHuP4kUOkWVLD36MUprMcVulicLWxrSr0c9pMbNRFUNYaA889UnHRMuVBdlv9ZcSidYxqIIViTW5JU2DJYk2GjFarRavV8twzTzFmHad+Xxd/+0/fobunl8GhYc6cOcOFCxf48MMP+Zf/8l9y4MABkpKS1nyBKgJagUAQK0QQKxDsUubm5mhsbFwJXJubmxePzPH5KCrI59Sjx9hXV0ttdRUmk3FLTXv8eU2BHClp3TWrX9vUkQ60xS8WDqS/fXHr0ltB1YZsU5B9ioHGR/Vet5a227IpMd33Glztlsotw41z1gdfsb5fsSY3ItZkyOqjI+geSYmJ7K2t4f/6f//vDAwOcePWbd78xduMjI7R1dXFf/pP/wmLxcKRI0d47bXX2LNnDxaLJXoGCAQCwTpEECsQ7CI8Hg8Oh4P29nb6+/u5dOkSly9fpqenm+mpKTIy0klLTWX/3jr27a2hpKgwsuzrevw4O6H4PyvXbOJc+n0ryoHH5mx0KoOK2pIDKCNtW47Jn7O8jQd6bBLNxSDGhJX3tpAODfd53W7EmvR7eeSINbkVS1QqJUqlgjTtYjMnkJmanqGnr4/2ji6GR0ZwOBxLx4DF093dzd69e8nNzSUhIUHsmRUIBFFHBLECwQ6z3FtNlmUWFhYYGhrihz/8IVevXuXs2bPAogNhjovj8CP1HNhbxwufewaVSoVCsdMFa0uEJCqIcxVqSi3qPtDW58G/hNg5a6FJXn9VaPcpAZJCscbZVCgUq74kWS8nNJmRENl9Roud2Kkp1uQiYk2GxzauyaX9sslJiSQlJlBRVkpXTy+/ePvXnPnwLCOjo9y6dYumpibS0tL4zd/8TV5++WWqq6s3HO8mAlqBQLBVRHdigWCH8Xq9OJ1O3nnnHW7dusU777zD6Ogodrsdh8PBgX11VJSV8uJzz5KakkycyYTZHAc8XI5AKC5fRAdpRMmX3J0NakJHlmW8Xi8jo1Z8Pu/K68uOa5oldZd1ul5L1OY/DEExPrhl1yPW5MOLLMv4ZBmXy8Xs7Cxd3b10dHXz1ju/prOrB5vdTkJCAjk5OeTn5/OVr3yFuro68vLygIfr3y6BQBAbRCZWINgBlr87slqtWK1WOjs7+eSTT2hubqalpQW9Xke8OY7a6j3U79tLSXEhZSVFaDRaVCrlemmsd9Vi2nQmbMJ1JcPZmLf2ff/7ACOpq1zaVhbGPG6693BzSwITwsCtOuySJKFSqcjOyohofEj6IzQylDkMV2xAUyR/7/u3wP/z5l+6WJNh6BdrMirEck0iSSglCb1Oh06rRaVSYzKZmJicIiE+nsGhYXr7+uns7GRycpKsrCymp6cpLS2lrKwMo9GITqeLQLFAIBAsIjKxAsE2snq5+Xw+zpw5w6effsq3v/1txsbGcLlcAFRVlrOnsoLf+cqXycrMwLSuFOu+IcaNYrZKbE2KsZcbQcZwq2xbNi1S73vVS9s0tfcfYk3GzgCxJgGJ2w13aGxq4W//6TuMT0xgtzsAyM/Pp7S0lH//7/89xcXFZGTc+8JMZGYFAkG4iCBWINhGfD4fXV1d3Lp1i/fee49r166tZGPNcXHkZGfy2MkT1O/bS3q6BUtKKhqNGqVyffY1EP49jag6hsGERVFRYFFhKomlV7w6vbbjAcFORCe7KCJaY0oM055h36ZYk1u9PCzEmtwBnWux2ezY7XaGRka4fvM2za1t/Pq9DwBQq9Xk5ORQW1tLTU0NX/nKV4iPj8dgMGy7nQKB4P5GlBMLBDFm+azX6elprFYrV65c4ebNm1y4cIHu7m4US/sNy0tLKCrMp37fXirKSjGb40J0QVZf5f/q+/E77sA2r35n8xnawkkXm2tZHSit+jHy4kvBZgSc29WTGCCAjcZch/Y8iTUZDLEmHyzWz63RaMBg0JOYmIAsy5hMJsas4wwPjzA5NUVTUxNOp5PZ2Vlyc3PJy8sjKyuLjIwMVCqVyMoKBIKQEJlYgSDG+Hw+rFYrFy5c4J133uHNN99kbm4OWZbRabUUFuTz5OMn+Y3Pv0CaxbL0j/jyaD//mIfsYQXe1RepqHAauYQqfDO7Fn8OLmxznaHmkKKWa1pn9/Kf2U12BgZVEtbsBxwT+W7IQCPv3Vu4n1sgowLnLtnUmpWrZZCkUO820F2uvyPwK0+syQh0ijUZjhT/1+/uNbnsXnq9XsYnJnnvg4+4eOUqH378CR6PF0mSiIuL49ixYzzxxBN87WtfIy4uDpVK5FcEAsHmiCBWIIgBy51e29rauHPnDj/60Y/o7+9naGiIsbExkpMSKSku4nNPP0ludhbZ2Vmkpaag0WgiOPN1G/MGwXym7a6UW/3CVvRvyfbIBsdmuiIvI4zcnq2XLsZ+LsJUEhWDxJoUa3K91Id3TcqyjMvlZmJykonJSW43NHL1xk3uNDYxODyC2WwmOTmZffv2sX//fk6cOEF1dbVo/CQQCIIivu4SCKKMw+HA4XDQ29vL7du3uXbtGufPn8dutwMyuTnZ5OfmUFu9h0MHD5CakrzYuMlP6iI0ZyKETNEmhOy0BLooAo8nIkdpZX6Wf5E21b+pSxdmlkUG7iX4Ns8Q+ctIxSaekgL8HN7I8IhcZ6SjQnPR1+Xx/MZUAUb7TZqJNRlcv1iT/hFrEkCSJLRaDZkZ6aSmpqDX60CSUCqVSJLE1MwMXV1dzM/PY7PZUCqVKBQKLBYLKSkpaLXaCL7cFQgEDzoiEysQRJn29nbu3r3Ln/7pn9LX14fVagUgOTmJnOwsfu+b36C4MJ+83JyVMaHuAVrrrK28EvrY8IdF7odHXiMXec4iTFujlXGIVE7Y43ba4EjFhvm8RWPP5FYIO3Er1mTwgYQ+eKcfcbEm/V8brTW57HLKsozT6eTMR59w9vxnfHL+M6amp5FlGYVCweHDhzl58iSvv/46hYWFaLXaKGgXCAQPEiKIFQiiwNTUFKOjo/z0pz+lqamJzs5OWlpakH0+NBo1Tz52itKSIsrLSijMz8dkNGIw6ANIC7ccLMreT8SedYzxa0os5yfc7Nv2sKUqTZmImvZupdnvtgUTYcuMtMZYrMkVxJoExJqMyAZZxufzLTZ8Gh1lYGCQ9z88S0dXFx2d3cTHx2OxWCgoKODZZ59lz549HD58WGRlBQLBCqKcWCDYAl6vl6mpKTo7O+no6OD999+no6OD4aEhDEYDltRUsjMzOPxIPaUlRZQWFwGbZF7XfOUdissQhlsRihciBfzFr7gwLYgcv0oinZ91E7FJTWNQLctjg8zt+reCfwzB3w1QTBnMwntjI/yggj6uy9cEGhuZyoC6wqw0DWBLmO64WJP+EWsygC1iTW72prRUTpyRnkZyUiIFeblMT8+g02lxuz0MDQ3T0dFBd3c3er2e2dlZ4uPjKSgowGg0isysQCAQmViBYCtMTU3xne98h5/+9KdcvnwZt9uNLMuo1WqOHznEs089zjNPPo5eb0ChWOWAxfgIga1/Y76b8hxbYWv3sZtmYTfZcr+wm+ZMrMllxJp8mPE3Z6tLjKdnZhgcHuGP/vf/D/0DA8zOzSNJEjqdjuTkZP7iL/6C/fv3U1xcvO22CwSC3YXIxAoEW0Cv13Py5ElsNhtxcXF8/PHHOJ1OvF4vLW3tmOPiAIlTjx7HZDSi1Wqib4Qfr2BLjpVM5OmB7WZTL3Jr97Hp6KhsOAtNfHjSAukPvRwztNLbWLrxWyhLXXo59ExblBFrMghiTQZ6/WFdk5Ik4fP5GB4ZobGphYtXrjE6NoZjYQGAxMRESkpKePzxx6mqqsJisUTjZgQCwX2OCGIFgi2g0WgoKytjbGwMSZLo6+tjYmKCublZRsfGaG5tQ6lUkpuTTZollcSEBIxGAwqFInrZ2K3UV/q7NKQhfr9P33xwoK2Fmw4NcEG4Uxht/y7gFESnnDRyUwPVUN7zIsOqYA3Y1SWWgVUYZanr5zAKj8qWEGsydMSafGjXJLKM1+djYcGJzW6npa2DW7fvcPnKNWbn5lEolCQlmSkrK6Ouro7HHnuMnJwczGbz1m9FIBDc94hyYoFgC6wug3K73QwPD3P69Gk+/PBD3n77bdxuNwpJwmw2U1NVyfGjh3n5xecwiwPdQ+QBL9jbUkeYLYzd7eyGzjOCADzgkyzWpH9isCZ9Ph8Tk1NcuXaD8xcucvr9D7Db7Xi9PnQ6HVVVVTzzzDN87WtfIz09HZ1OhyRJMd+OIxAI7g+EFy0QbIHlf0wlSUKtVpOamsqJEyfIy8ujtLSUhoYG7ty5w9joKK3tnczb7FjHJyguLKCmeg95OTkbSozD7YO6gQgG7YTvFZrO6Jb/bdd9bovOdUJD1hOuQSFevyvmNkb1w2JNrkasyYCINbnpmpRZ7ErcPzBIb/8AZ899Sm9fP30Dg9jtDpKSksnJyeHZZ5+luLiYiooKLBaL6EosEAg2IIJYgSBKKBQKjEYje/bsoaysjOzsbFJTU/F6vSwsLDA7N4e1YfE4gZqqSpQqJQaDgQSzGZ1eh3KpxHizCiwIw2nYcIF/t0ZafiuY0mBGhMOSni1/mS6vragLZE4o87lm9NKPWznCYtMquuXXo+hhhiwqyIV+59DP9RseKe7NVVQc5yACQvs8Nzdi+fNdrKLw4HQ5sdvtAKhVagwGPRqNZrH0PwSxYk0i1mQQnZFe+CCtSY/Xg8fjYXZ2jrb2Dm42NPLWr07jcDjw+WTi4+MpLCxk3759vPbaa2RmZpKYmLhVywUCwQOKKCcWCGLA8hl4Ho8Hh8PB22+/zUcffcSvfvUrpqamFjsYq1TU1+9nf10NL7/4PGmWVLSaVVnZXVWaFokxu+gGdpEpu5bdMEc7YIPP5+NWQyMfnT3HP333+wBUV1Xy219+jSOH6kmIj99R+wIj1uQDz26Yoyja0NXdQ3tnF3/7D99mcHiYyakp3G4P6enpFBQU8Id/+IeUlZVRWFiIWq2Obu8IgUDwwCEysQJBDFg+A0+hUKBUKjlw4ACJiYmUlZXxySef0NPTQ3t7O52dXdhsNsYnJtlXW0NuTjZVlRWo1apdVjq1ypEI5tSseW8XOR+7yJRdy2ZzFIEz6/V6mZ6Z5dMLF2lp6wAgOSmRNIuFp598DI1aHZ4NMcLn8+Fyu7E7HAAsLCx2GGf9V7y76jkSa/KBJwZrMuwxW/yc5udtTM/McOXadVrbOujp66e3fwCPx0NcnJkjR45QWVlJVVUVtbW1JCUlodPptqZUIBA8FIggViCIIZIkoVKpqKiooLCwkMOHD6PT6bh06RLj4+NMTE4xZh2n4c5drNZx6qqryEhPw2yOQ6vRrDR/Wv1t9Fa/GN/yF+vBBm/R4dlgW5jGhuzL7wQrBgSuEd1xG4MRwLBgFa9er4/p6Rne//Asv37vDADFhQXsqSjn8ZPHV4LY4Pe9q2cFEGsyrPGRi4o+D+GaDPVmtrImlyuRXC431vFxevv6+eWv3qW1vZPRsTE0Gg1JSUlkZGTw/PPPU19fT11dnWjaJBAIwkIEsQLBNqHRaEhMTORb3/oWr776Kv39/fz1X/81d+7coaGhgY8+Oc/FK1d58xe/5MXnnqV6TyUnjh1BoRD/qAsEAoHg/sCxsMCYdZxfvnOac59dpLO7B9v8PDJgNpt55ZVXePrppzly5AjJycmo1WoRvAoEgrARQaxAsE0sf8us1+tX/uF++eWXqa6uprKyksuXLzM9Pc3I2BgXLl1hYHAI68Q4e8rLSbOkkpyctKHxU0R2rH9hs1RDLFMR62SH0sAkGCtJFT/jdtxFWul2IwU0Jiwbd0mKKBomBJURZL42XruZMD+6JYmMNAtHHqlHvVT5kJ6eRnFRAVqtNjQZ4ancfLxYk9uDWJORyVg3X8utVRwOB/0DgzQ0NtHb18+1G7fo6+/H4XCQmZVFVVUVJSUlPProo1RUVJCamopGoxEBrEAgiAgRxAoEO4BOp0On0/HKK68wNjZGY2MjDoeD5uZmenp6uHrjJneamrjb0sKrL79ETdUeTCYTKrUK5dJe2aj9wx+g0+XKW1FQIwOSPwcvFr6L362Ca3+Kpuqw5UWoeNOOt0HHymz69UcIDvhmctZ36A2brT4j664NJaaQJImsrEyysjI5eeLYJiZtlBiTuEWsyS0h1qR/ERE9q5s8I6tLhycmp7hxq4Gf//JXtHV2MTs7i1qtxmQyUVVVxauvvsqxY8coKCjYZT0fBALB/YgIYgWCHSY5OZmjR49SVVVFb28vp0+f5kc/+hE9PT20tXfyf//3/0FSYiKPHjvC0088RkV5GQnx5nsCAngm4Tksa6+Ozs6we2P8O96hywx45SYiNt5RCI5jmHqkTa8JyRMNEICtm8OQxa91XUO6580ukZe/OAnsFq8WEVFcENKg0B/4DeGmv4xbyM+QfwPD+cjFmhRrcvnnHVuTQW7d71ub2GCz2ejtH+DHP/0Fza1ttLS1s7DgRKlQkJ+fz6uvvsqhQ4c4fvw4BoNBZF4FAkHUEEGsQLDDLHcxTk5ORqFQcPz4cbxeLx0dHdy+fZu+vj7GrOPcamgEJDo6u6iu2kN2VgZJiYlL51huTHWE4yZs7lJF4nQEHxOO6xrwuhAEROA6RqTHf7ZpE53LF/q5YBM3eYPekMPJcGOfDTb6lx3VjGRQR1taNbcBzPIrI8CiCPsZCmFIAFvEmlzWI9akX52hspU1GfIXNgF0Ah6PB6fLRWtbO4NDwzQ2NXOroZHRsTGcThclJSVkZ2dz6NAhDh06RHFxMcnJySJ4FQgEUUUEsQLBLmD5SJ6UlBROnjxJTU0NXV1d/PM//zNnzpyht7eXO3ebaGlrJzEhni+89AInjx/FYDCg02rXnqcXgZ8QWpYnQGrCr4DNvbLtcWfWuqvbolOG1b5aUJ1RNChkUeHqDPH6qM5toABWlpFlGa/Pt/QzrC1clpCkxfUkKRQolsOOIM7zskyfz4fX5wNAIUkoFEoUCmnDPnSJxSN5ZFnG4/WuvKZSqVb03JMpL+0XvGfj8t745TUbyDaxJqOqUqzJLSIjg7z47C8sOJmcmuK9Dz6iobGJy1evI0kSarWa+Ph4Tpw4wSOPPMKXvvQlVCoVSqUyipYIBALBIiKIFQh2GZIkkZCQQHV1NX/yJ3/Ca6+9RnNzM3/7t39Ld3c34xMTvPHDn/DR2XNkZWXy2m+8TFlJMbk52QFl+tuHFvy6EFNWEaRjQk06bDmzJ7PWc42ttvBV7jZ2SVOaYMzMztLa1sGVa9cZGByiq6eXeZsNj8eDUqnCHGci3mymoqyUvXU1FBcVkJWRsWkQe7e5hU8vXOIHP/kZAJXlZbz6hZeo37cXszluw5jbdxq529TC3/3zd5FlmdSUZP7o//X/JD8vl/h4M63tHdxuaORuSwsdnd3Y7HYWFpyY4+KwWFLIzc7mhWefIj09DUtqCmJNxkRb+Cp3G7toTS7ve/3g47M0NDbx8bnPGJ8Yx+l0AnD06FHq6ur47d/+bTIyMoiLi0Oj0eyw1QKB4EFGBLECwS5EqVSiVCrR6XT4fD5MJtNKA6ienh7u3r3LyJiVeZuNs+c+ZWRklKLCAsrLSjAYDGi12gAFZv5LzYJU0EWVQGWZMekv46ekL7SdY/cI14fcpJAvJCIdKa/JNkWwKTOY0hD2Fq7VHz2WM6R3m1sWO5/euUtrWzvWiQlGRsZwLCzg9XpRKBQYDXoMBgM2u53p2Vm6e3o5uH8fGelpJCcnBbwdp9PF1PQM/QODACQlJmK3O/AtZWbXPzdOp5OZ2Vn6BwaRZRmXy82C08ng8DADQ0N8fO5TOjq76O3rZ2h4hIUFJy63G4NBz8TkJBMTk+i0WspKi9m/t5aUpW7lYk2KNbmGXbAmZVnGah1nZMxKd08vFy5dpqunl/6BAYxGI1lZ2ZSXl3P06FHKysooLS1Fr9ejXjoDWiAQCGKFCGIFgl1OWloaFouFuro6rly5ws2bN/mLv/gLrFYrQ8MjfP/HPyUvJ5viogJ+71vfICszg5Tk5BXvZUPjDz/788Lzc4J5XcHdvUA6/ft50UlDbNCzVG4ZinPnt3tr2FpjNXKdy79mYAApkZoVQnYv2gHs8rEdXp+PhYUFfvH2r7nVcIfbDY0Bx7hci8Ho4NAwl65cwxxn4vXffJWTJ46RmJiwUr4blqkhlaIulg03t7bR3dPHP333+7jd7g1Xzc3NMzc3T//AILfv3OVQ/QG0Wi2HDh5YU44cWE8QI8WaDENrrEY+GGtyee3JsozX66W1rZ2LV6/x9q/fY2R0DI/Hg0KhIDs7mwMHDvCtb32LiooKzGbzJpIFAoEgeoggViC4j6iurqaoqIhDhw5x/vx5rl27xptvvsmodZyJySm6ev4jleWl1FZX8fkXnsMcF4dWq8FvCiRi1uY21r6yReGhOH1bZcVrXiU/0LyEU2MZRtfPUIu6gxMsZ7Z9BNyCGQ3ZskxTcwtv/OhNPrt4mcmpqbDGzs3b+OGbP2d4ZJS+/gFe+NzTSyWOYczZJp8tgMOxwNnzn3KnsZnO7m48fgLY9Xg8Hu7cbeK//vf/yZ/96Z9QWJCPwaAPzSa/Ri4i1iRiTS79N1ILZFlmeGSUWw2NnL9wkavXbzI9PcPc/Bzx8fGUl5fzuc99jieeeIKMjAySk5NDPlNZIBAIooUIYgWC+4DlDI3BYECn02EymXA6nZhMJmZmZujr62NkZGRNeWNSQgKZmRmL/0tP25DpCY3QszhbEhdTny+Ewsgwq/z8jg148cZ+usGd5xC97s2u9ysjwvrCIOOi+bGtVzMyOkZXdy8NjU1MTk6xsLT/LiU5GXOcibQ0CzqtDqVSiSz7sNnt2Ox2+vsHsTvsuFxuJqemaG3vQKfTcuLYEeLNi3v1wnrk1lwob3jb5XbR3NrOwNAQ8zYbhQX5mM1xmIxGtDotPq8Pj9fL9PQMk1NTjI5ZcbvdzNts9A8M0j8wiNkcR64h8L72tfrFmgyKWJMRiJPxeDxMTk1jHR+nobGJu80t3L5zl8GhYfR6PYWFRdTW1lJRUcGRI0coLy8nLi5OdB0WCAQ7gghiBYL7DIVCgU6n45FHHmH//v2cOHGC06dP88EHH3D69Gl6evvo7e3jyrXr1NVUc+rR47z43LOY4+JYPl8+dKcjys5JIHHrXo+u/xyOQ3nv8nD0R1awGaaeaExIpM7mNjmpq9XIssyNW7e5ev0GrW3ta66rqixnT0U5zzz1OJnp6RgMBjweD109vXT19PDGD35MT18/4xOTADS3tjE8OsKrr3wehSKL5KSkqBaXLiw4uXj56mJ3VnMczz37FNWVFZQUF5JmseB0Opm32bhxs4ELl6/y/ocfMz0zg9frxWa3c7PhDiq1KmhztmD6t4RYk0HfDcp9viaXy4aXf7Y7HNxquMO5Ty/wy1+dXtwXLsvodDqKiop46qmn+OY3v0l6ejo6nW7L+gUCgWAriCBWILiPUSqVZGVl8eqrr/LYY4/x7LPP8tlnn/Hpp58yODjIjVsNdHb3cPnqdar3VPDo8aMUFuSj27WlXxuzImvfianajQpCVLo1uyK5M39j/LTICUH01uZ1s1ZAkSPLMh+f+5Q7d5tWXstMT+fxUyd47pmnyM3JJj7ejEatRqFQoFarKC4sIDsrg7L/APJ8AADS6UlEQVSSYn7+y1/x6cXLtLS2IcsyCwtO3v/gY04cPczhR5KCaI4MlUrFS889y/Gjhzmwrw6jcfH4K7VajUqlQq/Xc+zoIbJzsqioKOX/+9d/w9TUNCDT3tFJmiU16jZFB7EmIx+z+9ekLMt0dvfQ3tHFT37+FsMjI4yPT2B3LJCekUFJSQn/4l/8CwoKCsjLy8NisYimTQKBYFcggliB4D5GkiR0Oh06nY7k5OSVhhtKpZKbN28yNjbGmHWxNGzB6USj0WCz20lNSSE9zbISAIRMzEsPN8mdbNATumMYkEi7g246ONRRkRge4pgQnf2d3MHnT7fX613s9js0zPj4BABarRaLJYX6fXspKiwgJXljIGow6NHrdZjj4qiqrGB6Zob2jk48Hg9ej5eu7h72VJRF/R5USiXpaRZKS4qpqaokPc2yZl0t/6zRaPD5ZCTAHGdifm4et8fD1PQ0s7NzkSkXazKMwaGOevDXpN3hwG6309c/QGtbB63tHTQ03sXlciFJCqqqqiguLqa6uppHHnmEtLQ04uPjY2iRQCAQhIcIYgWCBwSVSkVNTQ1VVVX81m/9Fm+++SYfffQRb7/9NsMjIwwODfHxJ+c5eGA/9fv38qVXv0BqSvLKt+pBS4yX/VJp8y1gK85XiF5YaPkLPy2VVylesSuEYyc2vLNGbJDr/L4T+AbX2L2u1UrAPEnQOdtsQle7voEzMSHsRgxwfaCR9+5t/ecWCv4+N6fTycTEJCOjY0xNzwBgSUmhvLSU5z/3dEBrYPE5VqlUHDvyCFmZ6fzq3ffxej14vF6aWlo5eGAfsixHuD98xeI16PQ6jh0+RG11Jfl5uUFlJCclEmcykpGWxvy8jYnJKcYnJpmamQl6X37NEWtSrMlw1uSq8uHh4VHaOzr5//3dPzA0NMzk1DQAKSkp5OTk8Ed/9EdUV1dTXl4exBKBQCDYOUQQKxA8YEiShEaj4cknn6SmpoaXX36Zn/70p9y9e5ebN2/S0tbG8MgIN27e5tSjxygtKebw0hEfAbOy0pr/rODPrZc2/LCJvZu8JgW8yp/OzdzvzfQHziCtfikULWvt9q8/gP8fkqWhXROOi7+ZxEBhxdqfAlWBhqgEYKXh0epjaioryigtKQ40ZMP8x5lMpFks5OflMjQ0wvTMDNbxcWZmZnE6nYtnKYcVyAYOz7UaDXsqy0lMTAxJhiRJJCcnMTJmZWJyavEcWafL731tZo5Yk4ElijW5dk3O22xMTEzw7pmPuH3nLt09vQwMDQESqampvPTSS+zfv5+6ujoKCwsxGo1hWiYQCATbhwhiBYIHDEmSUCqVpKenk5SURG5uLlarFbPZjNfrpb+/n8mpacbGrBhNBmbn5jEaDKSnWYiLM2EOpdukvyRM2PVv4Q4I5Xo/769J62wiYytbPOXVqmK3V3S9zliJDsZmuaet2uV2uZmdncPn8628lpKSTHJS4lI/m405wfU61Wr1Ypl9YiKTk9MwM4PT6cLpdOJyu9FoNJF1VZU3jlEolCQnJaHTht7sRqfTLR33Ax6vB6/Xu14RYU2iWJN+xz7sa9Ln8+F2u5mYnGJgcLET9uVr12lt62DMOk5ycjIZGRlkZ2dz4sQJ6urqqKysRKFQiK7DAoFgVyOCWIHgAUatVpOQkMDXv/51Jicn6e7u5s/+7M9obGykubmZDz76hHOfXuTNn/+SL37hJfbWVvPo8aNs6okFSdVsWvy34liudy39F8nd+zkSh0oGaTmT47+Mb41kv+mrjfi9fWntFfdOwIihI+hX9Kr7jML2xACS177IOj1bVOb2eJibn18TxCYnJZKYEM9ybkmWpRUnO5BOpVJBWpqF4ZHRldecLhfz8zaMBkP4hgWYSIVCQZzJiEYd+j+pGrUGtWrxetnnwyf71qmQ1j22Yk2KNRlU8toXl2xxezyMWsf52Vtvc+ajT+jo7MLlci0+s3FxPP/88zz//POcOHGCxMREEbgKBIL7BhHECgQPMKsdkri4OIqLi/nDP/xD+vr6uHHjBr/85S8ZGhpianqat0+/x9UbN7l28xbHjxwmPzcHiyU1bKdm49XrCkylQH7pPRdZ8vOzf6cvxD1pkuT3umAjl7N7Wz0BIyr5nxAG+g0sJNa/siX8ytk0UAqfVVv3Nr7HYrAV8uciy2sLgKUwxq7Tei+YDPH6tWaEpHfD2vAbzYWHWJNLsh+iNTlvs9HZ1c3H5z6lvaOLlrZ2rNZxFIrFpk0nTpygtraWAwcOkJGRsXLeqwhiBQLB/YIIYgWChwSNRoNGo6G+vp78/HySk5MZHh6mtbWVrq4uhkdGGbOOM2+zYdAbsNsdeLxe4s1m9HrdFsrLwh2z2tPc6E4Hkh04SIjMKZO24i0v20Sg4CBsY6JxSaQVqiGNk8IXH1iWQlran31Pmsez2JwpHPmyDC63G9+qUl2FJKFUKMMzSJZWlaWGYoGf4GxXxQZiTW7NktAGbvea9Hq9uNxupqamsVrHuXm7gc8uXqarp5e5uXkSEhLISk7m4MGDnDp1iv3795OXlxdeh3qBQCDYJYggViB4CElJSeHRRx/l4MGD9PT08NZbb/H973+fzs5O7jQ2cbephfh4MyePH+Wl5z9HbdUe4uPNEeuLKLgJc0D0g4TQBAa7t10Vt0D4cxrmuGjdr0atJt4ch3KVcz0xMcnU1FRYcnxeL6NjVmx2+z3ZGg0mkzE8x13aHZ9lVLPdkcgSazL6RHFN2h0Oevv6+fb3fkhjcwutbe3IsoxarSYtLY0vfvGLHDt2jBdeeAGlMswvcgQCgWCXIYJYgeAhRJIkZFlGq9WSnZ3Niy++SEFBAe3t7bz//vs0NzczNzfL1es3mZycIjc7m1Mnj1NSVEhGRjqKMMvONivdC8Whjna/lKhlDTeRvVZP7Lq+bFPbmm3RaTDoychIR6W6909Ue2c3qakpIeu02exMTE7RPzDI7NwckiSRmBBPXJxppaFS6GzPjIZSiBstxJqMttZwdEYPj8fDgtPJpctX6ejq5sq1G3R0dTM7N4daraa+vp7y8nKefPJJioqKSEtLQ6lUirJhgUBw3yOCWIHgIWW5i7HZbKayspKMjAxKS0uZnZ3F4/HQ29uLdXyCyalp2jq6MJmMyLKMjExSYuJiY5owGtlACNmRLXl6/pvQhGvL1rUHK1eMneMYlRLJXaJTq9GSlJiIVqtBqVTi9XoZHh1lcGiE2dlZjAYDKpVqjc7l+V8+C3NyeoqBpf3eTqcThUJBUlISJqNxTXAcGtszo6FoiXYwJNbk/bcml5/xeZuN+Xkb1vEJLl+7QXNLKxevXEWn06HXGygqyuLQoUPs27ePl156CbVaLTKwAoHggUEEsQKBYDFLlZhIQkICNTU1NDY2cufOHf7yL/+S3t5ehkdG+F//+G1+/vavyMrK4He/8XXKiovIyc5aI2fLDnaQwZvLXbtXL9RGOltnudVQwLdCf30H2EWmrKDTabGkppCTlcXc/DyjY1aGh0e403iXn731Ds88+TgZ6Wlrxqy+B6/Xy4cfn+PMhx/jdLqQZVCpVOytqSYrMyMyo3bJRIX7OIk16fet0F/fATYzRZZlPB4PH3z0Cddu3uL0+x8wPz+Px7O497u+/iD19fV861vfIi0tDYPBIPa9CgSCBw4RxAoEAoCVzpQKhYLc3FyMRiN//Md/zK1bt2hra+ODDz7AZnfQ09PH977/I4qLCykuLOTk8aOYzXEY9Prd4gMC2+MsB3GVl4wI8/UdYBeZssLis6hgX10NPtnH6JgVgDHrOO+cfh+X201xYQGV5aWYzWY0ajU+n4+JycnFrNTV61y4dIWOrh7kpWN6NBoNBw/sI3fdFy+hGxWtu4s+21WCvFXEmgyNQKb4fD76Bwbp6u7h1p1GbtxqYHhklPl5G8nJKeTm5nL8+HHq6+vJy8sjLS0NvV4vsq8CgeCBRASxAoFgA0lJSSQmJlJUVEReXh63b9+ms7OTsbExZmZmOPfZRXr6+unu6SMnK5OMjHRSkpMwLn3jH9Z+q23IgGw4e3K16i3oj2RYbG43PKnbswtwaxIkCSorypiameHilau43R5m5+a4ces2er2OsTErapUKS2oqOp0Or9dD/8Agff0D/Pq9M/QPDDI5NQ2ATqslId5MRVkpltTUHby73aJk520QazK0q2VZXuk67HA4aG1r5/rN25z56CxDwyPIgNFopKSkhLq6Or74xS9SUVFBXFxclO5DIBAIdiciiBUIBAGRJIkDBw5QV1fH888/zwcffMCFCxf47ne/y+DQMAODQ1y+ep09FWUc2FvHV1//TeLj49FqtSHruHd0SewIlnyJlf5ATqkUA5dZDp578mNDrFi/SzVyCZIkceLYEbQ6HU0trdy524TNtthl+OLlq1y+ep03fvSTxTuXJEBG9sn4ZBmv14PPd0///n11HDv8CIUFeeh0ushuje2JLbdjPewGG8SaXG9DADmyzPDIKNdu3OLjc59y7tML2Ox2vF4vZrOZPXv28PnPf57f+I3fID09HY1GI0qHBQLBQ4EIYgUCgV+Ws6nLnSyTkpKor68nLS2N5ORkGhoaaGlpoaenh57ePpxOJ16fl+LCQirKSikuKkCj0Wyald1phz1W+gPLjb7GnZ5D/ywFlrK80ogGlkqFFRKhWK1UKsnLyebVl19EkiR6+voZHh7B5/Ph8/nweIKP12q17Kur4cTRwxyqP4Bard71XVl3g3U7bcPDviZlWcbt8TA4OERPXz/nP7tIb18/3T29OBYWSElJobi4mFOnTlFYWEhVVRWpSxUJu/35FggEgmghgliBQLApCoUCnU5HRUUFJSUlFBcX895776FWq5mammJ2bp6JySkGBoeoranG6XSSmJhAvNm80mF2vXO1E1WTO1Opuf1ad+KInUDve31eZNYGsSFliqTFTFZ6moVnnnyczu5elEolc7NzuD1uvF4fPq8X36oAWSFJSAoFKqUStUZNvDmeI4cOcvDAfmqq90R6mzzIn+HDqHM3fp7LX/R4vV48Hg/TM7O0tLVz5foNfvqLd1hYWADAbDZTXFzMo48+yu/8zu+sNG4SCASChw0RxAoEgrBQKpXk5+fz9a9/nddee42PPvqIM2fO8O677zI0NMS5Ty9w6fJVfvbLX7F/by3PP/s0JcWFi1mCJRlhu5BR8jl3ylneeF5kbJ3o7brPzfTIPh92u2OlayqAWq1Gr9Nv2uRn+W2lUoler+df/+43GJ+YpKHxLhcuXqGvf4COri7m5uZxezwolUrizXEkJMRTvaeS+v17KSstoaSwALVavaX7XM4qb3lmwxARJY0hmyPW5O5Yk61tHTQ2NfNP3/s+ExOTzM7N43K5yM7Opry8nH/zb/4NhYWF5OTkoNVqRemwQCB4aBFBrEAgCIvl82WVSiVqtZra2lp0Oh0FBQVcuHCBrq4u2tvb6R8YwOv1YrPZObCvjtycLCrKStFqteF3y7xvK+SkVf8f6JX7hAh8fK/Px/TMDC6na+U1jUaNwaAPuVXtcgZfr9ORnJRIZVkpBp2eqZlpJiYmWXA68Xl9SAoFep0WvV5HeloaOdlZpKakbFpiKUkSGelpHD38CFqtBoCMtDRKigvR6lbv7b4nIyszE0lS8K9/9xvIsozJZCInOwuj0bjJzSz+R6FQcOrRY1SUlzJmHUer1VBcWBDo8pix8bmMcPB9xe5bk7Ozc0zNTHPt+i1a2zvo7OpheHgEJImEhASOHj1KaWkplZWVVFZWkpiYKLKvAoHgoUcEsQKBIGKUSiUlJSUUFhZy6tQpMjIy+OSTT5iYmGBqaorJqWYaGu8yODTEvroaUlKSSU5KQqvRoFIt/vlZG2BsR05EEIig8x7BB+L1ehkfn2DBubDymlarxWQ0hNn2ZhGDXk9Bfh4F+XnhGxMASZLIyswgKzODR48dCWlMTnYWOdlZPFK/PyKdSqWSJx87uWq+d/MTL9ZkLJBlGZ/Ph9vjYdQ6Rnd3Lz/4yU/p6x9gfGIStVpNamoqOTk5fPnLX6aqqory8vKdNlsgEAh2DZK8uuOGQCAQRMBy856FhQWmp6cZGRnhb/7mb7h16xbXrl1DrVaj02oxm80889Rj1FTt4enHT6FSqVAsNfmJipO8Roh8r0Pow+KBr7v/7StG9c/I6Bj/6c//K7cb7tA/MAjA555+gidOneS5Z55Eo9HE0L4YEGh+o1pp7F9YMBWyHDixHey9IAe7INZklAjwzMzOzjE6ZuWnb73NtRs36ezuwWazoVAoMZlMfPnLX+bEiRMcOXKExMRE1Gr1yhd/AoFAIBCZWIFAEAUkSUKSJAwGw8oexmeeeYbCwkIKCwu5du0aU1NTjI6NcePmbSYnp7Db7VSWl2NJTcGSmhKdrprS2l8kv68/wEgBf4m1MuDemZYOxwKDQ8N0dvfQ0dnF7OzcyjWJCYnkZGXen3v5As1vVB9d/8KCqQi2dIIvq2AH3UTpCRJrcgWfT8ax4KC3t5+m1lZ6evu5duMWvf0D2O0OCgoKKSsrW+k8XFpaisVi8dsYTyAQCB52RBArEAiiilarRavV8oUvfIGJiQk6Ozv5r//1v9LY2Ehrays3b9+hqaWNazdv86Xf+AK11XtITEhAqVSsBDYbHLYHNGvzoNzWcvDq9nhxOZ2MT0xw8cpVGu7cpbWtfaXzqkqlwpKaQkFBftAg9kGZlw08SDf2IN3LKmJxW4ulwzIul5OJiUk+u3SZX7//AW3tHTgcC6hUKuLi4jh06BAvvvgiJ06cIDk5+f78okcgEAi2CVFOLBAIYsbKcRHT0/T29nL+/Hm++93v0tvby/zcHEajkcTEBGqr9/D8s09TUVZKZkZ6mFmHSNzOGLiqO+TU74ZYYmR0lF+/9wFnPjxL38AgPp+XhQUnLpcLu8MBgE6r5eiRQ7z68ks8ceoECoUi6Oe8U91yt05khvgbFVRSlB/7sPVHqiiqY7ZfZCRqZ2ZmaWxq4q133qWlvZ3+/gHsDgcKxWJPgRdffJHDhw9z4MABTCYTOp1u0/UhEAgEDzsiEysQCGKGUqlEoVBgsVhQqVS43W7m5ubo6Ojg7t27dHV1MTZm5W5zKyaTafGc2eo9ZGdmkpiYEOL5spE4ekHGROr47pC/uW1bYIPg8XqZnZtjZGyMoeHhDe/r9TpSkpI5VH+A7MyM8LtTh0JM7z2cyd3sefX/oj/pEVUCRzgmbP2rEGtyo1qPx4PD4aCjs5uBoSFu3GqgsamZ4dFRnC43JSWlZGdnc+jQIQ4fPkxZWRmpqaki+yoQCAQhIoJYgUAQU5aD0OTkZI4cOcK+ffvo7u7mJz/5CT/+8Y/p6uqis6ub7p5eEuLj+dzTT/DMk49TtacC07ojSyQpkp624Rq8xfE7FUyu0rldJoSiR5IkkhITKSzI54XPPU282RyS7N2Vg4q8vN3vZbvr5raMWJNLapYK22RZxrGwwMjoGD/75TvcudvE7Tt3kSQJjUaDxWLhc5/7HMeOHeO5554TWVeBQCCIAFFOLBAIto3lLsZut5uZmRk6OjpoaWnhO9/5Dnfv3mVqagqT0UhqagoZ6Wm8+LlnqKuppiA/D4VCCu7oxdRR3Vx4eOp3Te1rVBgYGuLNn/+St945TV//AHqdjpSUJFKSk9lXV8uBfXspLS4kKysTpUIRk2xTaDMaw3nfguj1Q8MVtfb65X/SIzu8Z6u2BBUWVXbfmnR7PCwsLPD+Bx9zt7mFc59eYGJyCqfTicfr5cSJE9TV1fHlL3+ZtLQ0zGYzJpMJ8NMHQCAQCARBEZlYgUCwbSx3MdZqtStdN00mE2NjY1gsFnp6emhtbWVkdIyZmRlSk5OxOxxYx8cpKS7CaDSg1+kCCI+d3SvHgiz9tvb3cNQvO8rhXR0tgh63Emy/ZNBjWkCv01NSVMjJ40cZn5hAq9GSkGAmPj6eitISSkuKyUhPR7VZl9WAp9ZsPhOb7a6Vl66K2WOyBcGRPUubXL80ZVuVten4YB/NQ7Aml7+YG7OOYx0fp7unj0tXrtHZ3UNPXz+JiYlY0tIoKyvj8OHDVFRUUF5ejlarjU1ZvUAgEDwkiEysQCDYFTQ0NHD79m3+/M//nP7+fqanpwHISE8jPzeH3/vWNyjIzyMjPW1lzGbZi2jnaqIjJ+qhaZTlRU5sLIleo6TYjN6eZ2hnPuXoa31Q1uTq0mGv18tHZ89z+doN3nrn18zMzuL1epEkicOHD3Pw4EF+//d/n/T0dAwGQ1h6BAKBQOAfEcQKBIJdgd1ux263MzAwwGeffcatW7f48Y9/jMfjRpIk0iwWSouLKCsp5jdefpHEhHiM6/bMbs5O7BaNgs51Ina2dFkGOUiKL5i6TUwJvyR444iYfMLbGUGu6IpQ6dpq4siUb2vEfH+uSZ/PR3tHF3fuNnHu0ws0t7UxPT3D9PQMqRYLZWVlfP7zn+fQoUNkZGRgsVhQq9Ui+yoQCARRQpQTCwSCXYHBYECv15OQkIDH48FsNmO1Wunv72d0dJSe3j5cLhdzc/NkZqSTk51FZmb6UpmqCoUido5wSC7vmotWFzpGoYR1SwKiPS+b1KhG+t7mbwPr5zO8yD7i0EWKbaAV4NGJjGiYuQNNwsJlJ9akLMu4XG5mZmewjk9w7fotGpubudVwB+vEJHq9nuKSEmpra6msrOTIkSOUl5cTFxcXgTaBQCAQBENkYgUCwa7E6/UyPT3N6dOnOXv2LG+88QZOpxNZltFptdTVVnP08CN86dVXMMfFoVItZjhWlxjf82H9u7wbk1aRpRE3O2Pz3q7MreRPQxm/XitLmqMRSstL0tdns4Kl/sKbs831b9S+2ZhQQ+PVTwoEem62mvnd/PkKlC/cSjAZyZOz2boJ93neqOf+WJOrXSRZlrFax7l87TofnD3Hhx99snIOstlspra2lldeeYUvfvGLK3v+BQKBQBAbRBArEAh2JbIs4/F4mJycZHx8nMuXL/Ppp59y+fJl2tvb0et0xMebKS0uprK8lPr9+ziwrxa9Xr9eEtuSS9rxlNVm4UEsNW6n1gDEUP2uus8HgvtnTS52U/fQ3tFJc2sbv3r3fUZGx7COjzM9M0tGRgZVVVW8/vrrFBQUkJeXR2pqKhqNRnQcFggEghgiyokFAsGuRJIk1Go1aWlpJCcnrziFKpUKpVKJ1WplzDrOvM3OvM0GgMGgx5KaQnJyEjqtdukol+CZtICE6wCvuTbKe2LDNGBr2kIPhqUgvwWWGorkUCWt+jlccWGYEM59blXXFgdtke1/VnfzmnQ4HNjsdnr7BmhqbuHO3WZu3m7A4/WhVqvZs2cPxcXF7N+/n6NHj2KxWCLYpy8QCASCSBCZWIFAsOtZ/WfK5XLx7rvv8u677/LOO+8wPDy80gm0rqaag/v38vKLz5GXl4tOq12WQLjlrmHZ50dKTFoObeqHx2Bj6KbXh9BJKAax0Wa3vzWVq0ulo1lOHEiP/1eiVYwdyhcIm+vdSqY/tBUS/PXwiMaabGvvoLmljf/+N3+HdXyC2bk5ALKzs6moqOCP//iPKSoqIjs7e2WMyL4KBALB9iCCWIFAcN+wcibj2BjDw8P09/fz1ltv0djYyM2bNzHo9SQkxJOVkc7hQwcpKynm8MED6PX6qO1P28p+wJ0mnFAi3Gt2K9ti+/08QbFmG+YmmmtyYnKKMauVX51+n46ubvoHB+np6UOlUmE0mfj85z9PTU0NdXV1lJSUrDSkEwgEAsH2IsqJBQLBfYMkSUiSRHp6OikpKRQXFzM9PY3RaMTtdjM4OMjE5BQDg0NICgWzc3PEm81kZWYQZzIRF2dakeOXEPxgadX/h+83byGTF7GPfm+gvya7oYhcO26zzGssopYwZa5KpIaUGNtM/KZ11SHaF/Cy3RwFB7AtVJO32tl5G9ak1yfjcbuZnJqmp6+P7p4+zl+8xNDQMFPTMyQlJZGRkUFubi6nTp2isrKSysrKRa0i8yoQCAQ7gsjECgSC+5LVf7rm5uYYHx/nr/7qr7h27RqfffYZAGq1GpPRyG+8/CJ7a2t46vFTKBTS9jieuzkuiYhI6pAJc0yY4re7e9UD95nuIDsxrwH02Ox2RkfHeONHb/LZpct0dHbhXdr3ajab+cpXvsITTzzBiRMnMBqNa/5+iCBWIBAIdgYRxAoEgvset9uN0+mkra2Nrq4ubt68ubJfdnp6mtzsLNLT06iurODY0cPk5WSTlZmxygGN0IuO7bY+5FAziZHIJkjfG3/vbwNRSGwHfD2Wc7k1trCPOdjQzbfzRoeYPSixXZM+n4+5eRt3m5q5fO06nV3dNLe0YR2fwOV2UV5ewZEjR9i7dy/79u0jIyNj5dgcEbgKBALBziPKiQUCwX2PWq1GrVazb98+cnNzycrKYmRkhNbWVjo6OhgYGmZkbIyRkTH0Bj0OuwOVSkmcKQ6tVrPkmEagONCY9QHUJpcHFB9VX3mtF7+hynN9mfEORLHB2w35iU9CnH+IbC5X9MV0LkIQHMZ9BnwvVvZHTe4mD2SobDJXXq8Xl8vF9Mwso1Yr12/e4pPzn9HV04vL5SYuLo6MzEzq6+t54oknOHz4MGlpaUudzgUCgUCwWxCZWIFA8ECx3PzJ7XbT29vLBx98wN///d/T2dnJ7OwsCoWCeLOZ/fvq+OIXXqJmTyUWS+rDlV0JkKXbkWrZ7coYbicxvodoiY+Jmf6y4LHQEyEzs7M0tbTy/R//lLtNLfT29SPLMlqtlrKyMl577TVOnDjBgQMHUKlUK38XHqq/DwKBQHAfIIJYgUDwwLEcyM7PzzM4OMjNmzfp6Ojgk08+4fbt28zNzZGSnERJcRG5OVkcPlhPZXkZGelpqNXqrTusu8lrD5VdYHPUyokFoRPjkvjdgMvlYm7exuWr1+nq6eHGrdt0dHYzMzOLx+tl//79lJWV8dRTT1FaWkpGRgapqQ/ZF1sCgUBwnyHKiQUCwQPHchdjs9lMXFwc2dnZ9PT04PP5sNls9PT0MDk1zaUrV2lqbsHr9aFULO51S05OQqPWoFIpV2SFxiqvPwa+b8yPwtkF/nrYJgTb1Ov3lejxwMR4kZQqR8h2ztnyF1kOh4OZuTkGB4f59OIlmlvauNVwB51Oh8FgICc3lyNHjlBfX8+LL76IUqkUpcMCgUBwHyAysQKB4IFm+U+cLMt4PB56enpobm7mr//6r2loaGBsbAylUkliYgIZaWl89fXXqKuporAgHwi3jDCIm76bo56dtC0qumN0A7vpM9tNtmyFbboPj8eD0+XirXdOc/N2A+9/8DGOhQV8Xi9IEk888QT19fV885vfJCEhYc1Z0iIDKxAIBLsfEcQKBIKHitnZWSYmJrhx4wbXr1+nvb2djz/+GJfLhUqppHpPBWWlJRQVFnDsyCMkmM0YjcadMzjaTn8kJ+XspH6BIESWs6/dPb309PVz+85dbjU0MDQ8Sk9vHxkZGeTk5HDs2DH27t1Lfn4+tbW1aLXalQBWIBAIBPcHopxYIBA8VJjNZsxmMwUFBRQVFdHQ0EBPTw9DQ0NMT09z/sIlunt6yc/PJT3NQk5WJhYL6HU6FArF9mdptrRJ1E/EGHaL5FD0hPpeBPpDlSt4aJFlGa/Xi9vtYWFhgaaWNm7cus3p9z9ganoGAKPRSGlpKfv27eN3fud3yMnJwWQy7bDlAoFAIIgUkYkVCAQPLR6PB4/Hw+zsLB999BGXL1/mH//xH1lYKjvU6XSUlZVQvaeCb3z1t0hMSMBgMMTUps1CtfstlNuN9sbUph244S18pRAbtlmpz+ejo7Obqzdu8u6ZD2m824zdbsft8ZCZmUl1dTWvvfYaJ0+exGKxoNFoduYLKYFAIBBEDZGJFQgEDy0qlWppP2wie/fuJSkpCYPBQGNjIx0dHbS2ttLX14/T6USr0VJYkEdxQQGVFWUrjvAGthiFBnWr5VXnne7G6NAPWz5nNZyxIV4b0y24UbY1FALO8ernJRqEehzSNjyXsixjdzgYGhqmu7ePS1eu0dXTS2dXNwtOJympqZSWlnLixAlKSkrYu3cvqamp6PX62BsnEAgEgpgjMrECgUCwhMfjwWq1cvr0ac6ePcvbb7+Nw+HA4/Gg1+mord7D4UfqefnF54g3x6PValAqlSsZnZjFlasFh6gk1ltZQ+6WHIHtW7VtJ4mGLfd7n61Y2b/srvh8PtweD6OjVq7fvMX5C5d4/8OPcTqdi+dAx8dTWVnJs88+y+uvv05aWhoajSYGFgkEAoFgpxBBrEAgECwhyzI+nw+n04ndbufmzZu89957nDlzhuamJpAktBoNBQV57K+r5YnHTrKvtnrHszsRBZTRVhADYn6sUBQt2U2B9G4h2kn05b2vjU0t3Gq4wxs/epPJqSlsNjsul4u8vDzq6ur41//6X5Ofn09aWhp6vV6UDgsEAsEDiCgnFggEgiUkSUKpVGIwGNBqtZSXl+P1eklLS+P8+fN0dnbS09PDwOAQkiThdDqxjo+Tm51FcVEhRoNhR7qchuKeS6FeGKmCGBDyfcWczbWIEGkj4czJZtfOzMwyNT3NjVu3aWvvpK2zi+GREZRKJUlJSRw6dIji4mKqq6spKysjMTFxZ7uKCwQCgSCmiCBWIBAI/KBUKsnJySE7O5uTJ09SUFDAmTNnmJ2dxWq10ni3mTuNTXR293Jgfx0mk4msjIyVEmMI/7zJkDNXMsjSgxM4RSuLuaVsc7h6YqsiZtxPti8fmePxeBgeHaW9o5O//+fvMTI6xvTMDCqVioyMFAoLC/nmN79JaWkphYWFO222QCAQCLYBUU4sEAgEQVj+E2m325mZmcFqtfK9732Pq1evcuHCBRQKBVqthjiTiSdOPUpt9R6eevwxdLoYnT15P0UhsE323m+TsosINHW7YEonJqcYHhnhjR/+hJa2dvr6B5mbn0On05OQkMDXvvY16uvr2b9/PwkJCajVatRq9c4aLRAIBIJtQWRiBQKBIAjL2VSj0YhGoyEuLo6TJ0+SmppKeno6N27cYHJykuGRUW7faWRubh6320NZaTEpyclkZqSvkRM264OJrQQWO7En1k/H3KgFRyuypACvR1nNNhJVnSF2U15z2Tad87RelMfjwbGwQHdPL+0dXfT09tHQ2MTI6Bhz8/MUFRVTXFxMaWkpx48fp6ioiPT0dCRJEvteBQKB4CFCZGIFAoEgAqanpxkeHubP//zPaWho4NatW/h8PjRqNWZzHK++/BK11VWcPHEMpVKJQrHsYEuBjz2JJDgIVlq8LC9Yh+AQjwSKpFQ3nPLoQBfKy8fEBLhm+R+w+/Is1DWfS5jn4UT4rKz+EDdVufqCGLYtXnZDZFnGZrczNmblJz//Jec/u0h7ZxcejweVSkVcXBxf+tKXePrppzl58iRGo9H/MVcCgUAgeOARQaxAIBBEgNfrxePxMDk5ycDAAA0NDfzDP/wDPT09jI2NERdnIjEhgbLSYl783DOUlZRQkJ8bWrYoouhvVXDib3iQYDfSo23Xvh7ZOUBBbQp0I1uJpvwM3+LRvqEPCEtQBPe55UAzDAEBzqWFcG2Q8flkZmbnuHr9Ju9/8BEtbe0MDg1jdzhQKBTU1tbyzDPPcPToUfbs2UNcXBwGg0F0HRYIBIKHGFFOLBAIBBGgVCpRKpVkZGSg1+vRarUMDw/T1tZGY2MjXV1djI1Z8Xg8JCUkLjajmZ0hJzMTc7wZjVod2AGPyC/fZFCQRlCbqQvNnAiM3qw5ld83I0o/Bh0e9TAo0olehYx07/JQY8st3sganSHo2mBWmPrdHg/z8/P09PYxODTM5as3aGxqZmh4BCSJkpISsrOzOXr0KIcOHaKqqoq0tDSRfRUIBAKByMQKBAJBNFjuotrT08Ovf/1r/uEf/oGuri5sNhsAiQkJPHr8CJ9/4TmqKitITExYu9U14ozSLujAs8JusiUaRPt+HqT5iexeVrscc/PzdHZ188aPfsKdxmbaOjoB0Gq15OXl8aUvfYlHH32UEydO7MjRVQKBQCDYvYggViAQCKLA8p9Sp9PJ7OwsnZ2dtLW18dZbb3Hx4kXGx8cxGg1YUlJIT0/jqcdPcfDAXgry8lCpVFEOYrcSLIUzdic6RW0jD4CZu+0WXC4Xs3PznH7/A5pb27hy7ToTk1O4XC4UCiWnTp2irq6Ol19+mdTUVOLj4zGZTKJsWCAQCARrEOXEAoFAEAWWnWydTodWq0Wn05GQkMDs7CxKpZLu7m66uroYHBpmYnKKhHgzsuxjcnKagvxc4kxxGAz6SDQD63ekri4LDTeM2eza1XtvpVU6w9ESXkAS80As0D7Z5Z5GfvobxdqmcOQHuy70TzP8Xc2h2rh83uuYdZzx8Qk6unu4ev0Gnd09dHX3kpycjMWSRkVFBcePH6eqqoo9e/agUqlE6bBAIBAI/CIysQKBQBBjlvfJ/uVf/iWtra1MTEwAkJyUSGZmBt/46m9RvaeS/LzclTEbM08hhwysD2yjE3DJm+6Z3KgnwpJTP6MCN5EKJiOyRkXhNAreUs47oJ7VnxwEu5PoBJurOzL5vzrcRsUrd7AUwLrdHn793hmu3bjFL975NQsLC/h8PhQKBY899hgHDx7kD/7gD4iPj0en020iXSAQCAQPOyKIFQgEghjjcDiw2WwMDAxw7do1Ghsb+eEPf4jdZsPr85GelkpxYSHFRQV84aUXSElOIt5s3iFrN+lyvGWpW5UcQRfkzQ2KLRHpuu9Pp8Xn89HU3MLd5lY++fQCHV3dTE/PMDE5SW5uLqWlpXzhC1+gpqaGjIwMMjMzRfZVIBAIBCEhyokFAoEgxuj1enQ6HcnJyahUKhITE+nv76enp4fR0VF6evtxOBaYmpomJzubvNwcsjLTSbekoVIpt9mpl/z8FE2pIUreJJ7acri1nVuQN9EVzZNxNpxyE/0TiYJfL8s4nS5m5+aYmJzk2o1bNDa1cO3mLebnbWi1WkpKSti7dy979uzh+PHj5ObmYjKZIjdSIBAIBA8dIhMrEAgE28DqP7WyLONwODh9+jSfffYZf/d3f8fCwgJerxelUkltdRX1++r4nd9+nXizGZ1OS6jhROA85daimVBkrS7hjejI0CBaI8u/hleCHUkOOrxZXX/1ZkXCgWYx2o27Ni8nDtV2n89HX/8gl65e41fvvs+1G7dYWFgAwGKxUFNTw1e+8hWefvppLBbLyjjRuEkgEAgE4SCCWIFAINhmZFnG6/UyPj6O1Wrlxo0bXLx4kVu3bnH9+nUMej0J8fGUlhRRUVZCbU01hw/Wo9PpUCii7+zvZAfb8HVHy9pY3vVu6wkcW5a/lGlt7+RO410+PvcpI6NjjI5ZcTgcZGZlsX//fl588UXy8/MpKCggJSUFjUYjgleBQCAQRIQoJxYIBIJtRpIkVCoV6enppKSkkJiYiEajQafTMTc3x8TEBNaJCaamp5iemcHl9pCUmEhqSjKJCQno9boNJcYhZSoDvLFpM6YA4yLfnXrv6mg0ggpqWEAizJ9uJnt1W+Mtsbv3xC5//72wsIDN7qC3r4/bjXe5dv0WV67dwOfzodPrKS0ro7y8nOPHj3Py5ElSU1PRarUxvAeBQCAQPAyITKxAIBDsIKv/BDudTi5evMg777zD6dOnaWtrw+v1olAoKC0u4uCBfbzwuaepqqxY1cF1N2X9dpMt0SDa9/PgzM9y1+Gm5lYaGu/yP//+n5icmsJudwCQl5dHbW0tf/zHf0x+fr4oHRYIBAJBVBFBrEAgEOwSvF4vExMTDA4O0tfXx5kzZ2hoaODmzZsoJInExASyMjPYv7eO8tJiDtUfwGyOQ6VShRYeRRpDhTBuu8KzzQ/6ibX+KNxnmEKiubc5GoyNWRkeHeO9Dz6ku7ePgYEhOru70Wi0JCQk8PnPf56Kigr27NlDRUUFRqNRHJsjEAgEgqgiyokFAoFgl6BUKrFYLKSkpFBeXo4syxgMBhwOB729vVjHJ+jrH8BmszMzM0NiQgJ5uTnEmUwYjUaQlrNcIdUNQ+ArN47ze2GgsuBwhIfH5gFsbIO8qEgOU0jYnZ1jgNfrxePxMD0zS2dXNx2dXXx49hzW8Qnm5uZJTEwkMzOT/Px8nn76aUpLSykqKtoRWwUCgUDw4CMysQKBQLDLWP6zvNwwZ3p6mv/xP/4Hly5d4uzZs8iyjFKpRKfV8vKLz7Fvby3PPvkEanXsztgMus+WjW9Gpztx+Pt7I1UiS5vs793w4uoOwtHqwRyb6wONDkXO8jXTMzOMjIzyT9/7ATdu3aaruxefz4derycxMZF/9a/+FUePHuXw4cOo1er/P3v/Hd3Ilt+Hvt9CzoEEcya7yW52s3Puk8+ZM/GMZjSjkRVmRh7Llt6S5PXsd5fs5XDv071+4drr6un6Xct+V56xR3GS5kwOJ8yZkztHNtkku5lzQE4FoFDvD7CqwQyQIAmQ389a7AaBQtWuQhW4f7V/e28IgsC0YSIi2jYMYomIilgqlUIymURPTw8GBwfR3d2NH//4x5icnMTs7CyaGxtQXVWF9oMHcPH8GTQ11OPggbYdDyAKEVMW61BGu16uXGe9WW9lWH3ZtQbnkgFIqRRC4TBu3LqDu/cfYHB4GL0P++H1+ZBIJHH69GmcOnUKx44dw5kzZ1BdXY3KykoGsEREtO2YTkxEVMR0Oh10Oh1Onz6NlpYWdHR0YGZmBr29vUilUhifnMLk1DT6Hz2GRiMgEonC7XbDarXAoNdDq9XuSECx5hbyiAALNYttPnJ5126EY8Kav+TwfB7LCVmHTlksnU5DTCTgDwQwMzOLK9dv4IMPr2FweASCIMBut6O6ugYXL17E888/jwsXLsDlcm1bFgAREdFybIklIioRyoiwqVQK4+PjuHnzJv7sz/4MAwMDmJubg1arhdPpwJHDh/APPvdZHDl8CI2N9bveKraldFn1l43XUspjCcvyFmfmWa2wm9yBQDCIW7fv4tuvfh/3H/RienoGUjoNo9GIs2fP4nOf+xyeffZZHDp0CHq9Xg1ed/s8IyKi/YNBLBFRCQqHw5iZmcGVK1cwMDCAK1eu4ObNm4hEInA67Djc0Y76ujqcPNGF40ePoKa6CiaTiYEGrUoURXh9Pty4dRfDI6O41/0AfQOP4PP7odPpcezYMXR0dOCll15CR0cHGhoa4Ha7eT4REdGuYDoxEVEJsi2OSFxXV4ehoSFYrVb4fD6MjIzAHwjgnfc/hN1mw/zCPIx6AzQaDSorK9QUY2D9lrOc+mTuFcW4f5ssUz4Daikt+3FRRCAQxKPBYbzx1tvofdiPR4ODMBqNsFgsaGxsxDPPPIMLFy7gYx/7mHr+EBER7Ra2xBIRlSjl6zudTiOVSmFqagoPHz7E17/+dbz99tuYnp6GVquBw25HdVUVfv3zn8X5s2fQ1toMrUazIogtxlhuL8tvnODCSySTiESiePUHP8Ld+934xdvvQBQTkGVAr9fjk5/8JC5cuIAvfvGLsFqtMBgM0Ol0bH0lIqJdx5ZYIqISpQQTWq0WGo0GFRUVEAQBv/7rv46mpiYMDAzg/fffRyQSweTUNN74xS8xPjGB5qYmnD97Gp7yMjgdjifrW29jm4mzGBWvS1jl0XaTZRnpdBr9A48xNjGB+w96cOdeN6amphGJxNDY2Ij6+npcvnwZp06dQmtrK9xut3qOERERFQMGsUREe4AgCLBarbBarWhqasLBgwdx//59zMzMYGhoCF6vF+99eBW9ff2oq62BzWbFoYMHodfrYTRk0o3XbWHbTJy1DbHZrk93UwTr2dS2ZRmSlEYqlUQsHsede/dx6+49/Oz1NyGKIgABNpsNnZ2dOH36NP7JP/knKC8vh8Vi2aUSExERrY3pxEREe1AqlUIqlUIkEsH777+PW7du4c///M8RDoeRTCRgMptwsK0Nh9oP4nd/54vweMrgsNt3u9gr5BP4bXmE32238yMsK9LpNO539+DWnbv4yc/fwOOhYURjUSQSSbS2tuLYsWP4yle+gq6uLpSXl8NsNm98Y4OIiGiXsCWWiGgP0ul00Gq1MBgMOHLkCOx2OxKJBLq7uzE0NITe3l6MTUxAFEV867vfQ0tTI5qbGtB1pBNGo7FoBu/JJ4Qq/nhr4wLmOJtQTmRZRigcxvTMLIZHRnH12g08Hh7B8OgoxEQC5eUeHDp0CJcvX0Z7ezuOHDmCyspKmM3mrW+ciIhoG7EllohoH5AkCcFgED/+8Y/x7rvv4pvf/CZisRhSqRQ0Gg2Odh7GqRPH8A+/+BtwOZ0wmc3Q7sT8nwUJ2Lap/bKY+vTmWJbswb4kScLo2Dhu3r6LN3/5Dt778Cri8Ti0Wi3Ky8vR2dmJz33uc/jsZz+LqqoqtrwSEVHJYBBLRLQPKNOpxGIxhMNh9PX14ac//SneeecdXLt2DYIgwGg0oKGuDqdOHMPTly/h6UsXYDavN7dsdmS1fpRVuHhwlTUVU7C5WSv2YXM7pUyZ86CnFzdu3cHff/9H8Pn8iEQiSEkSWltb8dRTT+F3fud30NDQoKYOa7VaBrBERFQymE5MRLQPCIKgDv5kMpkAANFoFOXl5XC73RgaGsLY2BjGJyeh02mRTKYQi8VQX1eL5qZGuFxO6FakGD8JemQI64ZcWwmPloZzwsrnt7kRdkdiZGHZNmVBTY/eaPvKvWifz48Frxd3ux9g4NEg+gYGMDE5BZ1OB09FBU6fPo329nacOXMG7e3tcLlcMBqN27hTRERE24MtsURE+5goinjrrbfwk5/8BD/96U8xOjqKZDIJAOg4eBDnzpzCK5/4KA53tMNkMqrTrOx4q10ukeS2pibnMSjTlsuRtYINRqtSWtglScKD3j7c636Av/hvf5lpfY1GodVq0dDQgCNHjuCP//iP0dbWhrq6uq0UjoiIaNcxiCUi2sdkWUY0GkUwGMTCwgJeffVVfPjhh3j77bchSSkYjUY47HY8c/kijnUdwcsvPAe73Q6drrgSeXZ/6p0tlCCPty5fdGZ2DhMTk/irv/sWBoeHMTE5jUAwAJvNjoqKCvze7/0ejh49iqNHj8LtdsNgMBTdZ0dERJQv/iUjItrHlBRjs9kMt9uNS5cuwWKxwG634+7du1hYWMDk1DTuPehBNBaDLAMdB9vgKS9HbU11QQcDyjsMzHrDRt1Jt2P6HWGd33KXQ8GW7WcimUQ8HsfwyCgePR7C4PAIunt6seD1IRKN4uDBdrS2tqKjowPnz59HU1MTW1+JiGhPYUssEREtEQ6HsbCwgD/90z/FjRs3cOXKFaTTaWi1WhiNRnzmlY/j1PHj+OTHPgK9Xp9jIFuAtlJlFbs0kNOWA+HNZCovvpb9p9ofCGJmZhZ//Y1v4drN23j0eBCyLGdazR0OfOUrX8ELL7yAZ599FgaDgQM2ERHRnsMgloiIlpAkCZIkYXZ2FpOTk+jr68NXv/pVdfAnl9MBt8uFlpYmvPKJj6H9QBsOtR/cVCCbyzObVuBgt5Cry3ddmSmSQnj3gw/x9nsfoK9/AJNTM4jGYhAEAc899xyee+45XLhwAQcOHIDdbofNZlMH9CIiItpLmE5MRERLaLVaaLVa1NfXw263w+l0YmRkBP39/bh//z6GhoYwMzePSDSKCo8H8wtexGIx1NXWwmG3wWRaa1qelc/l8sym5buqDSLL3FenNJ+u/aZc15VMJuEPBDA+MYnJqWl8eO0G7nf3YHxyEgaDEW1tbaitrcULL7yA8+fP49ixY3A4HOoAXERERHsRW2KJiGhdyp+J4eFhvPPOO/iP//E/YnBwEH6/HwDgsNtx9Mhh/Oavfx5HOw+jsX5p/8uCtAQuCQjlJVPQFJLyB3HVVW9ry27mNxnI5C0vCgSDuHHzNr71999Dd08vpmZmAQBGoxFdXV34whe+gOeffx4nT56EdsUUSERERHsTg1giIlqX8mdCFEUEAgEMDw/j8ePHeOONN/Daa69hfn4eBoMeVZWVqKmuwrNPXcLlC+fR3NQAo9G4uSB2jYAx3/lbtzJY1GpPrtYvttAp0XFRxMKCF6+98Qs87H+EW3fuYn5hAWIiAYvFihdffBEnT57Eyy+/jMrKSrhcLlitVqYNExHRvsF0YiIiWpcSHJlMJhiNRrhcLlRUVCCRSCAUCmFwcBAjIyMYG5/A/PwCLGYTjAYjAsEgmhob4HDYYTaZlqxr02VZ4/FST4LIvIPLjV5Wpm/NWnTl3LD572M6nUY6ncbc/AIWFrwYePwY127exuPBITweGkZZWRnqK6tw5MgRPP300zh+/DiOHz9e0NGhiYiISgVbYomIKC/ZfzbGx8fx4MED/Kf/9J9w7do1zM5m0l3tdhtqqqrwxd/4As6fPY221pYlgwzlMCDvKs+t/HetN+ffFrravDzZTy17Xf11862u2atIppKIxmL47vd/jNt37+Fnr7+JVCoFANDpdPjYxz6GCxcu4A/+4A9gsViWzPXKIJaIiPYbBrFERLQpsixDFEWEw2GMjo7i9u3b6Onpwd///d/D5/MilUqhtroabS3NaGluwiuf/Bhqqqrgdrt2u+hFQZZlpNNp3L3/AH39A3j7vQ8wODwCv9+P+QUvOjo60N7ejs997nM4ePAgqqqq0NjYCI1Gw4GbiIhoX2M6MRERbYogCDCZTDCZTPB4PLBaraisrMTY2BgGBgYwMzODoZFRBEMhTM/Ooq6uFm0tzaivq0VlhQc6nW7JYES5tWmu3yt2W6aQLfSATrKMWCyGcCSCBa8Pt+/eQ3fPQ1y5dgOJZBJGoxEHDhzA2bNn0dXVhRdeeAHl5eUwm82FKwQREVEJY0ssEREVhCzLkGUZqVQKr732Gq5cuYI///M/RyQSQSKRgCAIONTRjqOHD+H3f/cfwuMpg8Nu356yYBuC2QJtJ51O4153D65dv4nv/egnGBwegSiKAIDGxkYcP34cv//7v4+zZ8/C4/Go72PaMBERUQaDWCIiKhglkJ2ZmcH8/Dzu37+PK1euoLu7G++99x7MJhMcdjsOtR/EoUMHceTwITx16QLMJtM6rbJZowOv8fxOWbu/7gbvk2UEgyE8GhzC3fvdeO+DK5icnsbk5DTSsoy6ujpcvnwZL7zwApqbm3HgwAG43W4Yjcbt2REiIqISxnRiIiIqGGXwppqaGlRWVqKhoQEWiwUOhwNTU1Pwer1Y8Pnw3odXsODzIRKJoqaqCp7ycjicdlgtlsyIu0vXunJDMlbOdbP0xWWPts+apVgM6OOiiGg0iuHhUdztfoD3P7yKq9dvIiVJsFgsaGlsRGdnJ1544QV85CMfgcfj4ZyvRERE62BLLBERbQvlz4ssy0gkEnjw4AFeffVVvPbaa7h16xYkSYJWq0VdTTXOnTmFl154Ds9cvriFvp/bELJuYZWZga8SuNf9AFdv3MTffuM78AcCEBMJAEBraysuXbqEf/bP/hmamprgcrnUlGGmDhMREa2NQSwREW07SZLg9/sxMjKC4eFhvP3227hz5w66u7uREEWUl7lRV1eLc6dPof1gG04e64LHU75kKpndk38kOzM7i6mpGfz8zbcwPDKK0fFxDA4OZwa/qqrCpz71KRw4cACHDx/GkSNHYLPZYDAYtqf4REREe0wx1A6IiGiP02q1KC8vR1lZGTo7O2Gz2WCxWCCKIh4/fozZ+QWMTUwiGAxhfmEBVosFMgCbzQqL2ZxJMRYE7EY/WHV7G2w6lZKQklIIBkMYHBpGX/8j/PS1N+Dz+RGNxeB0OtG4mDr8mc98Bs3Nzaitrd2RPSAiItpL2BJLREQ7RvmTk06nIYoiQqEQvvrVr+Ldd9/FW2+9hWQyCY1GA4Nej4+8+DxOnzyOT33sZdjttu1tlS1AbDw1M4OxsQn857/4Gh4PDWNqehqSJMFms8Pj8eCf/tN/ijNnzuDs2bPQ6XRZgTkRERHlg0EsERHtCkmSkEwm8eDBAwwODuLhw4d44403MDY2hpHhYTQ21qOmuhqH2g/iwtkzaGioQ8fBA+rgUcUgkUggFI7g+s1beNDTi8dDw7hzrxvhSASSlFbnej127BjOnTuHqqoqVFVVAWC/VyIios1iOjEREe0KrVYLrVaL06dPo6OjA+fOnYMoirh9+zYCgQAmp2YwNT2LB719SKVS6Ap2wlNeDqvVAr1eD51W+yQQ3LAlVQZkYXPz4yx/y+Kow6IowucPYHp2Fm+/9wFu3LqNoeER6HR62O12lJWV4ZlnnsHTTz+NS5cuwbyYFk1ERERbw5ZYIiLadUpgmEgkMDk5iQcPHuBP//RP8ejRI4yPj0Ov18Fut6OlsRG/+eufR+fhDrVVdqdJ6TT8/gDeevsd/PS1N/HgYR+8Xi+klAS9wYBnnnkGn/70p/Hiiy+iqakJBoNBnTKHra9ERERbxyCWiIiKSigUwvz8PN5//308evQIt2/fxrVr1xAJh2E0GnDs6BE01NfhWNcRHO86iqqKClitlm0PEEVRxPTsHO7df4Dh0VHcvnMPA48H4fX54XA40NXVhfb2dly6dAmHDx9Ga2sr7HY7W1+JiIgKjOnERERUVOx2O2w2GxoaGjAyMoLm5mZ4vV4MDQ1hfn4ev3z3fdhsVgwOj0Cv0wOyjNqaGuj1uk23eK6VVSzLMtKLLcSBQBB9AwP48c9fR8/DPoyPT0Cv18NqteLgwYP4+Mc/jmeeeQYnTpxQy0FERESFx5ZYIiIqOtmjGCeTSczNzaGvrw/f+ta38JOf/ATT09MQBAE2mxWVFR584uWP4IXnnsbBtlYYjcaCtcrG43HMLXjx3e//CN0PenDl2g2IiQQAwGq14pOf/CQuXryIL3zhC7BYLDAYDNDpdEwbJiIi2kZsiSUioqKjBIFarRYajQYVFRUAgE996lMoKyvD48ePcePGDczPz2NqegYfXruOSCSCluYmnDxxDNWVlXA6HUvWlat0Og1JktD/6DEmJqdw9/4D3LpzF1NTM4hEo2hubkZdXR0uXryI06dPo62tDWVlZZwyh4iIaIcwiCUioqImCAJMJhMaGhpQX1+PEydOoKenB8lkEjdv3sTs7Cyu3biFh30DqK6uRDot49TJYzCZTNAb9NBg40A2u+U3kUwiGo3h2s1buHOvGz977U1IkgSNRgOr1Ypjx47hzJkz+L3f+z04HA4YjcYdOApERESkYDoxERGVDFmWIUkSUqkUwuEwrl27hrt37+K//Jf/goWFBYiiCIvFjLaWZhxoa8Xv/PZvoKa6Cm6Xa8P1yrKMazdv4e69bvz4Z69jYmoK0WgM8XgcR48eRVdXF/7RP/pHasur1Wpl6ysREdEuYEssERGVDEEQoNPpoNPpYDKZ0NnZCZvNhnA4jAcPHmBkZAQ9PT0Yn5hELB7HD3/yM7Q2N6OxoR5HOg/BaDRCr3vyp0+WZfgDQczOzmFweBg3bt3G46ERjI6NQwZQWVmJQ4cO4cKFC2hvb8fhw4dRVlYGk8m0eweBiIhon2MQS0REJau5uRmNjY04e/YsXnvtNVy5cgXj4+MIhcNY8PrQ1/8InYc70HWkE1WVFSgrc0NjsUCj0aituhOTU7hx6zZ+8JOfofdhP0RRhEajQWNjI44ePYovf/nLePrpp1FZWbnbu0tERERgOjEREZU4JRU4Go0iHA5jaGgIP//5z/Hhhx/iF7/4BTQaDYxGA2qrq3G86whOnzyBC+fOYGh4BFdv3MIbb70Nr9eHcCQMjUaD5uYWvPTSS/i1X/s1NDY2oqysDGazGTod7/sSEREVA/5FJiKikiYIwuJ0OzaYzWYYjUaEw2E4nU5otVoMDw9jamoKo2Pj0Gg0iIsifIEApqZn8LCvH2OL873W1zegq6sLBw8exIULF9DR0YGysjIGr0REREWGLbFERLQniaKIGzdu4NVXX8Xrr7+Onp4epFKpFctpNBocOHAATz31FP7oj/4ITU1NcLvdu1BiIiIiygWDWCIi2pPS6TRisRj8fj/m5+fxgx/8AO+++y7ef/99xGIxOJ1OVFdX4w//8A9x6NAhtLe3w+PxQK/Xs/WViIioiPGvNBER7UnKvK5msxnl5eW4dOkS5ubm0Nvbi8nJSZSVleHo0aM4ffo0mpubUV1dvdtFJiIiohwwiCUioj1No9HAZDLhxRdfxPT0NLq7uzE7O4vW1la88sorOHLkCOx2+24Xk4iIiHKk2e0CEBER7RSNRgOtVrvbxSAiIqItYBBLRET7ikajgSAIAKD+T0RERKWDQSwRERERERGVDAaxREREREREVDIYxBIREREREVHJYBBLREREREREJYNBLBEREREREZUMBrFERERERERUMhjEEhERERERUclgEEtEREREREQlg0EsERERERERlQwGsURERERERFQyGMQSERERERFRyWAQS0RERERERCWDQSwRERERERGVDAaxREREREREVDIYxBIREREREVHJYBBLREREREREJYNBLBEREREREZUMBrFERERERERUMhjEEhERERERUclgEEtEREREREQlg0EsERERERERlQwGsURERERERFQyGMQSERERERFRyWAQS0RERERERCWDQSwRERERERGVDAaxREREREREVDIYxBIREREREVHJYBBLREREREREJYNBLBEREREREZUMBrFERERERERUMhjEEhERERERUclgEEtEREREREQlg0EsERERERERlQwGsURERERERFQyGMQSERERERFRyWAQS0RERERERCWDQSwRERERERGVDAaxREREREREVDIYxBIREREREVHJYBBLREREREREJYNBLBEREREREZUMBrFERERERERUMhjEEhERERERUclgEEtEREREREQlg0EsERERERERlQwGsURERERERFQyGMQSERERERFRyWAQS0RERERERCWDQSwRERERERGVDAaxREREREREVDIYxBIREREREVHJYBBLREREREREJYNBLBEREREREZUMBrFERERERERUMhjEEhERERERUclgEEtEREREREQlg0EsERERERERlQwGsURERERERFQyGMQSERERERFRyWAQS0RERERERCWDQSwRERERERGVDAaxREREREREVDIYxBIREREREVHJYBBLREREREREJYNBLBEREREREZUMBrFERERERERUMhjEEhERERERUclgEEtEREREREQlg0EsERERERERlQwGsURERERERFQyGMQSERERERFRyWAQS0RERERERCWDQSwRERERERGVDAaxREREREREVDIYxBIREREREVHJ0O12AYiIiDZLkiRIkoR4PA5ZljdcPhaLIZVKQZZlSJKEWCyGUCiEdDq97vsEQYBWq4XFYlF/JyIiot0hyLn81SciIipCPT09uHv3Lv7kT/5kw0AUACKRCEKhEOLxOEwmE2w2G6xW64ZBqd1ux8mTJ/Gf//N/hlarhUbDRCYiIqLdwpZYIiIqWU6nE3a7HQsLC4jH45Akad3l0+k0JElCOp1GLBaDKIrw+/0bbufw4cMwmUzQaDRshSUiItplDGKJiKhkVVdXo6GhAXq9HuFwGPF4POf35tJyq6ivr0dzczODWCIioiLAfCgiIipZGo0GLpcLH/vYx1BTU7Nt27lw4QIuXbq0besnIiKi3DGIJSKikiUIAsxmM44ePQqXy1Xw9Ws0GlgsFtTX16O2trbg6yciIqL8MYglIqKSZrFYcP78eZSXlxd83Xq9Hm63Gy0tLWhoaCj4+omIiCh/DGKJiKikWSwWnDhxAm1tbaisrCzouisqKvDJT34SHo+HIxITEREVCf5FJiKikiYIAiwWC2pra9HY2FjQgZdsNhuOHj0Km80GQRA4qBMREVERYBBLREQlTQkuDx48iJMnTxY00HS5XLh8+TKcTmfB1klERERbwyCWiIj2hGPHjuGpp54qWNpvZWUlmpubcejQIVgsloKsk4iIiLaOQSwREe0JFRUVaGhogN1uh16v3/L66urqUFdXB4vFAq1WW4ASEhERUSEwiCUioj2hsrISLS0taGxshM1m2/L6zpw5gxMnTmy9YERERFRQDGKJiGjPsFgseOGFF1BXV7fldZ09e5ZBLBERURFiEEtERHuGwWBAZ2cn3G73pteh0+lgt9tRV1dX8Cl7iIiIaOsYxBIR0Z6htMTW19dveh02mw0dHR1oampCRUVFAUtHREREhcAgloiI9gydTofq6mq0tLSgra1tU9PtVFRU4LnnnoPD4eC8sEREREWIQSwREe0ZGo0GFosF1dXVaGho2FQQ6nA40NnZCZPJtA0lJCIioq1iEEtERHtOZ2cnnn322bynxhEEAdXV1XjppZfgdDq3qXRERES0FbrdLgAREVGhtbW1IRqNQq/XI5lM5vy+1tZWtLa2ory8HDod/0QSEREVI7bEEhHRnlNeXo6mpibYbDYYDIac3iMIAhobG1FbWwuLxQKNhn8iiYiIihH/QhMR0Z5js9lQXV2N06dPo7q6Oqf3CIKAp556CqdOndrm0hEREdFWMIglIqI9RxAEGAwGnDt3DjU1NTktr9Pp0NXVhba2th0oIREREW0Wg1giItqT9Ho9jhw5ktNcrzqdDlarFY2NjaiqqtqB0hEREdFmMYglIqI9yWw246WXXsLBgwdhNBrXXbaqqgpPPfUUqqurYbVad6iEREREtBkMYomIaE8SBAFWqxV1dXU4ePDgutPteDwenD59GmazeVNzyxIREdHOYRBLRER7ktIvtrq6GgcOHFh3tOGysjIcO3YMJpNpB0tIREREm8EgloiI9rTDhw/j5Zdfhl6vX/V1k8mExsZGPP/880wlJiIiKgEMYomIaE+rrq7G4cOHYTabV6QUC4KAtrY2NDQ0cG5YIiKiEqHb7QIQERFtJ4/Hg3Q6Dbvdjmg0ilgspr4mCAI6OjrQ2NgIg8Gwi6UkIiKiXPGWMxER7Wl6vR52ux3PP//8ijlgtVotXnzxRZw4cWJ3CkdERER5YxBLRER7miAI0Ov1OHr0KKqrq9XntVotzGYz2traljxPRERExY3pxEREJUKW5U0/t1PL57NMId6Tq2QyiY6ODty8eVN9TqfTwWw2o66uDk6nc0macaFtdtqejd632uvrvWc7l+fUREREtFMEeTtrDUREVDCpVAqJRALJZFIN+MLhMCRJUl+XJAnxeBwAkE6nEY/HIUkS0uk0ZFlGPB5HIpEAAEiShFQqBVEUIcsyZFlGLBZbsnwymVSDu3Q6rS6fTqcBALFYDKlUSv0dgLqeZDKZ874lEokl691IOp2GKIpLjsVGy4dCIczOzmJ2dhZApiXWYDCgs7MTRqMx5yDMaDRCp9NBp8vtPrBWq4Ver4fBYMhpG4IgQKvVwmQyLRmIShAEmEwm6HQ6dQAqk8mkrlej0aity8p2lMGslPXo9Xr1dWV5k8mkrm/5vmm1WthsNnX7er0eer1efd1gMKi/M4glIqKdwiCWiGgdSjCnBIjKTzqdVoNA5XclmFP+Vx4rv2e/P3uZZDK54vXlyyjrUbaniMfjauCnvE8JHmVZRiKRUPcByASLqVRK3bf1llf2W3k9e5+VbSaTSXX/s4miuKScG8k+TrlQAmxJknJuGVYCcCXIV4JFu90OjUaTcxCm1+uh1WpzHslYCSJzDXqVAFOv1y/ZhhJEarVatawGg0ENIJX3ZQfLBoMBGo1GXY8SuK+1/PJ902g0MJlM6uvKfihBsfK78pzyu7JNZR+UdWYvrxz/7Pdmvy/7PdnLrbfutaZRIiKivYVBLBGVvFxSXjf7uxJARqNRNQBKJBJqy2EkEkEymUQikUAsFlvyv9KKGY1G1WXi8ThEUVRbKpPJJMLhsNqqKIqiup3ly2zl6zrfVrLtXn475FIG5RhKkrQkuMv1fbsp3zJs9/LZNBoNjEYjTCYTzGaz2mJrtVphMBhgNBphNBphMBhgsVjUFmWDwaAuo7Qq6/V62Gw29bHRaITZbFb/1+l00Ov1cDgc6naU9VssFrVMy8+Hrf6+0fNERLRzGMQSUclTWguVYDAWi6mPo9EoIpEI4vE4IpEIIpGIGnwqgWk4HEYsFkM8Hkc4HEY8HlcfZ7c0Kq2TG/0orYnK40K9ZzXZKaHK70rlPzvlVGn5yk45BTIVciWFVFleCTqU1rrVUk6zWxa1Wi0sFsualXultTC7BXE9Sitbvum3ynbWMz8/j8nJSfzlX/4lzp07h89//vPrBrLL06xzJYoiEolEzoGhJElq6/Vq71Fa4EVRVMullEk5Z5SbK8r6lOWV9S1PFU+lUmqquNIKn90aHo/H1SwBWZYhSdK6/YaV8yX7R2nhVn4ArHgul/ettczy7Wo0GjXgtVgssFqt6mObzbbieavVCovFAqPRCJvNBrPZDJPJtOSx3W6HyWSC0WjMq8WeiIi2Dwd2IqIdpwQGiURCrWgrFWilBVNJ/VQeK8GkJEnq+5THyutKC2h2S6cSkCqtoMsfK+9TyqCsQ3mcnSqbHdRpNBo18MtOi8xOf8xOdVz+fPZr2evJTsVcnk6pVNKz+x8qrytznGannGYHpdnvVwLdtZZXWreyg4PsPqPK8kpKqZJyupbs9ecaxCqpobkGDNkpqOsJBAJoaGjA3bt3cezYMRw/fnzDbciynFd/XeBJ2nY+QWx2wLja60rq+fIyKdeTcq0AS1PFlfUpy2cHpUrQqwS12WXO3gclUM4OirMDaKV82Wnxyu/LU+yzf89eTnlOWWd2qv5q68lO689mNBqXtODq9XqYTCa1pVd5rPQPVpZXHhsMhiWPLRYLDAbDkv6/yvmpXPfKY+Xmi/Kc8ljZhtL6nMu5SkREa2MQS0Sblu+otgqlMhoIBBCNRuH1euH3+xEOh+Hz+RAMBhEOhzE/P49QKIRoNIpgMIhoNIpYLIZAIIBYLKY+zq685yqf1pTs4FWpkGZXipUKs9VqVSuuymsWi0UNCpWWHaVCvHwZnU6nthBlp0hmp1Eqy2QHnbIsb6p1aK33bXZ922GjsuRS1uxllJsnU1NTaGtrQ0tLS0HLW4wK/Xkq13Y8HlcDXyVlPplMIhKJqDeClB8l60G5ORWNRtUbTsoyyvuUm1lK1oRyYyuZTCIUCqmPldT8eDy+JFshe30b7UO+lBZai8UCh8Ox4rHNZkN5eTmsViscDgfcbjesVivKy8vhdDphsVjgdrvhcDg2zDTY7GtERPsB04mJaNPS6TT8fj8ikYgadIbDYYRCIXi9XoTDYQQCAXi9XkSjUQQCAQSDQTXdN7t1JbtVZflASctbbLJ/stMvldY4s9msBoNKJVMJFpXHVqtVbW2xWq1quuDyx0qQarVal6Q4Lk93VFo410uJXG2Z5cvl+hjIvSJbqCCmmILbzVKCHa/Xq6aNUv42SodfnhK/1u/Zz292meyBz7KDX6ULgRJEK4Gz8lgJppVMDKXbwfLH0WhU3e/sazg7qyL7Z7WMjOwMC6WVVunXa7PZYLVaUVZWpv5eVlYGu90Ou92uBsV2ux0VFRXqTTAiov2MQSwRqZQUQyXNVqnELX+spOomEgn4/X7EYjFEIhE1oFUex2IxBINBteVUCXCVdF8lKFNaIZVUu+x0PeX57Iph9qik2SObLh8IJjt1UEkRVNIIlX5wSnCrtH5mP589QI0yLUmhgri9EBCWKiUAWv55budnws9765TqyvLjqKRCK+nTy7sVKN0HlO8tpf+70mVA+b5TAlvl+ezH2SOGr/c4u+uD8jj7f+V55ftLCWDNZjOcTqf6e/Zjl8ul3oArKytTv9OU7zIlM2T5Y+V7T+lKwPOPiPYSBrFE+0Qul7okSYhGo5iZmYHP58PExARmZmbg9/sxNjaGubk5+Hw+jI2Nwev1IhAIqH3qNkNpkXC5XHA4HLBarfB4PLDZbGrandPpVFPzzGYzzGbzqo+VAVpyHW1WOSas2NFyO3VelNL5t1+PSfbAXspNOWXE8WAwqLb2hkIh9Uad3+9XM0+8Xq96U0/pPhEMBrdUJiWTpK6uDm63G1VVVairq4PL5UJ1dTVqa2vhcrlQW1uLiooKWCyWvKZ3IiIqBQxiifYJJdVuYmICfr8fMzMzmJychN/vx9TUFKanpxEMBrGwsLDqIEvLB1zKnq/UZDKprQTKKKDl5eWwWCyw2+1qS4LSuqCkcdpstiWDoyyfHzK7lXW1AZGWD36U68BBxVZR3mnFvP/FUrZ8yrG8zy2wf4OB5fuf63Esls99OWV/VuvWoAx6tXzu6OVzPS9/rKQ0x+NxhEIhtd+/Mi5AJBLBwsKCmtWiBMLKKOrAk/l+lf9XG0xKGWXcbDajpqYGlZWVcLlcqK+vR0VFBVwuFxoaGuByufKeK5mIaLcxiCXaI5RLWUnzXT7dTCwWQygUUgPX2dlZTE1Nwe/3Y3p6GjMzMwiFQvD7/WrQmD2iZvZjZcoWpcKk9DtVglilf5cSxCoDmij9vUwmE6xWK6xWa84tBLns/073ES20Yi3XdtsL+70X9qHQeE2uvj4l40UJYsPhsNpyqzxeWFhQpwfz+XxqQBsOh9X0ZOVmYvZjZVAr5bEgCDAYDKiqqlID17q6OpSXl8PtdqOurk7ti+twONQ0ZeV7WklNLsbPhoj2NwaxRHuEcinPz89jenoad+/exejoKAYHB3H37l3MzMxgYmIip2lC7HY7bDYb6urq1Lv3tbW18Hg8cLvdqK+vR1lZGdxuNyorK5fMMZovVo6I1rYTwV2xBpB71VaqXcrNyIWFBTWrZvkNyenpafVxLlNDKTciu7q60NzcjObmZhw/fhyNjY1oamqCx+PhdEBEVHQYxBKVKGXOyMePH+Px48cYGhrC9evX4fV64fP5EAqF1MFMlMGURFFUp4HweDyoqqqCw+FAZWUlKisr4XQ6UVtbC7vdvuQuvDJgiJKmlv28Mk1EvpXg3Wil2S+V9UJMS1OI7RTLOotFsbdM8prcPoWaKkpJY1ZaX5XMm+zpi5SuH0raciQSUbNtfD4fpqen1WnNxsfH1bRoZfogs9ms/g2wWCxoampCbW0t2tra0NXVhaqqKjQ0NADgTUgi2j2cJ5aohCiVl7m5OXXU397eXvT39+PRo0f48MMP1eBVGZnSaDTC4/Gojx0OB+x2OyorK1FbWwun04mqqirU1NSo/aWU+U63U77ztG5kvUrgaiPR7oTVylSISvtG87tu1B+xUMdhO47nWsdrt/tWbtTXNZftFvqcLzRek4Vdb/bzhbgmlWl9lK4euUwPpYwcPzk5icnJSXi9XkxOTmJ+fh4+nw81NTWIRCLqYFWJRAKBQADT09PqGAj19fWoq6vD+Pg4QqEQ6urq4PP54PF41JGUc90HIqJCYUssUQlRBmH62te+hnfffRe9vb0IhUJL0tOU6WAOHz6MhoYGtLS0oKurC7W1tWhtbUVZWdmOj1S5260tuVSmd7MMVDyWD9K0U1Pw5KKQ2y/mfeE1WTjrVfGUkZfn5uYwOzuL+/fvY3R0FCMjI7h37x5mZ2cxMzOzIh3Z4XCgrq4Ov/Ebv4HTp0/jox/9KAeFIqIdxyCWqATEYjEMDAzg+9//Pm7evImenh7Mz88jEonAarWioaEBdXV16OrqQk1NDaqrq+FyudSpZ5xOpzqYksFgWNF/db2K+3bZje0UU6V1L8xJWkzHsxByTencq+ftXt63XOy3a1Kp/ildTZQpgLIHmfL7/ejp6cHExASGh4fR39+PZDIJvV6v/t05efIkvvjFL6K1tVWdT5uIaLsxnZioyKXTaUQiEdy8eRNvvfUWbty4gVQqpQ681NDQgAMHDqC1tRXnz59HfX09amtr1QnuV7O8orPW4+20lZS+fJbd7n3bbOV0O49zoVu4tjstuVjk0uqazz5v5ZzmNbl5vCbzK5My/oGSFqwQRRHRaBTV1dUYHh5GRUUF9Ho9fD4f/H4/Hj9+jPHxcUxNTeHMmTOwWCxoaWnJe1+IiDaDLbFERU4URdy/fx8vv/wywuEwNBoNjh49ik984hO4dOkSzp8/D51Ot2r/sr0WZND6Chl0FFMLGVGpKuVrUqkeZv8fjUYxNDSEt99+G1//+tcxNjaGcDiMl19+GU899RT+zb/5N/zeIKIdwZZYoiI3OjqKgYEBRCIRAEB5eTm+9KUv4dixY2hqaloyh99+qTwU+yiv2yGfgYMKMcjQbgyiVOzry3ede+Xcy8V+PC57/ZpUBlRTup/Isgyz2YyGhga89NJLGBsbw507d/D++++jr68PFRUVBdkuEVEuNjexIxHtGJ/Ph7m5OSSTSQCA0WhEU1MTXC4X9Ho9kskkJEkCsLX5B0tJsY/yuh2KcZ8LvZ1iX1++69wr514u9uNxKcZ93q5rSBkEKplMQqPRwOVyobKyEm63GwAwMzODmZmZgm6biGg9bIklKnImkwlmsxkAkEwmMTIygi996Us4d+4cjh8/jldeeQUNDQ2oqqra5ZLuX3ulZQnYmX3h8aLttpc+l2K4JiVJQiKRwNWrV9Hd3Y3XX38dN2/eRDAYXLIOIqKdwiCWqMhl93VV+r5GIhH09vZibm4Og4ODqKyshMfjQXt7OyorK1FVVYW6ujoYjcZtn++Viq9laSuV3u0auGiz2yh2e2lf9pJi+1xK6ZpMp9Pw+/3w+XyYn5/Ho0ePMDs7i4mJCYyPj2Nubg6jo6OIxWLqe3Q6Hf/WENGOYhBLVAKyg1iDwQCdTodAIID5+Xncu3cPdrsdLpcLly9fRltbGw4cOKCOYGyxWKDX66HVaqHVaqHT6aDRaNR5/Yqtsrfd9lILzVpKNXWxGO2H82W37YdjXGzXZDqdhizLSKVSkCQJ6XRa7ZqSSqUwPj6OyclJDA8P48MPP1Sn10mlUhAEAQaDAXa7HalUCn6/X/37QkS0UxjEEpUQl8uF1tZW/PN//s9x/fp13L17Fx988AHi8TjGxsbw7W9/Ww1QtVotXC4XqqqqcOTIEdTW1qK1tRVtbW3weDyoqamB2WzedxWPvV5ZpsLi+bL9eIx3XjgcRjAYxNDQkBqwdnd3Y2xsDBMTE/B6vUilUpBlWQ1y0+k0amtr0dTUhDNnzuD06dN49OgR/t2/+3e7vTtEtA8xiCUqIYIgwGg0oqOjA06nE0ePHsWlS5cwOzurphZ7vV51Hj9JkhCPxxGLxWC323Hnzh2UlZXBYrHAbrfD7XbDYrHA6XTC5XLBarXC6XTCbrfDbDbD4XDAZDIxTYyIqMgpAWckEkE8HkcoFEIwGEQ0GoXP50MoFEIkEoHX60U4HFafDwaDCAaDmJ2dVR8nk0lYLBa4XC40NDSoNz6bm5vh8XhQW1sLs9mMubm53d5tItqnGMQSlRidToeGhga0trZClmUkEgkMDw9jaGgI77zzDkZGRjAyMgIgMxBUPB7H0NCQeiddSSMDgIqKCrhcLtTX16O+vh7l5eWor69HVVUVnE4namtr4XQ6YTabl6Qfr/cYeNKystuDkRDthv18Xu7nfS805Xta+c5e/qM8n/3dnkgkMDc3h2AwiJmZGUxNTcHn82FkZARTU1NYWFjA8PAwYrEYEomEmrmjZO9oNBrodDrYbDZUVFSgvr4eZ8+eRVtbG7q6utDW1gaj0QhZljE8PAyj0bjLR4mI9isGsUQlzmAwoK2tDS0tLXj66achSRIkSYLf78f09DRGR0fR09ODqakpjIyMYHh4GKFQCIFAAHNzc1hYWMDQ0NCSyowSmGo0GhgMBphMJtTU1KC8vFwNbt1utzrNgsPhgMPhQEVFBaxWK+x2e94V2ezKb64V4Y2WyWU9W61071alfTPHa7vtRpkKvc1CrGMz86VutN3d+Ix5TW5+u4UogyRJSCaTmJ2dVdN/Z2dnEQqF4PP5MDk5qY6NMD09jVAopKYBrxbgZv8oWT21tbWoqalBVVUVOjs71Rua7e3tMJlM6hgMSp/X/db9hIiKF4NYohKWPeATkAlogUwFymQywWq1wu12o6qqCsFgEF6vF16vF9FoFIFAAIFAALFYTE0hi8ViCAQCiEQiEEUR4XAYgiBAp9MhFothZmYGZrMZg4ODsFgsMJvNsNvtMJlMMJlMsNlsMBqNMJvNsFgsMBgMSx4ry+n1ephMJnX05OWPlSC6UMdHsVrFcqcClkLL3m4xBLDA7pSp0NvcyWO5XtmXn6s7fUNgo/Jt1n66JpWBk1KpFGKxGERRRCqVQjweRzweVzNlRFFEIpFANBpVf49GoxBFEfF4HOFweMnjeDyOaDSqfmeHw2GEQiH1eWUAP5vNBpvNBpPJpHYTUbqP2Gw29e+D8lp1dTVcLpd6c1IZBJCIqBgxiCXaQ5QKoSAIMJvNMJvNqKysxKFDh5Ysl0gkEIlEMDIygoWFBYyPj2NsbAwLCwsYHR1V+0bNzs6qd/WDwSACgQCATHqbsj3lJ3v7Wq0WZWVlcDgccLvdqKiogM1mU1tvrVYrXC4XHA6H2u/K6XSqj5XRlJenJa+WprzRMtsdCBRLK+hOWm+f9/Lx2My+bdc0RNtRls1+blspS7Fck9lznGZ/n+Xy//Lnsh/HYjHE43F4vV61f6rf71dvFvr9fgSDQYTDYczNzam/z83NIRqNLpnGRjleyr5ld99QfpR5xS0WC6qqqlBTUwO3243GxkbU1tbC4/GgubkZlZWV6nftXr1eiWhvYxBLtIfkWhnR6/VwOp3o7OxEOp1WU5DT6bQatCr9q5SBP6anp+H1euH3+zE1NaVWtubn59WWXK/Xq07RMD8/j4WFBYyMjKgB6fJU5ey+tNnPm81mmEwmuN1uWK1WdSAqpSV3eeuvUnHLbgm22+0wGo2wWCywWq0rAuOdPua7YbsCyu0IhDZSqsFxocpciJbZ7Tp++ax3Jz7HzaxflmV1EDxRFNWWzVgspj5WBksSRVFtAVVaTZXHsVgMXq9XzXARRXHFeATLHyuBryRJK14HoH7PORwOlJeXw263w+l0oqamBg6HAx6PB1VVVXA4HGpwajAYlvRzVVKBlT6vyncuEVGpYhBLtAfl0uKizPW33jrS6TRcLhdisRgqKyvVES39fj8ikYhawYvFYmpFLpFIqJW/ZDKpVuwSiYT6WjKZRCKRUNPrlNeVQFqv18NgMGBubk7tl2U2m6HX66HX65c8VtKTlXTl1R4rqcpK/y6dTqe+X6vVLnm8fBmlwqek6GVXADUajfq+7Iqikt6920HXbm+/kIphX7bSZ3WrwVsx7H++1ksVzmV/lGBOuTGmfD9kz2uqLKO8rvQjVd6jfK8kk0n1eeVxKpVS/0+lUmpar5LmqzxWvsuWP87+Lst+rHTHiMfjSKVSAACtVguTyQSdTgej0ah+z2R/lyndLrIfKzfiTCYTLBaLetNOyWZRbtgpA/Ap/yvfQUREexW/5Yj2oEKkBSppwcqgTVVVVRu+V5Zlta+WMhiJ3+9f8tjr9SISiSAYDMLn8y2Z5kGpCAJQg9zs9a/2OJffgUzqXXa/3ez+Ykr/MJPJpKY4Ky2+RqNR/VFafJUKqMFggM1mWxIsGwwGWCyWdVMlV3s+1+fyeT3XZfJZjlZXiM9qNYVuuVzt2ij0Mmu9ls/z2f1JlRthSpCpBJfhcFgNQpXX4/G4GkRGIhG1D2k4HFZbS5XHyvNK/1Ml4FxuvRbwjV5TBkUym81qZkl2VwqPxwO73Q6r1aq2pirft8pjm83GVlMiomUYxBKVuHwruestX4gBVZQAsLy8fElLSvZjpZVXeZzdwhIKhRAOhxGLxeD3+xGNRtVWXiWlL/uxMidiLBZTK6/ZqX5Kn7J0Oq1WdLPTmJf/v9b0Qfn+ZLfsKq0tBoNBbWlRntPpdGprsxIIK63AVqtVbdnNXkf2SKEmk0n93IxG45KWYK1WC6vVqn42SuCtvJ7dAp2rYknrLZZyrKaYrsnlJElCIpFYErCFw2FIkqS+rswvrZQtHo+r1ygAtZUSgBpoKjedlB+lxTMSiagtl0pLZTQaVd+XTCYRjUbV15TlIpHIqtPK5PqzPF03O203O103+zUA6nWl3ODK7rKgtIAqN7OsVqvafSG7W4PSGqoEocpNMKU7Q3b3CiWLQ3le+Q7KzvjYjv7RRESljkEsUYnLt/Ky3f3ilMrZZtLZlEBTCTaVlGWl4pud3qe0yGSnLSstuUrwqjxW0g6VVhulgq08VirUy59X0g/X6zesPK8EAQqlQqrX65cEl0rQaDKZ1AqzEthmv64Et0pFVwlusyu3Siq00kqTPRUG8KT1WflclPUqry9fXgl0sweOye47l13RXu135T35fPbKNnNdNjsIyGX5XAMBhfLZ5mq1z349yjmTi+ybPcrv2X0nlfUpP4pkMrlkcKHsdSjXQXYZYrGY+n5lWSUjQpYzc1FnB3rZrZbZKbzZP9nBcPb1pYzOq7yutLQqyyg/ShCtyP4slfM4++ZTdlq/cl4vv542el65qaPcNMq+4aTcZFJuJimZGcufV9J+jUaj2p9fWWcx9EkmItorGMQSUdHQaDSwWq1q62EhyLK8akphKBRSW3FDoZA6vYUy7VA8HldTnJWWJ+UnHA6rrUhKwJ0dCCjbXa1Va7P7sBMEQVDn+FVak5XWXwBqYJ3demSxWNQgVAkwbDZbTttTghIl/TqX5ZXUzFzSK5V+39mtzxsJhUJLgsSNKDdXcqEEhMsDtLUo508kElHfnx0YAljSeqksEwwGlwS8ynm7UwpxY23556sEgkrLpxJAKueow+FQHyutpcqc1as9VlpOlVReo9Godh/Q6/Vb2n8iItp+DGKJaM9T5rR1Op1LWq6W/6w2Qmh22mH28wBWpCtmp0jGYjH1sdIarLQUK61PyvPZgUg0Gl3SYpXdB1BZVtmW0mdYGUk6lUqpwVcsFluRxr1R8KQE/IrlU3oorV5rvb7aMhvZzPLr9Tfe6vL5tKoCWNJCmQvlXNns8qtNa5X9+2pl2qh8Smt4dqv98lRzJWBcPoq48thqtaqtmtmp8dlZCMoo4dlZB0pLpZKRsDw4Vd6nnCOrjW6+/PfsZZaPjJ79k51JkL0MEREVPwaxRPtAKfaZKlSZlYrqdstuec1OmcweCVVJm5QkSQ1gs0dIVQJdZT3K8stHU1WCUqV1LTuAzk75VIJYJRBSgt7VpvFY/vtqaavZAZUy8I7yeHnfwrUs306ux3V5oLaefJdfixIA5XoeZgdMuVgefG207uw07uUBV3a66vLXV/s9e9+U35UWdyUlV0nZBaD2xc4O+JSgVwlol6fHK/8rzyuj5mb/KM8pga7SErp8mZ34/irW78mdKFex7jsR0VoYxBLtA6VYOSm1MiutWUpFvJAp0YWmBLRKQA1ATZvO7kMZjUbVYDC73yIAtdU4uwVbaf1dz/L0140owX92P8+N9i27FXorlMAs11RkJQDLNR01Oz17vfNdCRKV9Wan1ipBqMViWTIwkNKqCUDt72k0GtWgVFl+J27wlIpi/c5Zq1ybCTzXek+x7jsR0VoYxBJRTvKpMPGufnETBEGdDkgJDC0Wy4o01ewgMDutOvv1tZZfS64tttnLr5Yyu558U3zXks+AUNnL55PqnOs2spfLTptVZA/Olcvy+e4b7axcvkM38/nl8h5+fxNRKWAQS0Q5yadSs9sVoEJUwvZyRS6fQGu3bPfx5zmys3i887Ob+1nIll8iou3CEQyIaFNyaenazlF111v3ehWtXAe8YWVtdxUi4Nns+kv1HOE1SduJx5+IigmDWCLalFzn6dyN7edaEd7sOmj7bfX4b3Tu7cVzhNckbScefyIqJgxiiWjPKdSoxjthMxXD/VCZ3Ozxz/XYlNI5sheU0vHmNbk6nu9EVEwYxBIR7aLtGpyl0EqlYs+KNm0Vr0kiouLHIJZoHyjFikspljkfxbp/a5WrkBX7Utv3Ut9WoZRimfNRrPu3n69JIqK1MIgl2gdKsXWqFMucj2Ldv50oVyns+3ZX6ov1GKynFMucj2Ldv/18TRIRrYVBLBER0TKs1BMRERUvBrFE+8xqLUy7kUpW6HLs9vQixa4U972Uylzoc5fX5N5XivteimUmor2JQSxRiStEpWI3Wp0Ksc3sfd/t6UWWK5bKnlKOQu37Tu5XKU23UuhUZF6ThVcs58xevSaJiHYSg1iiEpdvpWK3A4Nc54vMRTFXqIqlbIUux17dr0LiNVmciqVse/WaJCLaSbrdLgARFZ4sy0U7TcR2bWOz+7zT69wusiwjHo/D7/ej7+FDzM3OIhKJIBqNQpKkJYGK1WrFxz/5SbicTlis1l0s9d6hnCuyLCORSODqlSu4c/v2kwUEATqdDl3HjuHpp5/Oeb28Jrd/nUREVHoYxBLtQVut5JViRXG18mYHFsUa1BeCLMuQZRlerxdjY2O4dvUqhoeH4ff54Pf7kUqllgSxZWVlOH/hAswmU8kEsTt5TiaTScSiUSRTKcjptPq8VquFxWqFXqeDRqtd8h6lbLIsI5VMovv+ffzwBz9YsozRZIJWq80riFXwmlx7naWkFD9HIqJixCCWiFbYK5UsZT/2yv6sRZIkiPE4/tt//a/o6emB1+tFejH4yicdtZgr2DtZroGBAXz7m99Eb08PIpGI+nxdfT1++4tfRGdnJ8rKy3esPMDeOYf3yzW5lnz3u5ivSSKi3cQgloh2paK0X7a5E6LRKIYGBzE7O4tgMAhJkpYuIMtAkQ2yU8zS6TQSiQTi8Tji8bj6vBiPr0jN3i775frYq9dkofDYEBGtjkEs0T6RXVlcXnFcXlHaiYrletss1PY32s9CbGu3KuHZ241GoxgaGoI/EIAoiuoywmI/TL3BAK1GowayNrsdWq12W/sr7tRxKfQ2CzWysMlkgt3hePIcAIPRCKPRuGRbvCb35jVZLMF5MZaJiKgQGMQSlbhcKyYbVRzXWnan5FM+xUb7vhNTfOxWpTB7u6IoYnZmBslEYskyDocDl596Cs8+9xxaWluh02oBQYAgCDCbTBA0hR2gfjOfYbFtsxDng9liwW/+9m/j137911e8btDrV90Wr8n8ltnO9xdiu8USLBZjmYiICoFBLFGJ288Vk/28716vF0ODgxgZGcHM9DT6+/oQjUaXLCOKIoaGhqDVatHT0wOtRgO9wQCH3Y4XP/IRxGIxBINBvPfOO0ilUur7DAYDLFYrnnv+eZjN5iXrlGUZvb29mJudxeTExJLX2g4cQGVlJZqamyFJEgKBAF5/7bUlgyNptFqYzWZ87OMfhyiKCAYCeDw4iHA4jGgkgrQkQa/Xw2Q2o7GxEWVlZaiprc3pmPj9foRCIUyMjyMcDiMWi2XSgRfTqc1mMywWC2w2GxoaG2G322Gz2QAA01NTePjwIebm5jAxPo7JyUkkkskl6w+GQnj/vffwaGAAFovlyfEyGnHo0CHU1NbC7XYjmUziQXc3+vv6lrxfq9Ph4MGDOHnq1KrlV1qB4/E45ubmMDM9jXA4jGAggEQyiXQ6DUEQYNDrYTAY4HK7UVFZCbfLhfLy8hU3JZRBph49erR0pOTFstTV1eHS5ctYWFiA3+/H2OgogsEgEokE0uk0zGYzrFYrGhoaUF1TA0dWy/Ja9vM1SUREO4dBLBFRCVqYn8fVK1fwizffRCAQWHWZeDyO3p4e9Pb0qM/ZbDbU19fjueefRyQSwcT4OP7y619f0vfTZrOhorIS586fXxHEAsD9u3fR3d2NKx9+uOT5j3/ykzh+/DiampuRSqUwPzeH//61ry3po6vT6VBWXo5nnn0Wfr8fI0NDeP311zE9PY25uTmkkkmYzWaUlZXh8lNP4WBHBzwVFdDpdGumnsqyjGQyiZnpaUxMTODqlSuYmpqCz+dDwO9XWwfLysvh8XhQXV2NS089hfr6elgXR2eenJzE66+9hvv37iEWi616PIOBAN76xS9WPO9wOPCrn/88jEYjXC4XkotT7Lz63e8uWc5oMuGVT3961SBWCWBFUYTf50Pfw4e4f+8epqamMD42hkgkglQqBY1GA6vVCpvNhpbWVnR2dqK1rQ02ux16vR6axUBWOVbJZBL379/H17761SXbMxiNuHDxIs6dP4+J8XEMDQ3h/ffew/j4eGZbySTKyspQUVmJS5cvQ6vTwWw2r/k5EBER7SQGsUS0r+zFfmEyMn0u13oN67y+lu08QqIo4gff/z4G+vvR3d0NMR5HOp1GOp1WA9JwOIzp73wHjY2NGB4cxEc//nGUrzIicEIUMT09jW984xt4NDCA+bk5tSVR+VFMTU5iZmYGD3t78cH77+Oll1/Gb/7Wb8Fut69e0BwHxCqEVCqFSCSCv/ubv8FAfz+GhoaQXGx9lSRpyX4kEgkEAgFMT0/j+vXrsJjNuHjpEi5euoQTJ09Cp8vtT/vkxAS+8+1v4xdvvIG5xeMmSRLSsgzIMubm5rCwsIDBx4/R39eHo11d+NQrr0C7bHqhrdqL1yQREW0vBrFEtK/sxcryRnuUdwC72G92O6TTaYiiiPv37mFmZgbhUEh9TQnGZVmGJEmIxWKYmZ3FvXv3cO7CBdisVhhNpsyyiy2Xvb29eDQwgEf9/Zibm1syJc5q206n00ghE0jHY7ElwWE2GTtzrigtyfPz87h96xb6+/owOTmJcDi8fEE1oFaOT0qSkEgkkBBFPHz4EHa7HTq9Hl1dXSsC2eU3OiRJgs/rxZ07d1Y9bjKyjlcqpaalv/DCC5kW2ay+vVu1F6/J5XZjoDMior2MQSwR0RbtRsVREARotVroDQbodLoVrY4KrVYLTVZQqtfrMwHILlV00+k04rEY7ty+re6DRqNRg7nl0wP5fT7cvnULc7OzKC8rU4NYINN6ee3qVdy6dQvDw8NL3qcE4tnptUrgK8uy2r80e3mdTge9Xo9kMrnmVDrKqM7Z79Xr9Vsa7TmVSmF8fBw//MEPMD42tiS1O3ubEARg8Tgp+6C8f6C/HwAQjkTQ0dGxorV0ecmkVAoLCwtYWFiARqNR04TX+hxGR0YQj8UQ8Puh1WoLGsRuh2IL5nZqtOXNbqfYjhcR0UYYxBLRjij2StJWyrcb+9XU3Ix/8Ju/ic989rMYHRvDL3/xC1y7dg1+n09dxl1Whpc/+lGcOnUKNTU1mbIuBiz69YIQQSj4yMXLGY1GnDx1CmfPnkXHoUOIRCKYmZ7GX/3VX8Hv8yGZNahSOp3G40ePYDKZ4C4rAwAEg0HcvXMH3d3dGFkMYLNbGxsaG9HY2IgXXnwRbrcbVosF0VgMgUAAXq8X165eRX1Dg/rZdR45gqamJiQSCfT19eGHP/gB+vv7EcsaLKu6pgaf//zncbCjA26XS31eWOynasoKsPNx++ZN3L59GyPDw0sG2NJoNPBUVOClj3wEhw8fVgeNunvnDgYGBvDB++8vCbSHh4bg9Xrx/PPPo7auDm63e93tajQaGAwGfOqVV9Da1obWtjZMTU5iaHAQ3/rmN9W0bCBzfYiiiO4HD3Dk6FFYFvsSb6dSuya3y07sSy7bKPbvcCLaXxjEEu0RxV7BKGTZ8tnXzUxBVIyW74der4fT6YTT6UQsHofVas3MBYsnwZxWq4XD4UBFRUXOI/xi8b05VWqRZ6ryYkqsVqtFa1sbOjo60HH4MBoaGhCPxWB3OFBXV5dJr52bW/LWYCi0JMU2Ho/j8ePHCAQCauAnIBOYOZ1OHDp8GEc6O9G2OOiRyWiEKIqIRKOoqKwEANTW1sJgMEAQBBiz5nCdX1iA0WiEZtkx0Gm1cLndqKqsRLnHs+ourpWevPYhkTE+Po7pqaklgTsAeCoq0NzcjK6uLjQ0NsJms2XSiFMpmM1m9Dx4gEgkgsTi1ErJZFIdrMtqtW4YxNpsNjQ1NeHQ4cNoam5GTU0NzGYzBEFAbW0tpqenl4x4LUkS/H4/xGUtxcp+7PdrslDLbkWht5O9vmL/PIhof2EQS7RH7KcKRj77uleOS177nMMyq6XK5ruOvI+sktJsMODS5cs4dvw4Ojo6AAAWiwUOpxMdhw5BkqQVQWx4WRAbjUTQff8+Qll9aoFMcN/Y1ISnn34aFy5eXPKawWiE3eFAdXU1Dh48mG/pt83g4CDGx8dXPN/W2oquY8dw+syZJZ//iZMnUVdfj3feeQcT4+NqEAsAaUlCf38/3GVlaG5pWXe75eXlePrZZ3G0q0sdNKu2thaCIODQ4cOIRKNLgth0Oo2A3w9x2XzEAK/JtShBYCFaOnMJUAt9bPfKZ0VEe8/25osR0Y7ZKCjZ7LI7pVTLX0xl2Uh2WdernAqL6cTKEoXeR71Oh5OnTqGurm7Fa06HY8kcrMqWk8nkklRbMZHA2NgY4sumwzFbLHjm2WfzanneTbIsY3p6GvMLCytea21rw4E1gm2DwYCjR4+uGLFZSqcxMTGx5rRL2VxuN86cPavOlavQabVwuVwwLEs5l2U5k2K8rL+s8lqxKKaybBQE5npNLn+9mPaRiGg3MIgl2iO20hKSXSHaqcrR8u1sV0vOdu/bVgZS2S5rrblQ/QvTi4MKbXYPNFotnE7nqn1IdTrdkkGJsgPp7GOWliREo9EVAxBptVp4PJ5N9U/drcAgHo8jIYornrdarbAuCzAVGo0GDqcTBoNh6QuyjHg8viI1GVh6XgiCAIPBAJfLpY5krOy/IAjQ6/Wrni9pWV71c+c1ubl1F7rPL4NbItovGMQS0YpRWnd6mzu1nWJIjcsOFLaLkNnQ5t6svG+d90upFNKSlH9/WGSCL51WC6vVuiIAU/rxalYbVGpx7lJFWpaREMUVfVC1awV3Odit8yOZSKwadJpMJpjXCMY1i4NJLR8lWBmAKbvVWpF9XiiDOtlstiUjOC8+yIxWnMPnsBn78prcQ9+rDJSJqBgwiCWiPWG9itVuVbq2a7u5rFfOZeAcrFLpFQSk02kkU6k1W1pDoRDC68zHuvrGFgeH0WigXZzOZdVllJ8NaDQamEymFQGvJEnw+XwQV2nZ3E5b+awNRuOqQXcsFlvSJzVbOp1GOBTKBL/LUlJNJtOKeWKzFgCQaQ3XLJuGZ7XltoLX5MrnGQASERUGg1iiParY+5gWunwb9fHMd5uFsFqZCtFSktPIruu8prY8aTSrtnpKkoREIgE5nV6awptOI5lMIhAIILxsQKVcZQfO6w5is8F6tBoNbHb7k2BtsZypVApTk5NrBn/5ljHn92zhc7VYLKumPweDwTX7tqYlCV6vd8VIwYIgwGq1qiMtr1deZT83c33wmsxtHcv3c7vTgLfjeG6l6wcR0XZhEEu0R22mj+lOVCg3k7pXqEoTK18ZynHQarWrzhebSCQQDoUgLQaxyk8qlUI4HMbY2Bimp6dz3+AmzquNPimDwYDa2loYleBvcZ/i8TiuXb2K2ZmZJWVf7yfn3QDUvsCFulYEQUBFRcWT6XCy1js6OvpkDtxlZU4kk+h7+BA+n29Jq6lGo0FVVRXsdvsaO7Gy3Lwmt99OjSq8Hcdzv3xGRFRaOMUOEal2orJS6hWi7Gkuin1u3o2YzWY4nc4lAykBmZbYaDSKX771Fto7OtDR0YFwKISR4WF88MEHmJ2ZWTGg0ro2e4wW55Vdjc1ux+nTp+FdWEAoGFSfTyQSePzoEX7+s59hZGQEFy5ehNPhgNlsRlwUEQ6F4Pf7cfPGDTQ3N+Pk6dOwWq1LWqQ1Wu2qqcqxWAwPHz5EfX097Ha7OsfsVh06dAgJUcTIyMiS/X3Y24tIJIKa2lq0trbC4XQilUqh7+FDPBoYwMjICOLZLbGyDK1Wi66uLtTU1Ky+sU20ROY9H/AOK4VrcjvLWAr7T0RUaAxiiUrYTgxIUsyW73+uFbitVPSKbVCa5XIJOJT91+l0MJlMsFqtSCaT6nyjSqvrw95eJBKJTAtsMIjh4WE86O5GNBpVj73SrrfhkVgnIF3TOsubjEa0tLbCXVaGubk5NZiTZRnhcBhDQ0NIJBKw22xwOp0wWyyIx+MIhULw+3y4e/duJuA7fnxFq6pOq4VlWWALAAlRxNjICPr6+hAOh9V+rHqDAU1NTZnBkDaRhlxXX4+5uTmYTCaIoqiWJxAIQDs5ifv37yMajcK5GMT29vRgeGgIkUhkSdlNZjNcbjeqa2pgdzjyKkeh8Jpc3UZlLOb9Z2BMRMWIQSxRCct3WotSqYjkWtbly+S6f3u51SKXvclOJzaZzWhra8PQ0NCSFOF0Oo333n0X77377pa3t7jRXJfMic1ux9lz59QA79HAwJLXJ8bHMTE+jmtXr665jrq6ulXTgs1mM+rr61cMthQOh3H9+nVcv359yfNVVVX4f/+H/4CysrK8pvZRtt117BjS6TSuX7uG8fFxNSBPp9OYn5vDd7/znZzW19DQgMOdnWhqbt7UFENryeeT4zW5OcW8z8VcNiLav9gnlmgPWq1iXkoVkWKYjiLf/pL52o15YpcTBAFGoxEvvPQS2js6Vu0fm81kMqG6pgaHDh1CU1PTpueJLRSNRoPnn38en/3VX0VHR8eKfqD5lk/5TJwuF44fPw6nywX9JqbqyVX2zYTm5mb89pe+hM4jR+CpqMhrPTqdDkeOHsWzzz2Hj33iEwVLc94Ne/WaJCKiwmJLLNEeVKoV2GKy3cdw2+eJzZFWq0XbgQMYHx/H2Ogo5ubm1BRipVVMq9PBarHA7XajobERWq0W3oUFCCMj+RWsgEGCcvwaGhthMpkw0N8PvcGAubk5RCMRJJNJpFKpJX13dToddDod9Ho9rFYrXG43tFrtitGSTUYjqqqq0NDYiEQigYX5eSQSCUiSpM5LW6h+osrowE6XC0eOHkV/fz/0ej20Gg1isZia5p09H65mcVRpo9EIk8kEm92OziNH0N7RgZaWltXn2d2kYuoPW8rX5HKFanHery3XREQMYolK1HYODrLd9kLFq1SP//LtaDQa1NfX4+Of+AROnjyJV7/7XYyPj2NqagrJRAJmiwUulwvnL1xAR0cHzp0/j++9+ipiW5jCZq1ybYbBYEBdfT3+L3/wBxgeGsL4+Dg+/OADTE1OYmFhAf5AAHI6DUEQ4PF4UFFRgZraWjz19NOoq6uDY5W+ozq9Hk6XC1/+8pcxNDSEN994A0ODgwgEAohGo0in0wUP7HQ6HZxOJ7705S/D6/Xi/r17uHvnDqYmJzE6OopoNIpUKgVBEGCz2WCz29HW1oYjR4+ira0Nhw4fXjFAVz7WOv9K6Sotpmtyo/dmv5bvdrKX387vjL3wPU1EexeDWKISlWvlYrP9S7dTMVeMdut4bWV9Ho8HL738Mo4dPw5RFNXnjSYTGhoaUFZevuZ2lN9tNhvqGxrwmc9+FtFoFLFYDOl0GlqtFgajEZ7ycjgcDhgMBly8dAmdnZ147oUXlqyrtq5OnSpGr9ejpqYGf/wv/+WSAFWj0cCw2IK4vByCIODU6dNoaWnBU089teT1qqoquFyuFfueXZmvrKqCzW6Hx+NBLBaDKIpIJJNqC7DScmk2m1FRWQmL2bzmvKGyLMNdVgaD0Qin04lwOKy27i4PuE0mE8rKytQ0XqPRiJc+8hF0HDq0ZDmtVou6+vpVzzFlmxqNBg6HA0eOHEFtbS1isRgikQikVArprAG5dDod7HY7nC4X7DbbkhblbAajEecvXEB51jkAZEZgrvB4VhxHALDb7bhw8SKaW1oQCYfV53U6Haqqq1FVVbViO9upFK/J7ZyuaLe6WzCoJaJiwiCWqMQpFYs1W1L2YKVjo33ezLoUu328NrNPNpsN7e3taG9v3/Q2jUYjjEYjnF1dGy7f3Ny85nqy+3k6nE688OKLG25beY/SKlxfX5/fDiyy2Wyw2WyorKzMeZtrvSYIAiwWCywWCyry7KOq1enQ3tGBg+3tmwpmjEZjJlisrs5ru6utT6fToampCU1NTTm/z2g0orm5ec3PeTW8Jotzm5tZz376W0JEpYsDOxGVuJ1IKys2m9nntdJVt3LctmMgmN34HAu1zc2sZ7umBNnsNgtRHl6TueE1uf3bLJZrkoio0BjEEtGujMq509tUWokKvc7N4kio22cr/RiLBa/Jza9zs4rp8yciovUxiCWikm5pKPZtrqWYykIZxfSZ7JfrY78fcyIi2hwGsUS0L7CVhai48JokIqLNYhBLRHvCVvpB7sT2aWNbOYa7ffx3e/vFiNdk6eMxJKJixSCWiPaE3U4F3O3t7wU7NaXJdtjt7Rej3T4mu739vYDHkIiKFYNYIiIiIiIiKhkMYomIiIiIiKhkMIgl2ud2s8/TXuhvtRf2gYoLr8mt2Qv7QERE62MQS7TP7Wafp73Q32q9fdjtyvRub7+QdntfdnL7vCa3htckEdHexyCWiPaE7MphsVQUdzsg2O3tF9Ju78tq2y/Gc66YFOPxKcbziIiI8scgloj2hOzKISuKtBN4zq2Px4eIiLYLg1iifawYWkeKoQxExaIYrodiKAMREdF6GMQS7WPF0DpSDGWgJ3YigGGQtLZiuB6KoQz0BK9JIqKVGMQS7QPLKyirVVh2shKTy/a3Wp6tvD/f9+az/E6uezPHIN8ARpblvMuYzzaUdW/H+VmIc2Sz6+A1ub3v5TW5/dckEdFuYhBLtA8sr6CsVmHZjtaXtSo7uWx/M+XJ3t5W9iff9+az/E6uO/v37ap4CoKwbfufXbnejvOzEOeIIAgFCUx4Ta6P12TuduqaJCLaTQxiifapnbibvtOVnVy3l29LRa7rLGalVvEspdahQh1bXpO8JosZA1giKia63S4AEe2O/VwZKbZWPVppO1vHitVe2IfN4jVZ/Hg8iaiYsCWWqIRtV0tDsbdgZFuvrGu9Vqz7V6zl2m673R+0kHhN8prcC/bSNUlEexODWKIStl13xkvpjrtS1tUqWGvtx27sXy4VwFI57psJUtazU/1B87WZAXx4TfKa3A375ZokIlIwiCWiPaHYK1jFXr58rLcv+2U/t7LsflHsx6TYy5eP/XJNEhEpGMQS0RL7NWVsv+43sLv7XizHvVjKsZpiLtt22q/7DfCaJCLaCAd2ItpHchldcj/ctV9+HEpp1E1ZluHzxRDwxzA9HQIA2O1GNDS6YbUaoNPlf29yvX1PJFKIRpMYfLQAMZGCAKCh0Q273QiH07TZ3dhw25v9TDb7vt36/HlNZuzmNRmJJBAJixh8vAAZgF6nRVOzGza7EWazPqd1FLq8u/mZF/qaJCLaDgxiifYRVkAyCjH/5W6RZeDqlVG89cYAvvYXVwEAZ8414N/+ycs42lUDZwECy2wLC1H0PJjBP//D72FiIgBBAP7V//gRnLvQiMtPtRR0W9k2+5mU0mcJlF55t8tuXpPDw17cvjmBf/5H30M6LaPcY8H//P/8OE6fqceBgxU5rWM/fI77YR+JqHQwiCXaI/bTXfLV9rXQ+5/r+vbLcZeX/V/qduJ82S/nBrDHrsk1TvJUKo379yZx5YMRvP3WYwDAseM1ePnjHTh6tAamHFttiYho6xjEEu0R+6WyDKw9cmYhK825rmc/Hfe9ZCeCq/10buyHa1KWZczPR/CgexpvvNYPAEilJJw8XYeUlN6WbRIR0eo4sBMR7Rn7KWig4sHzbm08NkREtB3YEku0RzB1cW/tf24D3cgAct/njY7Raq+7XGYcPVqNf/+nn0IsmgQAdB6tRlm5Jeft5rqtQnyG2evYyXNiP5yT69nv+79Zm7kmc3lfocrCz5CIihWDWKI9ohQqGoWqkO2H1M3cBrrJb583Mwqu2ayH2azHxz5xOK9tbaYshfgMs9exk+dEqZ6TvCZ312ZHpt6OY8vPkIhKCdOJiUpU9lx+hZ7Xb7vmCdzJChmQ236stsxa79vOY77XlMLxyeezz3d9vCZXx2ty9/D4ENFewiCWqERtZ4vTXrn7nst+5NP6sFutfKWoFI5PoVueeE1ujNfk7uHxIaK9hOnERFRQ6bSMdDqNWDSJZCqNVFKCJMmQZRlpWYZGECBoBGg1AnR6LXQ6DYxGHfR6DTSa9e+rJZMSUqk0YrEkUqk0pFQa6fST1gWtVoBWq4FOr4XFos881q2/znRaRjyWRDiSQEJMAQBsNiPMFj0MBi2kVBrJVBrRSAIpKQ1JSkNOA4IG0Go0MJl00Bu0MJn0EISlFcV0WoYkZcqbTEpIJiSk0zJkOfN+vU4LnV4Dm80IrVbYcP9zIUlpJBIS4rHF45+SIC8OnKrRCuo2rVYDtFoNNJr1K7aSlEYyKcHnjUFaHIHV4TTBaNDBaFr5JyQtpRGPpxAOi0gkpMzxtBthNi8eT0lGKiVljmcqDUnKnC8QBGgEAQaDFgaDFiazHjqdJod+wWuXO52WEY0mkEqmF7eVhiwDMjLnoVargVb75DM0GLQAdrayL8sy4vEUxMVjBgB6gxYupxl6gwaAkPk840mkkhKSyTTSsgwsHgunywyr1bBiveq5F00imZLU6yV7/zUaIXP9mXTQ67Tq57nR/meu8exjm1l/plgyBI2weJ1nrhGtTgODPrN+jSZz3NcSjSQgiilEIgkAgFarQWWVDRqNkPP0OvPzESSTEtKSvHht6uB0mlcsl+v6kgkJ4UgCwUAcC3MRRBfLBgDxeAoL81FMTgRgsaz8HIxGHQxGHRwO47rfDcs/H0HIOoaL32N6vRZGo65g3xVERKWMQSzRPrITg3REowl4F6L40fcf4PHjBQz0z2FyIohoNIFYNAm7wwSr1YCycgsOHa5Ec7Mbl59uQWubBy63ed11j4368WhgHj/9cS9Gh30YG/PD74tCBqDVCKiotKG6xoH2Q5V45VeOoLHRjdo6x7rrDIdEvPnGAP766zdw9cMRAMA//N1z+JVf7cLJU3UYG/NjoH8O3/nWPYyP+TE9FUQknITFqkdZuQUvfqQdx0/U4rkXDsBs1i05vvF4EhPjAfzkR7142DuL7ntT8PmiSIgpWKxGHDjowcH2Cnz5K2dRXW3fcP9zEQzEcfPGOF7/eR8eDcxjcHABsUgSaVlGuceC9o5KHGz34Dd+6xQqKmxwOE3rrm9uNoyHD2fxx//sh5icCEAQBPzxv3oBZ8414MLFphXnUyAo4q03H+G/f/Uqbt0YBwD83h9cwic+dRgnTtZhciKAoUEvvv3NOxgZ9mFyIgC/PwajQQeb3YjjJ2px4lQdXvpIO5pby2A0Pvkzlc+5GwjEMTsTwve/242BgXmMjvgwNRWEGE8hlUzD7jDCU2FFXZ0Tz794EIePVOHM2QZotTvbWiXLwPvvDuHdtwfx1f/zCgDg2Ila/Ns/eRmHO6ug0Qi4d3cKb70xgIH+OfT1zSHojyORSMHuMOFf/duX8IXfOLFiveGQiPn5CL7/3ft49GgBjx/NY2oqiHgshYSYgs1uhNttRmOTG08904qOQ5V4+tnWxWBx/TLHogn4fDG8+vf30d83h+EhL0ZHfIjFkkgkUjCb9bBYDLA7jKiudqC+3okjXdW49FQLKiptKCtbe1Cwn/2kFx+8P4xv/t0dyGkZ9Q0u/OjnvwuHwwSDceMqSyqVxh/9/nfxsHcG8/MRHDtei2efa8O/+NcvLlku13MplUqj58EM/vrrN/CNv72tBp+Ka1dGcfPGOLRr3Ay6eKkZ5y814f/2x88teT4SETE3G8EPvv8AD3tmMDbqx9ioP3ODLinBbNHDajXAZjegutqJ5hY3Dh3OfEZl5Va4XKt/V3AgJiLaLxjEEu0j29nPTZLSuH51DH0PZ3HvziT6++fg98Xg9UYRCSfU1oZkUkIoGIffH0PAH0Nvzwzu35vCb335DI4fr4XTZVpSzlQqjUhExE9/9BAPe2fw6NE8hh57EQzEEQrFEY+nFvcNSCbTCATimJsNY2Y6hNbWcly41ITTZ+rhXKvSh6zWy8V1JZOZFpI3X+/H3TuTuHdnEn0P5xAKxhGOZFqforEEIpEEfvHGAAYfL2B42IvP/moXKipt0Ok0GBr04tHAPH7ywx4M9M9jfj6C+bkw4vEkJElGLJZCWkpjbjaMWCyJ5184gDPn6lFT69ywdXStz+DKB8OYmgzizTcGMDLkhc8Xg98fQyopQZYzLdkJUcLEeAAL81FcuNSEEyfqcKDds2brWOb4ZFoL4/EUIGQ+k3R6jcry4rkgitnHU0IslsR77wzh5o0x3Lszhb6HMwgE4giHRYjxFGLaJCLRBO7cnsD0VBD9fXP4B795Eo1NbtTVO3Paf0EQEI0mcPP6OG7fGsdA3xz6Hs7B54siGIwjHE6orfeJZAqxaBI+bwzBYBw3b4zh5vUxfOrTnfBU2FZt3dwuUlpGMvXkeIliCpKUxo1ro5iZDuON1/sxOuKDzxuF1xuDKKYgp2Xo9NoV85MmkxKuXx1Dz4NpdN+bQt/DWfU8UPZfaV2PRhMIhUQE/Jn9f9A9hRc/0o6GBhesNsOKzzeZlDA5EcT77w7h7p0JdN+fhnchikAghmBQRCqVybpIiBIikQQCgTh83hjGx/x49GgejwbmceJkHX7tH5xY+1hImZbPeCwJWc60dGZaJ3OXSGRatuOxFEQxhWRKyuPdK2XOlyefz/LX0gkJyTXeKyYyN03U38UUpqeCePP1AfQ8mMaD7hl4FyIIBkWEgnH12lJao/0+LXzeGCYn/HjYO4vBxws4d74Jn/x056rbYwBLRPsFg1iiPW4n7swnkxLC4QSufDiCD98fxju/fIxUKr1sqcx0MEowFAqJmJsNAwCuATh/sQmtbeVwukxquQEgEklgajKEH/3gAXoezGB0xLdmOQKBOAKBOCYnguh5MIOW1jIkEik0NLpgNOlgMulz2p9USkIoJOKDdwdx9cNR3L41seo+x6JJeBeiGB7yYmTIi7PnGmA262GzG9HfN4erH47gW9+4g2QyvWJQFSUtemoqiMHHCzAZtSj3WFBVZYcgaPL6zNKSDDGewvWro+h5MIPXfta36nKhoIhQUMToiA+9D2YQiyWh02nQ0ORaTFPcnhTFVDKNUFDE7VsTePsXj3BzsYU2myRJSCQkDIW9GBn24dbNCRxs90AGUFPrWJGqrVDOb0EQIMZT8C5E8d67Q3jztX50359a5TzMiMcyQY7XG8XoiA9Olwn3702h41AlNBoNzOaV6eGFstE1mU5nPs+b18fR2zuDH32/Z8UymRsdmbRiRSKRQigo4sMPhvHeO4P48P3htfc/nkI8nkTAH8fYqB8WqwEPe2dQU+OAyaSDxVoGYOl0RcmkhIH+Obz+Wh9+8cYAIuHEqutOJDKfZTSShN8XyzzZC4wM+5BISOsGsXuZkjre/3AOP/lRL65dHV2SmpxNOYYRAD5fDONjAQgCMDrig9GoU4PYnWp5ZQsvERUbBrFEe9xOVMKvXRnFaz/rw9/9zW21NWGVkmxiO8Cr37mHH/+wBx+8N4xEMvcWlXRaxtCgF3/xX64gFkviwqUmfOZXu3I6HvfvTSEUFPHTnzyEGF+rjeWJgD+Ge/em8Nf//SaOdFXj3PlG/Nn/9jYe3J9W+4Wut4+xWBI//EEPentm8Jd/91uw2Y15pbVOTwXx6nfu4+1fPlZvDGy0TVFM4Yffe4ArHwyjqsqOtgPlqKnduMVzM7rvTcHvi+JHP+iBKK5szVo6362MdDpTvv/jf38XL73cgcOHK2F3mKDTrT/gz89/9hAfvDeEv/nLW0gkUpCk9drvls6xGwzE8TA0g//7v/kZnn/xAP7Fv34RZrN+W9KLNzoH52bC+N7fd+Pddx5jejq05nLptKy2UMqyjA/fH8Yvf/EIf/nfbiAcybS6blAS9VE0kkBf7xz+/f/rFzh9pgH//v/zCkwmHXQ6rbqt2dkw/sd/9VNMTwfXDGD3l/zmaZakNEZHvPjX//LHmJkJLwtg81uXIp/v960EogxgiajYMIglorwpFRpJSmNs1I97d6fw4fvDCIeeBLBV1TZUVdnR0lqOyiobTKbMwD5KC0MsmsDsbBh+fwwjwz6YzPolVbhEQsLDnhk8uD+Ngb45JBKZtEKtVkB7RyXq6p2oq3fC5TZDEIRMJXsmhKnJTCrq3GwYqVQaopjCjetj0Gg0ePrZtkzfusUBfNYyMRZAOJRAWkqjpbUcTc1utLSUwWTWQ2/QIhIWMT8XwfhYAPfuTSIeS0FKpXH//hS83iimp4KYnAhCp9fgxKFatB3wwO22wO40IpmUIMZTmBgPoLdnBhPjASQSEoKBOCYmghgcXEBDoxsejzXnzyMYjOPunQkEA3FYrQYc6qxEc3MZXG4zrDYjUkkJopjC5EQQ/X2zmJwMIhQUkUik4PPG8POf9uGll9tRXeNY8vkWysiIDz5fFKlUGs0t5ahvcKK1rRwWix4Gow7xWArBYBzz8xFcuzKCcDiBZEJCMCBiciKA+/emcPJ0Pex246rrTyRSmJoK4eb1MVy7Mop4PAmNRgOrVY/2jgpU19jh8dhgtxuh02cGGopGkgiF4vB6Y7h3ewKBYByRcAJTU0EM9M/j2pVRnDnXAIdj/T7D2yEUEnHn9gQC/szneeRINeobXXC5zLDZDNBoNdBqBBhNOnQdq0EqlcbkZAB3bk/ig/eGEY4kIKdlmEw6tHdUoLLKjupqO2x2I/R6LfR6DaLRJCKRBBbmI3jQPQ2vN4pQUMTsbBiPH8/j2pURdB2rRUWlDQDg98UwPRnMpL9HkxAEwGI1oLW1HE0tZaipscNg1EGvz1xbyYQEUUwiHM6kFc9OhyDLMiyW3LIhMnZ/ShiNRkBNrQMf/+Rh1NQ6MDzkRV/vLLrvTwMQ0NzixsnT9WhqcsNgWFmlamh0oaHRBQDwLkQxNRnC3GwEYjwFQSPAatGj/VAl6uudqK5xwGDUqjcOEmImHTocTsDni2JhLgJZlnPOKFmOgSgR7SUMYokob8odfUmS0d83h3t3J9WUW41GgF6vRUtrOY52VePZ59vQeaQaDqcJNpsR4ZCIaDSBhfkoHj6cxciwDx+8NwS73bSkL6gopnDzxjge9s5gfDwAIDNKp8Wix6nT9Th9th5nzjagsbkMGo2AVEpCz4MZ3L09gbQsIxJOIBwWkU7LuH93CjqdFtOTwcxooRsEsdPTIczOhuHxWNF1rAaXn2nFM8+2qCPBzsyEMNA3h+vXxjA64sNCKoJkMo3+h3MYG/Gjt2cG4ZAIj8eKi5eb8fwLB9HcUobaeidi0Uyl/tbNcciyjFAoExDHYpnU5IH+eVithryC2HA4gd6eWZgtelTX2PHc8wdw+ekWNDS5UVVlRzyWRDAYx61bE/j5T3ozI8tGEot9XZN47ed9aGh04dJTzRuO5rwZE+MBTGkEuN0WHO2qxvmLTXj2+TaUlVtgtxsR8McwPh7Ao/55jI/5MTkRgM8bQyIhYW4ugju3J9FxuHLNIFYUUxjon8PtWxO4d3cKAGC16lFWnjn+Xcdr0N5eieoae2aUZKMW8/NRTE9mbhpEIyJGhn2IRTPptcNDXrz/7hAOHa7clSA2Ekmgt2cGNpsBNTVOPP/iAZy70ISGRheqqu3Q6TRLUr/FeAqPH83j7p1JNVXbajXA6TLj/IUmHD5Sha5jter+my16LCxEMT8XxkD/PNJpGY8G5hEJJxAKipgYC+D9d4ZQW+tcGsROhRAKi0gl09BqBXg8Vpw+24Cnn2vF8eO1sNszo3rLcmbwp2AwjtnZCMbH/OjpnsHoiBfuvAYv2/2gS6vVoKbWgZpaB156uR2/fOsRvv/d7sUgVkZzSxl+9fNdePrZNthsq5+fCu9CFDPTIYTDImQZ0Os18FTYcOFSM86db8Sx4zWw2Y0wmXSQZSASFhEKiZiZCWNk2Iv+h3MYGfbCucFgbGthSjAR7SUMYon2uO2ouCjrE8UU/vrrN9DzYEZ9rfVAOc5faMIf/V+fRmWVDUajTp0qRRAAp8sMh9OEyio72g9VQJJk/OPfuwCzWQ+d/knFPBwS8c2/vYXhoSd9YC9easLTz7XhS79zZrFVKTMtjyAAsqzD6dP1ONpVjc98rgv/87/9Oe7emcTD3lmk0zKmp4L45t/dxpe/chZ2e8W6+6fTaeDxWPFn/8dn0HrAg5paB/R6rTpya329C9XVDpy70ARJknHj2ijee2cIopjK9EsMxfGl3zmDs+cb8YlPdcJg0GZaz7QCDIbM/lfX2OGpsOHUmTH8r/+PNzODXqUk3Lk1gcpKG9o7KvP+XH73n5zHuQtNeOa5Nuj12sWpOATodEZYbQZ8tMKGc+caMDTkxR/+/ncxPxtGJJLA8OACHnRP4/atCZw8Vae2phWKMk3Kv//fXsHBjgrU1jlgMOig0WTOJU+FDWXlVhzurIKn0obXfvYQX/3/XQUA+LxR3Lw+hld+ZfWBbGRZxsJ8FP/t/7yKwUcLmRZCiwH/6B9fwMc/dRgH2j0wGLTqdELKeVhTY0dVlS1zo+W5Nrz5xgD+0398D0ODC5iYCODV797Dr/7aMdTWFT7FOpdrUhCA3//Dy7hwqQlnzzUu+TyXi0YT+MuvXsf9+9MAMgH8Zz/Xhd/60mkcbK+A0ZS5BrP3v6rKhooKK9o7KvD0s624fWsc/8v/9BpGR/zweqP47nfv4/IzrTjUWQUA6jQ/SuOo1WbEP/sfnsXxk3U42F4Bvf7JNQ4AZrMeLrcFDQ1unDhZi4994hDSkgztNtwk2T1rf4arfcZiIrUknb683Ir/4V8+h1On69HUXLbkexIAzGYdysqtaGh049SpusUpvmQYsq7PfL7ft/J3gAEwERUbBrFEe9x2VTySCQmRsIjhYS983igAwGoz4ODBCrz40kFUV9tXHeE086sArRZPgqVljY5Ky+HUZAiRSCIT/DpN6DhciYuXmuBym1cEWoIAaAxaaBfnnb38dAsEQUDfw1nIcqaiP9A/h0hk4z6uVdV2HGyvQNsBDyoqbTCbl6bvqfPR6jQ4dKgSM1PBJ6/pMvO+dh2vxdFjNSuOwZP916ClpQyxaAI6nUYdlXR+PoJodOMyZjOZdPBUWHGkqwYdhyphsejX3Ka7zIJUKo2Ll5pw8/oYBvrnIUkyFuYjGB7y4tjxmoIHsTU1dhzsqEB7RwUqqmwr5tPMHM9MsHvwoAd9vW44HEaEwwkkRAnzc5E1ByhKJdMIh0U8ejSPUFiE0ahD55EqHOjwoLHJDbvduOo1oGxTp9OgTGdBY5Mbx0/UYmoyiEgkAd9CDH5fFOGwuGELW742uibNZj1qah04dLgSbQc8Kz7PbKmkhGg0icHHC/D7otBqNeg4VIn2jgo0t5TB7jCuOmDXkv0v06C+3oUTJ+rg88YwNxuGbyEKny+KUDAOmz1zE8TlMqtBtCzLmRbFxbTllfsIdVk9Cns+lYLVPi+73QSnMzP6uixn5toNhzL9Yo2rTB8kCAKeTAe7+jHcqcCSASwRFZu9dEuUiDawfITcrYiLqUw/zrEAAoE4BAEoK7PgyNFqfPxTh1cNYHMViSTg9UYxNxdBPJ6CVqtBVbUdR7uqcfHy+imvmZZHDZ5/8SDOX2qCVptpqY1Gk+jvm0c0koAsy+sei8amTD+32jonbGuksAKZil3HoQo0NLrV54xGHaqqbDh+shaHF1ux1lJX78Shw1VqK6+czgST0Wh+g+ZYbQa0t1fgyNFqtLaVr7us0ahDWZkFL3/sEJpbytTnFxaieDwwn8NgQE/kdj7JaGopw8lT9Whocq+bnqvRCGhscqO+wYVyjxVarQAxkcLCwtpBrCimEAyIGB7yIhJOwGjU4fiJWtTXZ6aJicdTiMWSa/7E4ymkUmm43WacPFUHs0kPKZVGKCRiYSGKYCCe8/EoFJvNgKNdNWjvqEBDg2vd6yiRkBAOiRge8cHvj0On06DrWA2aWspgsxsz/c832P9kMg2LxYCTp+vhcBgzwVU4AZ83Ct/i6MIulxmVVZl+r1qtACmVxvCQF/PzmWs0kZDUabTS6cwNmY2us/1ElmWUlVlQUWFbzEIQkEhKGB5cgNcbXfUYKscvn2PI401E+wVbYon2kULeTZ+fC+PRwDykxXkqtVoNnnm2FYePVG25X+XsTBijwz61QmYwaPH0s21oai7b4J1PVFba0NTkxqHOSgw+WkA0lsTEeACBQAzxeGrV1iNFQ6MLx0/UQLPByLSCAHgqrOq0QECmsn/6TMOS1ru1UvEEAdDpM6m2MzNhiPEkotEkkhuMaLxcebkVz71wUC3HRp+z0aTDpaea8c4vHy+mYgPehQgePVrYYETf5eXP5XwS0NxShuMna3Oe/9Zi0aO21oHpqVBmep6QCElKr3ocR0f9ePw4068TyAyK9M1v3MEPf9Cjtm6tVrHPfkqWZXUQsOyg1e+LIeCPb0tK8XqcLjMuPdUMp3Pj/qNTU0H09c+pNx8SiRS++537+MmPH6oZBLnsvySlEY+nEA6J6vPBgAifL4qGRhdsdiMam1z4nX90Dr98cwAPuqfxjb+5jbfefITqGgdOnKxFdY0DNTUONLeUoaLSiqpqx7aM7lwIO50eKwgCHA4j2g568JV/fA4//2kfhgYX8Nd/dQtv/eIRqqodOH6iFrV1DlRV2dDckhkQz1Nhy+sYssWUiPYLBrFEtCmimEJocYASIFN5qqi0weEwbbkiFRdTS9J+NRoNKiozaai5rFsQBGh1AkxmPcrKrBjV+QA5M5qyKEpIiOsHsSaTbs001OV0Ou2SdE2dTgO7w6j2b9uonIIAGAw6aDUCZGTKmM6zNcVg1KGi0ppzGrBGI8BuN8Ji1cNo1KmtQJGIuC0tOWazfvF45ra8VptJCRc0gCzJ6o2S1Y5nNJpAJGuqkkyKprgYjD2Ztme5XHYzmcy0jO00vUGLMo8F+g0GIAOgBp7K/sgyEA6LCIcLsP8pSZ0iSqMRYLEacPmpZsiyDHeZBY/65xEMigiF5pBMSnC7zXC7My22TpcZHo8V1TUOlJdbUFvngLvMUvBU9c3ajWBPo9XA4TTh8jOtEMUUqmvseDwwD+9CFIFAHAkxBXeZBS6XCZVVNrjLLCgrs6Cm1glPhRVVVXaUeyzbNp8zEVEpYRBLVKKyWxIK3aqQy/pEUUIkklSDHkEAyj3WddNvcyWKKcRiTwITjUZAWbkV5rym58i04Ho8FuiyKs5iPIV4PAXHOo1rBoMOZothxbAty4+5UjZN1rHSajWwWg05tzoKEKDTZwbdgbw492eecaTBoEW5xwq9LrcAQRAEGI06WMx6WKyGzIBUSQmxaDLvbedUPqMWZmvun51Go4HeoIMAAfIGxyQeSyK6rJ/zk2Xz2ZmV83QmkxKSqdyD2EJdk3qdBm63ZUlGw1rrE8UUIpEE5Kx93dz+r5RKppcE8RaLAR/5aAcaGl04dboOf/uXt/D48QImxgNYmB/LCqRl6Bb7pl+41IyuY7V47oU2HDteow6wlZuNy7/aNVnMnE4TPvqxDtTW2PGwdxbf/NvbGBiYx+xMGHOz4SXHUK/XwmzW4+LlZpw6XY8Ll5phs9fCZNLncQyf4OBMRLSXMIglKlFLB+7ZntGHN5JvpXGtStRqzxeuPrrKvmzycC0/5qVQac5VqVZtpfSTltqtyW61VIIi5BUHFuqaFDRCZuTtHNaXVvZ/G05FWf1nqZbWctTVu3DmbCMiERGhUAKPH89jbjaM2Zkw+nvnMDERwOiIF1c+GMatG+P49jfv4LOf68KZs/X45KeP5FiC3LIuVjyWi2GG2fUd7KhAU0sZLl5uRjicQCgUx+DjBcxMhzE3F0Zf76w63dR77wzi+tVR/M1f3cSv/fpxnLvQiBdeas97mwxgiWgvYRBLtEfs9F12rVYDg0G7ZJuRSGLJFBLLrVW+5c/rtJolqZSynJnXVGkVWj3oXfmclEojEkkgndXPU6fXQF8C03ws35/VP99MwKXsp5ReP5hT1qH0gUwkJSQSKcjyYuunXrtj0Wyun+FG9DrNknl/jUYdDnVWwuOxwr6FOV4FAAcOeuAus+S0fKH2R92+IOT0WWi1msyUK4Lyu4DOI9UoL7fAlWPZ13LkSBXKV5mv2GjUwWjMpNwnk5mUY7vdAL8vBq83hro6J2ZnQhgfD+D+3SkszGfmir1xfQx6gxZnzjXCXWZZfb5mIRPEPyGr/aFzlVgcHKmYmUx6mEz6xWOY6Y/tcJjg9Ubh92WO4fRUEJOTQdy7M4mFhQjGRv24dnUUFqsBR7pqUF5uLei8zoU+h4mIthODWKI9YqcrGiaTFna7Ua08y7KMuZkwQoF4Vorx5spkMutgsz6ZhiWdljE/F0Z0se/j6oMkLQ34AEBMSJibCy9JiTSZdDCZ80tLzl3h2n9WTk202rHMPJdISJibDSOZXL/i/iTtEogtpuFGwpljajBoYbVufkTpfG30GebKbNHDkpWq7HAY8VtfPIXLT7ei41D+c+1uVqH2J18mkw42mwHC4rlgNOrwhd84gfMXmnDqTP22b1+v10Kv166Y1ziZzIyK/L//6Tu4cW0M8+8O4cP3h5BMSDh/oRGnzzbAYFg5cJVGkz0XbiaNXBSlnAYcy4zkmxmJPB5f+2baVhT6ExUEAQaDFgaDdsX5mkxKCAXj+NP/8DauXxvDzetjeOeXg9DpNDjaVYPzF5ug0xnWWPPmypLLc0RExaD4myOIqCh5PDYcOOBRBxmRJBkfvD+Mvr7ZLad3VlTY0ND4ZGqRRELCBx8MY2wssO77sltrFhaiGB/zo//hHGKxJAwGLWpqHXA4TOsO6rQ1u1Ph83qjeP+doZyngxHFFK5dGcXkREBN2y4rs6CltaxoR5NdS12dE01NT0atjsWSeO/tIUxPBtd5V2HtZlp5ZZUNrW0eNfBLJtP48L1hDA8t7FqZgMwAZ1arAb/126fxwksHF58VMufqu8MIBcVV32c06rLmZc5kGUxNBtWbLevx+2PofziLgD8GMZ7fXMu5WhpkZ24IbdfHnxkkzoTf+cpZXLrcrD4/Mx3GB+8NI5bnfNJERHsJg1iiPWKnK9Imsw5OlxkuVyYoTMsyZmdDGBn24WHvLBIJadNlslj1cLrMsNoM0Ok0kKRMRXZ8zIexUd+qQXJ2qmw6LaP/4SweD8wjGk0gnZZhNOpQW+uA2ayHRrPxyMGlJBpJYGhwAVOTAXi90XWPe2ox9fj2rQnMzITU5+0OI2rrnJsaMGY3Wa1GuFwmuNxm6PVaJJIShgYXMDLiw+REQJ16Z7lCXi9r9Y/eiWvSbDbA6TLB5TLBaNQhnU5jeNiL4SEfxsf8ec37ux6/L4bJiQBGR3wIBuPqPLCK5fsqCJlgz+E0wmp50lqYUOf9XX3ALPPiYGPKDaHk4ny0wawMj+WU9Pi52TDu3J5AdJsGKAOwYmCqdFpe/K7b+L3ehSgmJgIYGfEhEhY3nANWEARotRo4nOaswD4zIrXXGylQX3AiotLEIJZoj9j5dGI9XC4TDrZXwFNhBWRgYT6K61dH8Vf//QYCgfhiK4Wc1w8A2O0mVFTYUFfnhM1mQDotY3I8gOtXx/D6z/uQXAyQl79PeZxKpfHdb9/Daz/rU4MYm92I4yfrMinQe0woJOLevSlcvTKKB93TANY+7vFYErPTIXz7G3fQ93BOXUd1jQNHumqgy3GE42JhtRlQ7rGivaMCdocRCVHC/fvTePftQbz91mO1P+V658tG52MudisV02LRo6zMgoMdFSgrt0CSZPQ8mMEH7w/jjdf6ERdTeV+Dq+1/f98s3v7lY/z0x70YHvSq19X6xzPznRAMPskQkFJpRCOJNdODXW4zPBVWdTqmeCyJt996hLEx/xrbyKwnkZDwoHsGf/X1m0u2V0iCABhMuiX9UBOJFAL+ONLp9IbnTXf3FN5+6xF++qMeTEwE1WOw0WcwPxdBKGv+3lRKQiScyHsqLiKivYR9Yon2kUIP0mEw6vDZz3XhJz/qxfhiqu/IsA9+fwyhkIhDhytx+kw9WtvKYbUZYbHoEVvsrxbwxzE0tICpqSDu3p7Epz97FJ2dVYsVWAFWqwGf/swR/OynD3H75gQA4Ma1MYwM++D1xtB5pBqHOytRVe2ARiNAktIYGlxA38M5fPDeEN56cwDz81EAmWCistKGT/3KEVRU2vbsYCXf+JtbuH51FIOP5nHiZF1mjk6PJTMdUlhEb+8M3nt7EHfvTGFyIohEIgWNRkBtnQPtHR4c7aoq6EAxO8VdZsFvfvE0vv616/AuZD7zd375GL29M3jQPY3OI1VoO1CO5pZyWKwGmEy6zJzB8RSisSTCQRH+QAyzM2E87JlFMinBZNLhH/z2SVRXO3Z4b/IPTMwWPb7wGyfx6t/fx9RiGvXtm+MYG81kRRxs96DzSBWaWspgsxpgsRqQSqWRSEiIRpIIh+MIhURMTQTx6NE8IuEETGYdXvn0ERxorwCQ6Zc6Mx3C3/7VLfzw+w9QW+vE08+2orHJjdo6B6prHNDrMq2UoZCI2dkwRkd8+NY37qA/62aJyaRHba1jxaBOyjXZ0OBGwB+HTqdR+9X+8hePIcvA8JAXz73QBtdilkY8nsLcbBjjYwH84HvdeNg7i77eGSTE7ZnbVxAEVFTYYLM9uRE2NurHT3/Smzm+zW6Ula89j2s8nsLYqB/f/sYd/OwnD1Fb58Tlp1vQ3FKG6io7qmsc0OoECIKAUFDE1FQQoyM+fONvb2Og78kxtFgMqK1z7Pi1ule/N4moNDGIJdpHcqmA5FNR0WoFHO6sQt/DOVTX2DE7E0YslkQ8nsSN62PweaMQxRSmpkKw2Qwwm/WIxVIQ40kE/HEMD3szQeydSZy/0IS2tnJ13QajFsdO1OJB9wweD8wjGBTh98cQDou4+uEIAv4YfN4oqqrti0GsjKHBBfT3z+HqhyOYmQ6rIyVXVdvR2OxGa2sZzBb9HqqIZUYnNhi0cDhNmJkOQYynUF5uQTSaRHW1HWXlFiRECZFIAr29M7h2dRR9i/2EgUwfxM6j1WhodMOxhdF8N70HBagYm016HO2qRmtbOSYnApieCmFhIYpgUITZpIffH8PMTAiTE0E1iE2l0hDFTJAUDsbhD8QxOxNG38NZCALg8VgRj23P4EDry20Kqmx6vRadR6vQfW8KDx/MYGoqiEAgE5harCOYnwvD749hYiIIq9UAi0WPlCQjmZAQjSQQDouZIHYyiMeP5iGKKVRW2vDcCwfUbaTTmRF0R4Z9mJkOYXTED51Og/FxP2prnaiusUOn00KjyWQGzM1GMDrqw93bk5ifiwDI9Ce12gxobHbDaFxa/VD2z2Y3oLzcgspKGxYWoojFkpibC6OnZwbptAyDQQunywSr1QBRzAxoNj7ux9UrI/D7YtBoNTAatUil0gUfoVgQBDjsJlhtRhiNOohiCsGgiMHHC7h2ZRQT4wG4y8zQap90V3A4TXA6TWhodCEtyYhFkxge8mF+PorRET80GgFTE0FUVdtRVW3PBKYCEAqKmJ4KYmzMj3t3JuHzxdRj6HAY0djkzowmvg3WOt/2zvcmEe0FDGKJaIl8Kio6XSbQ9PtjiEYT+Lu/vqX2Rxt8tIDBRwt4/ef9Oa0rFIovaYMym/V48SPtGB70YnYmhOvXRiFJmVTht958hLfefJRzOT/y0XZcvNyMunpnzu8pDZnPqqzcgkuXW/D2Lx9jZiaM73zrHr7zrXsbvlujEWCzG/BPfv8iDrZ7truwqypExdhk1uHY8Vp88lOdcDnN+Np/vYp0WkYyKeH2rQncvjWR1/qqqu04dbp+zf60O22jY6TTadDVVQPfR6PQ67X4i//yIeLxFNJpGffvTuH+3Sl877vdOW/P6TLh4qXmNYPASCSBSCSBb33jTj67AYNBi7p6Jz7y0Q64XCtHJgYy131llQ1PP9eGKx8MY2jQCwDo6Z5GT/c0vvudtc/r6ho7jh2rweRkEAF/DAuLrfKFIghARaUVVVU2VFTaMDUZQDgkIhwS8T/9m5+t+p5LTzXj0uUW/It//cKS55X3jY748iqD0ahDc0sZXvxIO6zWwo1MnI3BKhGVAgaxRLQlgiDg6LEalHusSKXSuH93EnduTxYkABAE4MWXD6Kx2Y3/75+9i+FBL6anQxu/cfG9NbVOXLrcjM/92jG0HfDsauVsO1PxPBU2vPRyO0wmHQYG5nH96uiG79HrNXj62VZcvNyCzqPVcDiMJVt5Vcp9/mIj6hqc0GiBD94fRv/DOSQSG6WWZlqzt2o3Uy2V7XYdq0FFpR3pdBo3r4/j9q2JdedtzkfH4SqYLQb0P5xD970pjIz4cm7p1Ok0MJn1+O0vn8HZcw2oqLRBr189FVYQBDhdZnzxy2eQTssQxRQmJ9YfaVoQgMZmN556uhWf/pUj+A//61s59Yvd7GfWcbgSn/u1Y/jaX1zN6qu68XnUdawGFoseI8M+3Lk1gampYM7HUK/XwGI14B/+7nn1GGanLa+3L0wDJqK9iEEsUQnbrspJvustK7PAbjfiwqUm6A1aiAkJC/MRiPEU4vEUEkkJ8uJopsronkrF1mjQwWY3wO22wJCVHqdsv77BBZvdiHPnG2G1GmAy6xEIxJAQJSQSkloJFIRMZVlv0MJs0sNdZkbbAQ8uXW5Ge0clKqtsm96/QtjO7ZlMOtTWO3DydB0cThPm58IIBOIQ4ymIYkq9oaDVaWAyZaYwqa624/TZBly41ISyMsuu9oUt1OdRWWWHxWrA5adaIIoS9HotZqZDiMcyx0FMpJCWZHV7Go0AjVaATquBTqeFwaiFxWJATa0DjU3uFf021/NkDt7duybLyq2w2Y24eLkZgiAgmZQwMxNSU/hFUUI6nUY6nVmXIGRG29XqNNBpNTAunhvl5RY0NblhyRpV2O02QxCEzDWu18JqM2JuLox4LIm4mEJi8TyT5cw6dToN9HoNrDYj7A4jKittuHi5CR2HKpeMtLva/hmNOhzurMSx4zXw+2OAnGn9jYspJBdvSggC1GvdajPixMk6nDpdh+Mna2Ey6XK6LZFv9wrl/8y1U4933h7EzHQI4ZCIeDwJSUqrx2A1ngor0mkZFy41AQBcQ2bMzWW6YCRECeLiIFwAoNFooNNroNdrYbMZ4HSaUVllw8XLzWg7UL7iGK63L5s5H1c73xgME1ExYRBLVMK2q0KxmfXq9Vp8/gvH8fLHOjA3G8Grf38fjwbm0PdwFlOTQcRjKSQSktqfrazcgs7OajS3lOHpZ1vRdqAcLvfKFEO9XouKChv+7Z+8jEcD8xjom8OPf9iD4WEfxkb98HkzKYNarQYVlVbU1Dpw6HAVfuWzR9HU5EZdw8oU4m0JMrBbs8RmCIKAX/21Y0gl07j0VDNe+2kfBvrnMDjoRTSSgCwD5R4LOg5Vor2jEr/9pdOorLbB6dz5frCrlb1QrFYDPvFKJ5594QB83ih+8L0H6OudxdCgF0NDC4hGEojHU9DrNTBbDLDbjXC7LfBU2tDU5MapM3VobHTjcGfVptI1d/ua1Ou1+OjHD+HZ59oQDIr4/qvdeNQ/j76HsxgeXkAknEA0mszcRDLp4HCa4HJb4HZnbvp0HatBY5MLx4/XwWx9EigZDFpUVlrxu793Ab/+myK8C1F877vdeNib6bM++HgBophCKpWG3WFEWZkVNbV2nL/YjKNHq/HUMy2wO0xrzkOcvX+ZNHcjvvyVs3jlM0fwzb+9gzu3JzDQP4+JxVGKdToN6v//7d3bbyPXfQfwL+/D4fCq60peabPoxt71bu24sQE3cQLUbzbyVLSw+5aHFOhL/pwC/Rvy1vSlKOKgaGC7gY0kdh3vxlh5pV3J0urG+52cPtC/4yPqwouGnBny+wEIjajhzJkhD3V+8zvnzEYGd++t4LW/Wcff/8MrSH37WXbyNlEXnfeNzSxeuJlBJmvisz/u4X/+ewsPvzxAsVhHudRAu929MJCNRkN44WYa//wvb+K9f/oBDg7K+I9//wL/9/k32P76FF9vHasLDcmkgcXlBFZXU3jzR7fwyqtreP2Nm0iljancBotjYonI6wK2m3dpJ6KBPv/8c/z+97/HL37xC6yuruL+/fv41a9+hUjkfDZjFJO6qt5q9TIKu88KvQljipKl6N2/NRIJIRwO9iYjShkwE1EsLSWQsGIDM1/6BDTVSq8x3mz2uksGAgHEYr1MUjIVw/p6GqYZQdw8H4jI157KVu2X8OTJCY6/nc349u0c1l/I9LJPVzQYbbt3j8i93QI++9M3AADLimJtPY3NW2czWZep1Vr434+3Uau20G53kUobuHUrh81b2Uv3ebBfwvPnZTVeMJeL4+7Lq0inDXS7Nk5Oqjj4poRyuYFyuanuJxmNhpBMGUgmexPDGLEwIgPOea3WQqlYxx//sIdarYUAgJfurSC3YGJxMXFu/WazjecHZWxtHeP0pDcZzV/dWcSNtZTK5g1y+LyMrcfHODqqoNu1EQ4H8bc/uoX0JeMo5bzo2+7NvtvriloqNVApN1Cp9M5Fp2MjGAwgFAr0MrDREGKxMMxEFNlsHKYZRTIVQzg8+fsJ27aNg4OyOmYAyGTiePnBKlIpY6RssK7T6aLV6mBvt6jqYaXSRKfdRbvT7WWhgwFEIiFEoiFEIyFYVgzpjAHT7N2nuf+eqKLV6qjPfbFYR6XcRKXcRKfbhd0FwpFe/Ta+zeqm0gYWFy1EwsFL65NeJ/VjaDY7eLqTR+HbGc9lQrJAoDdLbyrVu0fwCzfT6vZQH3/4BMViA41GG5lMHMvLFu6+vHLpuSoW6jjN1/CnP+zCtoFYLISX768imzVhXXJLLtu2cXJcRT5fx9FhGaVSHa1WbzIpu2ur8f2Liwl18Ug/tlarg0a93Ru/W6ih+u04Y8nkhsNBxGJhGPEwFhYSyGTiyOZMRCLu3eNar2O2bePJkyf44IMP8Mtf/hLpdBo//vGP8etf/5rBLhFNBYNYIo+bVBA7DdPufsbubpfz47nxS5n9Uk6AddJL/HhupMwMYonIbf67ISARjaz/WtVF164mcT3rqolGBj03Tnn0/V3neEZ97SjrT3Pb+u+Taljatj2x45fG8qivm0RZLnvtuIEI6+RoWCeHN606SUTkJgaxRHOgv7Hk9ninYfZ/3fJc5/WjvnaU9ae5bSeCq2H2OWoZR2006z+d5MRnZNxtsE5O9rWsk5Ovk0REbmIQSzTHvHBF3QtloO9Mo4HKRvDlvFAfvFAG+g7rJBHReQxiieaYFxouXigDkVd4oT54oQxERERX4S12iGgm9M+cyYY4XYdt23i6k8fW42P8138+cnTbgUAAqzdSuHd/BX/39h1Ht+0lrJNERDQpDGKJaCboDWSvNJbdbri7vX8nuXEsBwcl/OHTZ/i3f/3I0e0GAsDL92/g3dq9mQ5iWSe9t38iolnB7sREc87N8W+zMPbuqmNwu7Hq9v6d5N1j8dasyX7et1NYJ4mIZh+DWKI552ajahYadLNwDHQd3po12c/7dsosHAMREV2N3YmJiIguEA4FETPCSKcNR7cbCAZgJWMwDP4LJiIiGgf/gxIREV3g/l/fwIt3l/GP7//A0e0GAITCQUSjIUe3S0RENC8YxBLRTHB7whS39z8LrnMOnT7/gUAAkUgIkUgIphmd+v5ngdvnxO39zwKeQyLyKo6JJaKZMKihNekJa9jQu77rnEO3z7/b+/ci1kn/4zkkIq9iEEtEc4GNMSJvYZ0kIqJxMYglIlduqzEv+7yMl8pCPV56T+alfsz7OSciovEwiCUiVzIi097nJMZ2XafRyyzU5Iz7vnjpPWGdHH+b4/LS+09ERFdjEEvkc9Jom6cswjjHfFkD1WuNXj9nw8bZziSO9zpjMZ0oD+vkcFgnJ79Pr9RJIiKnMYgl8jlptE2iQehVg455nG0Jt8+XnzNw42zHjc/tVeV08jPFOnm9bQm3zxfrZI/b7wMRkY5BLJFPDdugGLYRM80GipcbQ26dr+tsb5TXjrqfab1X/fvx4ud2ENbJyWCdvN764xq3ThIRTQODWCKfcrpBMc0Gyiw0hrx0/kfpPjvqfvT13cqOTuJ1k+Clz4SX9zUpXjr/81wniYimgUEs0QzyclbFL2zbnuh5nOZ75GbXRK+66PzPyvs9q1gnJ7cdIiK/YRBLNIMuatj4qRHtVnc5XSAQmGgDkY1Pd110/uW5aU02xTo52n5YJ4mISDCIJfKxUTITfmqgjTIGTj/+Yc+FrOenc+IkLwdPXihbIBAYe0wj6yTr5Di88Lm/jJfLRkTzi0EskY9NOjPhdf3HP+y5uM45G6eBPm2Dyujl43fi8+xEGUcpR/9nkHWSdbLfvNdJIiKnMYglImUaDUCvNjKHNU4DfdomWcZ5P/5pY50czA/v97zXSSIipzGIJZpR43SHnEYDaJxxh041sv3eWB/WoOP08vmc5feIdXJy2/E61kkiImcxiCWaUeN2h5wWp8t3VUPLrfF2k5oB97Jt9B/nZet5eWbU/m3KMYw6ttJpg8a6DrNf1snzf2OdxJm/X9c06yQRkZvCbheAiMgJVzXe3OpiN6n9Xrbd/udnqWvhNMZWXme7s3SuncI6Odt1kojITczEEpErE6O4sR8vZBAmeRsXMUvv4TQb/cMczyx/bmf52K7COjkaBuJE5AUMYolmxHXGs7kxMch1uqiNsu6kj20as986te1xyzrpLpBeoR+PE8fMOjl4P6yTrJNERONgEEs0I7w+3m4Qv5bfS2UZ1CAeJki76O9eOsZpceKY/fqZFn4tv5fKwjpJRDQZDGKJZoQXuuVNixuzqLptlImDnJhk6LoT94zD69sbdZuz8tkbxjyeF9ZJIiL3MIglmhFevzLvZGNoEhkirzfWvJgVm+T9Lp14PybR9deL78O4WCevx4ufBa/XSSIipzCIJaKp8HqD/jrlm6XG3TSOxenb0Thh3P35+b1nnfSHea2TRERXYRBLRHRNXmvcXafRO6mJi8bdh9fN0rHMEq+9L6yTRETOYhBLRHNlljI0l/Fr10UvmofPi9vm4RyzThIROYtBLBHNFTbyaBT8vEwezzEREY2KQSyRx0WjUcRiMQBAo9FAqVTC0dER6vW6yyUjIqJ5tbe3h4ODAwBALBZT/6eIiKYh7HYBiOhqhmHANE2Ew2E0Gg0UCgXs7Oyg2+0im80iGo0iGAyqbMY8ZTVs256r4yV/mOfP5Twf+yyTLt/tdhudTgfNZhNff/01nj17BgBIJBJIJBJuFpGI5gyDWCKPW19fR7lcxt27d7Gzs4OvvvoK7733Hl5//XU8ePAA77zzDm7evImlpaUrt6M3Lgc1NN1oiI5SPjFonWG2c91jdavRPs75mjQ3yuT0Pp3Yxii3kGGdHG+dSb7eif3OWp3sdDpoNBr45JNP8MUXX+C3v/0tPv30U+TzeQDAW2+9hbfeesupYhMRDcQglsjjQqEQFhcX8f777+ODDz7Ao0ePsLe3hz//+c84PT3F8fExVlZWsLi4iM3NTSwsLCCXy2F5eRnRaBSRSATA2cZlf0Omv3Ez7eBjUPnGNeg4ndiXWw3Vab9fw3CjTE7vc5rnknWSdXLSximTbdsoFosoFovI5/PY2dnByckJ9vf3sbW1hW+++QZfffUVisUiLMvCG2+8gZ/+9Kd45ZVXJnUYRETnMIgl8rhAIIBcLoef//znAIBgMIijoyM8e/YMOzs7+PDDD5FKpZDNZvGTn/wEd+7cwfe//308ePAAlmXBNE3V3TgYDKplvfuxGw2uedmnn3gle0TzUz/4ebvapOqkbdvq0e12z/xst9vY3d3F7u4utra28Lvf/Q5bW1t49OgRGo0GgN7F1Xg8js3NTbz77rt4++23sbGx4Xg5iYguE7DnYW57Ip+TBkalUkGhUMAnn3yCjz76CJ999hk+/vhj1Ot1tNttxGIxhMNhhMNhRKNRpNNpLC8v46WXXsKNGzewubmJ27dvI5fL4caNGzAMA6FQ6ML9zULjUo5jVo5nVLN03F44FjfL4IXjdwLrpDeOu1gsolQqYXt7G7u7u9jf38eXX36J3d1d7O3t4eTkBK1WC+12G81mE+12G+12G6urq9jY2MAPf/hD/OxnP8Pm5ibW1tZgmqb6X+KF4yOi2ccglshnms0mnj59ir/85S/Y2dnBw4cPcXh4iOPjYzx79gyFQkE1UAzDQDKZxNraGjKZDBYXF7GysgLLspDJZJBOpxGPx2FZFpLJpFrfNE3EYjEkEgkVGHvdJBqHXmlwkvd5cUyr21gnp0sudlarVTSbTVSrVVQqFdTrdZRKJZTLZdTrdfX/oVwu4+joCKenp8jn89jd3cXJyQny+TwajYb6f7C6uopsNoulpSXcunULKysruH37Nl577TVks1lYluX2oRPRHGIQS+Rjtm2j2Wzi8ePHePz4MX7zm9/g8ePH2NrawpMnT9Bqtc50G5OHWF5eRjabxc2bN7GxsYGFhQVsbm5iZWUFmUwG6+vryGQyiMfjAHCmC/JVP8VFjU02QomGN436wjrpTfp3tSz3P6c/3+120W63cXBwgEKhgP39fezt7eH4+Bjb29vY29vD0dERtra2UK1W0Wq1AHw3pER/GIaB5eVlbG5u4s0338SLL76IV199FXfu3IFhGFM8C0REF2MQS+RjUn1brRZarZZqmLRaLZycnODg4ABPnz7Fw4cPsb+/j+3tbWxvb6NUKqFQKCAUCiEYDKouyKFQSC3L89FoFIZhYGVlBdlsFul0GqurqyqTu7S0BMuyYFkWlpaW1K0W9Nv+jHI8o7zGy41vr5TN6XLM6nE5aZ4/x7N0LG6XQ7ryHh0doVKpqHuEl0ol5PN5HBwcoFgs4vj4GM+fP0epVMLp6am6DU6n01HL0h1YlgEgEolgbW0Nq6urWF5exr1797C2tob19XXcuXNH9cgxDAORSASxWAyRSATBYHDSp4iIaCAGsUQzyLZtVKtV5PN5HB4eqtklnz9/joODA5TLZRQKBZRKJTQaDVQqFdXVrFKpoFarodlsolarqWA2m80imUwikUggl8upYFW6JMfjcWQyGRiGoX6Xho80fmKxGKLRqAqOo9EoQqHQuecnFQB7pRHrBj8eu5/KfJ2yXvRat2+p40Q55r1O2ratgslGo4Fms6nusSrjTGW51WqhXq+fWW40Gure4PV6HdVqFYVCAbVaDZVKBScnJ6hWq2oW4VqthnK5rL6z4/G4CkQty1LDQ+R7PB6PY2lpCblcDtlsFhsbG1hcXMTCwgLW19fVhU0iIi9iEEs0h5rNJiqVCra2tnB0dISdnR08efIER0dH2N7exv7+PvL5PPb399Futy/synbR70Cva1ooFEIul0MqlUIul8Pi4iKSySRyuRwymYwKhFOpFEzTRDabVc9ns9kLG0+DGrpO3MOSiObTME2hcdapVquo1Wo4OTlBoVBQFxfz+TwqlQry+by6oHh4eIjT01MUCgUcHh6q8awXuWroRjweRyKRwNraGtbW1pDL5fC9731P3U/89u3bqjdNJBLh9yIR+RKDWKI5JBkCPTPQPxOlZA9OT09RKpVwcHCAk5MTFItF7O/vqwmkpHubZAPa7Ta63a7qkixdlCU7ILf50ZdDoZDq2hwKhWAYBmKxGLLZLEzTVI0yed6yLNXNTbIL+rKsL8umaapu0myw0TBmOUNI53W7XdTrdZUBlR4pjUYD5XIZjUZD9VSR5XK5jGazqZbl+dPTU5UtbTQaKhvb6XTQ7XbPLctP+d6Vsa1yyxvDMGBZlrooaFkW0uk0VlZW1HOyvLi4iHQ6rSbki0QiCIVC6p7h0ttFngd4cY+I/IlBLBFdSCYKKZVKqFQqODo6UrNaHh8fq9ktJaMgt/+R7nFy2x/pGifLEiTL2N3+wNm2bdXISqVSiMfjKhiVbsemaaruyPF4HNFoFLFYDKZpqm7LsmwYhhrTJd2XJbC+aFkad8FgUI3/kuBafur33JXAuH8d4OrGoVeDpHmeSGia5fLqObjKtMvc7XbP3LtUfpfnZOI6/Xk9YNQDw/7xoRc9J915ZSiFdAGuVqtqWYZaNBqNS5eLxSIajQaq1aoafyrfLRJY6gGlXGCT7yl9ORKJwDRNmKapZpWPx+NIJpNYWFhQAa0sZzIZWJblixnliYiug0EsETlCZsqUMVoy6cjp6Sn29/fVZCTHx8dqTO7p6emZAFkakZMQDAZVFlcyG7IsY8QMwzgzxlduOyTjeiUgliBbbkMkAbIE1PF4fKxxvW6axNhFPwZqs85P//L1caPVavXMmNFWq4VisaguhEkGVTKgMoa0VCqpTKmM++9frlQqal+TEAqFYJomFhYW1JCJdDqNRCKBpaUlJJNJWJaFGzduIJ1OI5VKqe6+qVQKyWSSkykREfVhEEtEjpCvEsmGtFotleGQZXm+v/uc/lMmmarVaigWi6pBKo1OvXvfVV39ZLlWq6kySvZUz5oOsyyZVj0DK7ei0H/Xf0p2V2Z3lgyMHgBLBkYmwepfxzAMlSmWLtGynkgkEirzK9nkaDSqjjcWi6nsMQCV4ZH1ZZ1ZCTYZOF+t1Wqh0Wioi04ybKDb7QKAGmIgAZ3cdxSAyohK4AjgTA8LCS6l54UEl/K8HnDqQxkajcaZbbTbbdRqNVWm/gysXnZZlr/Jd4v8Xc/QDloGoOqbPnzhsmXLstRFK334QjKZRDweRzqdVkMfpL5LHb2sF4j8Lj1C5MHPNBHRWQxiicgzOp2OyqTUajWUSiWVgZGgVMar6cvSfblarapl/Xnpitg/5uyyZT3I7m9A643k/mX961SCYOnqrAeo4XD4TKM2Ho+rgLY/0JWGrt7VUILYQCAA0zRVlqY/iA0EAojFYirQBqBmiu4vozSS+7tC66/VA3f97/K86F9nEP1iwLDry2ucWl+CnmGNu/4o/3IvWl8PuPR19MnX9HLpgR/QCzqvCmL1C07yej2IlQtRehCrDwmQIFbvoqv/XQ9sZVt6ECt1Ub/4BJx9D/ULTfL8Zd36Lxqb37+s32pM78IrvS4kQJUgVi5Mycy/+vPxeByWZalgVgJdjscnInIWg1gi8pRJfCVJFlfG8fYvS8ZXsr8yo6jc2kKyu5I1qlQqKrMkwXKtVhspqPEqucevBLMyvhiAaugbhqECwng8roICIYG5BMuD6MH+MPTxhMMEBvqYw8vWly6rw37+Op0OyuXy0Ovbto1isTj0DLe2baNcLp8LSCXgk6BTxm5KmbrdLsrlstqOHlD6mQSX0qVfbuUlgWcqlVIXgCSITCQSKitqWZYaHqAvS6BpGAZSqZS6cOQ0BrBERM5iEEtEM03vVtg/6cuwWdnLHhd1WZSsU6PRUJkpWZafejaq/16Rsk6n01ETw+jdMWXMsGxPz7TV6/VzGbVWqwWgFwDVarWBQVR/ZvWyTKyQro5OZGKHXV/vtj3s9ieVib1uZnWU9fWMv959X8/MDsrEXkTvwgr0zq9cqJDzJtlE4Lsut/rEZ/pERPKQjGV/bwJ9YiPJdsr+9XtK693t+7vz65OsDZuJ7X/o3f77J2kjIiJvYxBLROQACTAkuOwPYvWf+rhAPYjVg992u30miNWDXOB8ECu3CNGDWHmtlE8yjfpD1tef049H//2y9fWAathM47DrimGCseusrxu1uzJwcbdqp9bvL0v/a+XezP3r63/XL0QAOLO+jL/Ux0r3B7ESVMrfJRMuAaVk3vWHTIYm68s60l1eMqt6ECuBrh7EmqbJTCYREZ3BIJaIyCF++TrVx0JKZlcyvRIk691Z9bGQMlZRXq93bZVu1oPOg23bqNVqKuM8DFl/2G6xeqZ7VKFQSN3OaZjgSYI4yfoNQybqGtR1VW71pHdz1cdHS5CZTCZVWSWbKUGpPkmYBKaWZU2k2+ykMIglIiIdg1giojmjZ1X1zGp/19R2u30u4ypB56D1B+mfkGhS6+vlG5ZkNkfJrE5q/f4ZsAGc+1260+rr69nXy9ZnYEhERH7FIJaIiIiIiIh8g7MXEBERERERkW8wiCUiIiIiIiLfYBBLREREREREvsEgloiIiIiIiHyDQSwRERERERH5BoNYIiIiIiIi8g0GsUREREREROQbDGKJiIiIiIjINxjEEhERERERkW8wiCUiIiIiIiLfYBBLREREREREvsEgloiIiIiIiHyDQSwRERERERH5BoNYIiIiIiIi8g0GsUREREREROQbDGKJiIiIiIjINxjEEhERERERkW8wiCUiIiIiIiLfYBBLREREREREvsEgloiIiIiIiHyDQSwRERERERH5BoNYIiIiIiIi8g0GsUREREREROQbDGKJiIiIiIjIN/4felqb+BXwAOUAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "pipeline.show_graph()"
]
},
{
@@ -1956,7 +2096,7 @@
},
{
"cell_type": "code",
- "execution_count": 62,
+ "execution_count": 71,
"id": "37e65e33",
"metadata": {},
"outputs": [],
@@ -1968,29 +2108,30 @@
},
{
"cell_type": "code",
- "execution_count": 63,
+ "execution_count": 72,
"id": "3bad8332",
"metadata": {},
"outputs": [],
"source": [
"# now defien the pipeline\n",
"with pipeline2:\n",
- " sum_results = add_numbers(input_stream, label=\"my_summation\")\n",
- " product_results = multiply_numbers(input_stream, label=\"my_product\")\n",
- " final_results = combine_results(\n",
+ " sum_results = add_numbers.pod(input_stream, label=\"my_summation\")\n",
+ " product_results = multiply_numbers.pod(input_stream, label=\"my_product\")\n",
+ " final_results = combine_results.pod(\n",
" sum_results, product_results, label=\"my_final_result\"\n",
" )"
]
},
{
"cell_type": "code",
- "execution_count": 64,
+ "execution_count": 73,
"id": "8f146ae7",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
+ "PodNode[my_summation]\n",
"\n",
- "
shape: (5, 2)| id | sum |
|---|
| i64 | i64 |
| 0 | 11 |
| 1 | 22 |
| 2 | 33 |
| 3 | 44 |
| 4 | 55 |
"
+ "shape: (5, 2)| *id | sum |
|---|
| i64 | i64 |
| 0 | 11 |
| 1 | 22 |
| 2 | 33 |
| 3 | 44 |
| 4 | 55 |
"
],
"text/plain": [
- "shape: (5, 2)\n",
- "┌─────┬─────┐\n",
- "│ id ┆ sum │\n",
- "│ --- ┆ --- │\n",
- "│ i64 ┆ i64 │\n",
- "╞═════╪═════╡\n",
- "│ 0 ┆ 11 │\n",
- "│ 1 ┆ 22 │\n",
- "│ 2 ┆ 33 │\n",
- "│ 3 ┆ 44 │\n",
- "│ 4 ┆ 55 │\n",
- "└─────┴─────┘"
+ "PodNode(pod=FunctionPod:add_numbers)"
]
},
- "execution_count": 64,
+ "execution_count": 73,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
- "pipeline2.my_summation.as_df()"
+ "pipeline2.my_summation"
]
},
{
"cell_type": "code",
- "execution_count": 65,
+ "execution_count": 74,
"id": "8fd7bf4e",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
+ "PodNode[my_product]\n",
"\n",
- "
shape: (5, 2)| id | product |
|---|
| i64 | i64 |
| 0 | 10 |
| 1 | 40 |
| 2 | 90 |
| 3 | 160 |
| 4 | 250 |
"
+ "shape: (5, 2)| *id | product |
|---|
| i64 | i64 |
| 0 | 10 |
| 1 | 40 |
| 2 | 90 |
| 3 | 160 |
| 4 | 250 |
"
],
"text/plain": [
- "shape: (5, 2)\n",
- "┌─────┬─────────┐\n",
- "│ id ┆ product │\n",
- "│ --- ┆ --- │\n",
- "│ i64 ┆ i64 │\n",
- "╞═════╪═════════╡\n",
- "│ 0 ┆ 10 │\n",
- "│ 1 ┆ 40 │\n",
- "│ 2 ┆ 90 │\n",
- "│ 3 ┆ 160 │\n",
- "│ 4 ┆ 250 │\n",
- "└─────┴─────────┘"
+ "PodNode(pod=FunctionPod:multiply_numbers)"
]
},
- "execution_count": 65,
+ "execution_count": 74,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
- "pipeline2.my_product.as_df()"
+ "pipeline2.my_product"
]
},
{
"cell_type": "code",
- "execution_count": 66,
+ "execution_count": 75,
"id": "2a918db1",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
+ "PodNode[my_final_result]\n",
"\n",
- "
shape: (5, 2)| id | result |
|---|
| i64 | str |
| 0 | "Sum: 11, Product: 10" |
| 1 | "Sum: 22, Product: 40" |
| 2 | "Sum: 33, Product: 90" |
| 3 | "Sum: 44, Product: 160" |
| 4 | "Sum: 55, Product: 250" |
"
+ "shape: (5, 2)| *id | result |
|---|
| i64 | str |
| 0 | "Sum: 11, Product: 10" |
| 1 | "Sum: 22, Product: 40" |
| 2 | "Sum: 33, Product: 90" |
| 3 | "Sum: 44, Product: 160" |
| 4 | "Sum: 55, Product: 250" |
"
],
"text/plain": [
- "shape: (5, 2)\n",
- "┌─────┬───────────────────────┐\n",
- "│ id ┆ result │\n",
- "│ --- ┆ --- │\n",
- "│ i64 ┆ str │\n",
- "╞═════╪═══════════════════════╡\n",
- "│ 0 ┆ Sum: 11, Product: 10 │\n",
- "│ 1 ┆ Sum: 22, Product: 40 │\n",
- "│ 2 ┆ Sum: 33, Product: 90 │\n",
- "│ 3 ┆ Sum: 44, Product: 160 │\n",
- "│ 4 ┆ Sum: 55, Product: 250 │\n",
- "└─────┴───────────────────────┘"
+ "PodNode(pod=FunctionPod:combine_results)"
]
},
- "execution_count": 66,
+ "execution_count": 75,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
- "pipeline2.my_final_result.as_df()"
+ "pipeline2.my_final_result"
]
},
{
@@ -2119,7 +2229,7 @@
],
"metadata": {
"kernelspec": {
- "display_name": ".venv",
+ "display_name": "orcapod",
"language": "python",
"name": "python3"
},
diff --git a/src/orcapod/core/pods.py b/src/orcapod/core/pods.py
index 02d3aa4..7587881 100644
--- a/src/orcapod/core/pods.py
+++ b/src/orcapod/core/pods.py
@@ -207,6 +207,7 @@ def call(
packet: cp.Packet,
record_id: str | None = None,
execution_engine: cp.ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
) -> tuple[cp.Tag, cp.Packet | None]: ...
@abstractmethod
@@ -216,6 +217,7 @@ async def async_call(
packet: cp.Packet,
record_id: str | None = None,
execution_engine: cp.ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
) -> tuple[cp.Tag, cp.Packet | None]: ...
def track_invocation(self, *streams: cp.Stream, label: str | None = None) -> None:
@@ -408,6 +410,7 @@ def call(
packet: cp.Packet,
record_id: str | None = None,
execution_engine: cp.ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
) -> tuple[cp.Tag, DictPacket | None]:
if not self.is_active():
logger.info(
@@ -426,7 +429,11 @@ def call(
with self._tracker_manager.no_tracking():
if execution_engine is not None:
# use the provided execution engine to run the function
- values = execution_engine.submit_sync(self.function, **input_dict)
+ values = execution_engine.submit_sync(
+ self.function,
+ fn_kwargs=input_dict,
+ engine_opts=execution_engine_opts,
+ )
else:
values = self.function(**input_dict)
@@ -458,6 +465,7 @@ async def async_call(
packet: cp.Packet,
record_id: str | None = None,
execution_engine: cp.ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
) -> tuple[cp.Tag, cp.Packet | None]:
"""
Asynchronous call to the function pod. This is a placeholder for future implementation.
@@ -481,7 +489,9 @@ async def async_call(
input_dict = packet
if execution_engine is not None:
# use the provided execution engine to run the function
- values = await execution_engine.submit_async(self.function, **input_dict)
+ values = await execution_engine.submit_async(
+ self.function, fn_kwargs=input_dict, engine_opts=execution_engine_opts
+ )
else:
values = self.function(**input_dict)
@@ -607,9 +617,14 @@ def call(
packet: cp.Packet,
record_id: str | None = None,
execution_engine: cp.ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
) -> tuple[cp.Tag, cp.Packet | None]:
return self.pod.call(
- tag, packet, record_id=record_id, execution_engine=execution_engine
+ tag,
+ packet,
+ record_id=record_id,
+ execution_engine=execution_engine,
+ execution_engine_opts=execution_engine_opts,
)
async def async_call(
@@ -618,9 +633,14 @@ async def async_call(
packet: cp.Packet,
record_id: str | None = None,
execution_engine: cp.ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
) -> tuple[cp.Tag, cp.Packet | None]:
return await self.pod.async_call(
- tag, packet, record_id=record_id, execution_engine=execution_engine
+ tag,
+ packet,
+ record_id=record_id,
+ execution_engine=execution_engine,
+ execution_engine_opts=execution_engine_opts,
)
def kernel_identity_structure(
@@ -683,6 +703,7 @@ def call(
packet: cp.Packet,
record_id: str | None = None,
execution_engine: cp.ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
skip_cache_lookup: bool = False,
skip_cache_insert: bool = False,
) -> tuple[cp.Tag, cp.Packet | None]:
@@ -700,7 +721,11 @@ def call(
print(f"Cache hit for {packet}!")
if output_packet is None:
tag, output_packet = super().call(
- tag, packet, record_id=record_id, execution_engine=execution_engine
+ tag,
+ packet,
+ record_id=record_id,
+ execution_engine=execution_engine,
+ execution_engine_opts=execution_engine_opts,
)
if (
output_packet is not None
@@ -717,6 +742,7 @@ async def async_call(
packet: cp.Packet,
record_id: str | None = None,
execution_engine: cp.ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
skip_cache_lookup: bool = False,
skip_cache_insert: bool = False,
) -> tuple[cp.Tag, cp.Packet | None]:
@@ -732,7 +758,11 @@ async def async_call(
output_packet = self.get_cached_output_for_packet(packet)
if output_packet is None:
tag, output_packet = await super().async_call(
- tag, packet, record_id=record_id, execution_engine=execution_engine
+ tag,
+ packet,
+ record_id=record_id,
+ execution_engine=execution_engine,
+ execution_engine_opts=execution_engine_opts,
)
if output_packet is not None and not skip_cache_insert:
self.record_packet(
@@ -740,6 +770,7 @@ async def async_call(
output_packet,
record_id=record_id,
execution_engine=execution_engine,
+ execution_engine_opts=execution_engine_opts,
)
return tag, output_packet
@@ -754,11 +785,14 @@ def record_packet(
output_packet: cp.Packet,
record_id: str | None = None,
execution_engine: cp.ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
skip_duplicates: bool = False,
) -> cp.Packet:
"""
Record the output packet against the input packet in the result store.
"""
+
+ # TODO: consider incorporating execution_engine_opts into the record
data_table = output_packet.as_table(include_context=True, include_source=True)
for i, (k, v) in enumerate(self.tiered_pod_id.items()):
diff --git a/src/orcapod/core/sources/base.py b/src/orcapod/core/sources/base.py
index 89c8ff9..b8e128f 100644
--- a/src/orcapod/core/sources/base.py
+++ b/src/orcapod/core/sources/base.py
@@ -119,9 +119,13 @@ def __iter__(self) -> Iterator[tuple[cp.Tag, cp.Packet]]:
def iter_packets(
self,
execution_engine: cp.ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
) -> Iterator[tuple[cp.Tag, cp.Packet]]:
"""Delegate to the cached KernelStream."""
- return self().iter_packets(execution_engine=execution_engine)
+ return self().iter_packets(
+ execution_engine=execution_engine,
+ execution_engine_opts=execution_engine_opts,
+ )
def as_table(
self,
@@ -131,6 +135,7 @@ def as_table(
include_content_hash: bool | str = False,
sort_by_tags: bool = True,
execution_engine: cp.ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
) -> "pa.Table":
"""Delegate to the cached KernelStream."""
return self().as_table(
@@ -140,18 +145,25 @@ def as_table(
include_content_hash=include_content_hash,
sort_by_tags=sort_by_tags,
execution_engine=execution_engine,
+ execution_engine_opts=execution_engine_opts,
)
def flow(
- self, execution_engine: cp.ExecutionEngine | None = None
+ self,
+ execution_engine: cp.ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
) -> Collection[tuple[cp.Tag, cp.Packet]]:
"""Delegate to the cached KernelStream."""
- return self().flow(execution_engine=execution_engine)
+ return self().flow(
+ execution_engine=execution_engine,
+ execution_engine_opts=execution_engine_opts,
+ )
def run(
self,
*args: Any,
execution_engine: cp.ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
**kwargs: Any,
) -> None:
"""
@@ -159,12 +171,18 @@ def run(
This is a no-op for sources since they are not executed like pods.
"""
- self().run(*args, execution_engine=execution_engine, **kwargs)
+ self().run(
+ *args,
+ execution_engine=execution_engine,
+ execution_engine_opts=execution_engine_opts,
+ **kwargs,
+ )
async def run_async(
self,
*args: Any,
execution_engine: cp.ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
**kwargs: Any,
) -> None:
"""
@@ -172,7 +190,12 @@ async def run_async(
This is a no-op for sources since they are not executed like pods.
"""
- await self().run_async(*args, execution_engine=execution_engine, **kwargs)
+ await self().run_async(
+ *args,
+ execution_engine=execution_engine,
+ execution_engine_opts=execution_engine_opts,
+ **kwargs,
+ )
# ==================== LiveStream Protocol (Delegation) ====================
@@ -339,9 +362,13 @@ def __iter__(self) -> Iterator[tuple[cp.Tag, cp.Packet]]:
def iter_packets(
self,
execution_engine: cp.ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
) -> Iterator[tuple[cp.Tag, cp.Packet]]:
"""Delegate to the cached KernelStream."""
- return self().iter_packets(execution_engine=execution_engine)
+ return self().iter_packets(
+ execution_engine=execution_engine,
+ execution_engine_opts=execution_engine_opts,
+ )
def as_table(
self,
@@ -351,6 +378,7 @@ def as_table(
include_content_hash: bool | str = False,
sort_by_tags: bool = True,
execution_engine: cp.ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
) -> "pa.Table":
"""Delegate to the cached KernelStream."""
return self().as_table(
@@ -360,18 +388,25 @@ def as_table(
include_content_hash=include_content_hash,
sort_by_tags=sort_by_tags,
execution_engine=execution_engine,
+ execution_engine_opts=execution_engine_opts,
)
def flow(
- self, execution_engine: cp.ExecutionEngine | None = None
+ self,
+ execution_engine: cp.ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
) -> Collection[tuple[cp.Tag, cp.Packet]]:
"""Delegate to the cached KernelStream."""
- return self().flow(execution_engine=execution_engine)
+ return self().flow(
+ execution_engine=execution_engine,
+ execution_engine_opts=execution_engine_opts,
+ )
def run(
self,
*args: Any,
execution_engine: cp.ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
**kwargs: Any,
) -> None:
"""
@@ -379,12 +414,18 @@ def run(
This is a no-op for sources since they are not executed like pods.
"""
- self().run(*args, execution_engine=execution_engine, **kwargs)
+ self().run(
+ *args,
+ execution_engine=execution_engine,
+ execution_engine_opts=execution_engine_opts,
+ **kwargs,
+ )
async def run_async(
self,
*args: Any,
execution_engine: cp.ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
**kwargs: Any,
) -> None:
"""
@@ -392,7 +433,12 @@ async def run_async(
This is a no-op for sources since they are not executed like pods.
"""
- await self().run_async(*args, execution_engine=execution_engine, **kwargs)
+ await self().run_async(
+ *args,
+ execution_engine=execution_engine,
+ execution_engine_opts=execution_engine_opts,
+ **kwargs,
+ )
# ==================== LiveStream Protocol (Delegation) ====================
diff --git a/src/orcapod/core/streams/base.py b/src/orcapod/core/streams/base.py
index 8cb1bbb..d96230a 100644
--- a/src/orcapod/core/streams/base.py
+++ b/src/orcapod/core/streams/base.py
@@ -173,6 +173,7 @@ def pop(self) -> cp.Stream:
def __init__(
self,
execution_engine: cp.ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
**kwargs,
) -> None:
super().__init__(**kwargs)
@@ -181,6 +182,7 @@ def __init__(
# note that this is not necessary for Stream protocol, but is provided
# for convenience to resolve semantic types and other context-specific information
self._execution_engine = execution_engine
+ self._execution_engine_opts = execution_engine_opts
@property
def substream_identities(self) -> tuple[str, ...]:
@@ -206,6 +208,8 @@ def execution_engine(self, engine: cp.ExecutionEngine | None) -> None:
"""
self._execution_engine = engine
+ # TODO: add getter/setter for execution engine opts
+
def get_substream(self, substream_id: str) -> cp.Stream:
"""
Returns the substream with the given substream_id.
@@ -321,6 +325,7 @@ def __iter__(
def iter_packets(
self,
execution_engine: cp.ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
) -> Iterator[tuple[cp.Tag, cp.Packet]]: ...
@abstractmethod
@@ -328,6 +333,7 @@ def run(
self,
*args: Any,
execution_engine: cp.ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
**kwargs: Any,
) -> None: ...
@@ -336,6 +342,7 @@ async def run_async(
self,
*args: Any,
execution_engine: cp.ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
**kwargs: Any,
) -> None: ...
@@ -348,6 +355,7 @@ def as_table(
include_content_hash: bool | str = False,
sort_by_tags: bool = True,
execution_engine: cp.ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
) -> "pa.Table": ...
def as_polars_df(
@@ -358,6 +366,7 @@ def as_polars_df(
include_content_hash: bool | str = False,
sort_by_tags: bool = True,
execution_engine: cp.ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
) -> "pl.DataFrame":
"""
Convert the entire stream to a Polars DataFrame.
@@ -370,6 +379,7 @@ def as_polars_df(
include_content_hash=include_content_hash,
sort_by_tags=sort_by_tags,
execution_engine=execution_engine,
+ execution_engine_opts=execution_engine_opts,
)
)
@@ -381,6 +391,7 @@ def as_df(
include_content_hash: bool | str = False,
sort_by_tags: bool = True,
execution_engine: cp.ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
) -> "pl.DataFrame":
"""
Convert the entire stream to a Polars DataFrame.
@@ -392,6 +403,7 @@ def as_df(
include_content_hash=include_content_hash,
sort_by_tags=sort_by_tags,
execution_engine=execution_engine,
+ execution_engine_opts=execution_engine_opts,
)
def as_lazy_frame(
@@ -402,6 +414,7 @@ def as_lazy_frame(
include_content_hash: bool | str = False,
sort_by_tags: bool = True,
execution_engine: cp.ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
) -> "pl.LazyFrame":
"""
Convert the entire stream to a Polars LazyFrame.
@@ -413,6 +426,7 @@ def as_lazy_frame(
include_content_hash=include_content_hash,
sort_by_tags=sort_by_tags,
execution_engine=execution_engine,
+ execution_engine_opts=execution_engine_opts,
)
return df.lazy()
@@ -425,6 +439,7 @@ def as_pandas_df(
sort_by_tags: bool = True,
index_by_tags: bool = True,
execution_engine: cp.ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
) -> "pd.DataFrame":
df = self.as_polars_df(
include_data_context=include_data_context,
@@ -433,6 +448,7 @@ def as_pandas_df(
include_content_hash=include_content_hash,
sort_by_tags=sort_by_tags,
execution_engine=execution_engine,
+ execution_engine_opts=execution_engine_opts,
)
tag_keys, _ = self.keys()
pdf = df.to_pandas()
@@ -441,13 +457,21 @@ def as_pandas_df(
return pdf
def flow(
- self, execution_engine: cp.ExecutionEngine | None = None
+ self,
+ execution_engine: cp.ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
) -> Collection[tuple[cp.Tag, cp.Packet]]:
"""
Flow everything through the stream, returning the entire collection of
(Tag, Packet) as a collection. This will tigger any upstream computation of the stream.
"""
- return [e for e in self.iter_packets(execution_engine=execution_engine)]
+ return [
+ e
+ for e in self.iter_packets(
+ execution_engine=execution_engine,
+ execution_engine_opts=execution_engine_opts,
+ )
+ ]
def _repr_html_(self) -> str:
df = self.as_polars_df()
@@ -464,6 +488,7 @@ def view(
include_content_hash: bool | str = False,
sort_by_tags: bool = True,
execution_engine: cp.ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
) -> "StreamView":
df = self.as_polars_df(
include_data_context=include_data_context,
@@ -472,6 +497,7 @@ def view(
include_content_hash=include_content_hash,
sort_by_tags=sort_by_tags,
execution_engine=execution_engine,
+ execution_engine_opts=execution_engine_opts,
)
tag_map = {t: f"*{t}" for t in self.tag_keys()}
# TODO: construct repr html better
diff --git a/src/orcapod/core/streams/cached_pod_stream.py b/src/orcapod/core/streams/cached_pod_stream.py
index 6e667e9..541af52 100644
--- a/src/orcapod/core/streams/cached_pod_stream.py
+++ b/src/orcapod/core/streams/cached_pod_stream.py
@@ -63,6 +63,7 @@ async def run_async(
self,
*args: Any,
execution_engine: cp.ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
**kwargs: Any,
) -> None:
"""
@@ -127,7 +128,9 @@ async def run_async(
tag,
packet,
skip_cache_lookup=True,
- execution_engine=execution_engine,
+ execution_engine=execution_engine or self.execution_engine,
+ execution_engine_opts=execution_engine_opts
+ or self._execution_engine_opts,
)
pending_calls.append(pending)
import asyncio
@@ -143,6 +146,7 @@ def run(
self,
*args: Any,
execution_engine: cp.ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
**kwargs: Any,
) -> None:
cached_results = []
@@ -221,8 +225,11 @@ def run(
tag,
packet,
skip_cache_lookup=True,
- execution_engine=execution_engine,
+ execution_engine=execution_engine or self.execution_engine,
+ execution_engine_opts=execution_engine_opts
+ or self._execution_engine_opts,
)
+ # TODO: use getter for execution engine opts
hash_to_output_lut[packet_hash] = output_packet
cached_results.append((tag, output_packet))
@@ -230,7 +237,9 @@ def run(
self._set_modified_time()
def iter_packets(
- self, execution_engine: cp.ExecutionEngine | None = None
+ self,
+ execution_engine: cp.ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
) -> Iterator[tuple[cp.Tag, cp.Packet]]:
"""
Processes the input stream and prepares the output stream.
@@ -244,7 +253,9 @@ def iter_packets(
include_system_tags=True,
include_source=True,
include_content_hash=constants.INPUT_PACKET_HASH,
- execution_engine=execution_engine,
+ execution_engine=execution_engine or self.execution_engine,
+ execution_engine_opts=execution_engine_opts
+ or self._execution_engine_opts,
)
existing_entries = self.pod.get_all_cached_outputs(
include_system_columns=True
@@ -331,7 +342,9 @@ def iter_packets(
tag,
packet,
skip_cache_lookup=True,
- execution_engine=execution_engine,
+ execution_engine=execution_engine or self.execution_engine,
+ execution_engine_opts=execution_engine_opts
+ or self._execution_engine_opts,
)
hash_to_output_lut[packet_hash] = output_packet
cached_results.append((tag, output_packet))
@@ -375,12 +388,17 @@ def as_table(
include_content_hash: bool | str = False,
sort_by_tags: bool = True,
execution_engine: cp.ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
) -> "pa.Table":
if self._cached_output_table is None:
all_tags = []
all_packets = []
tag_schema, packet_schema = None, None
- for tag, packet in self.iter_packets(execution_engine=execution_engine):
+ for tag, packet in self.iter_packets(
+ execution_engine=execution_engine or self.execution_engine,
+ execution_engine_opts=execution_engine_opts
+ or self._execution_engine_opts,
+ ):
if tag_schema is None:
tag_schema = tag.arrow_schema(include_system_tags=True)
if packet_schema is None:
diff --git a/src/orcapod/core/streams/kernel_stream.py b/src/orcapod/core/streams/kernel_stream.py
index c3850a5..e5f60e3 100644
--- a/src/orcapod/core/streams/kernel_stream.py
+++ b/src/orcapod/core/streams/kernel_stream.py
@@ -141,18 +141,25 @@ def run(
self,
*args: Any,
execution_engine: cp.ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
**kwargs: Any,
) -> None:
self.refresh()
assert self._cached_stream is not None, (
"Stream has not been updated or is empty."
)
- self._cached_stream.run(*args, execution_engine=execution_engine, **kwargs)
+ self._cached_stream.run(
+ *args,
+ execution_engine=execution_engine,
+ execution_engine_opts=execution_engine_opts,
+ **kwargs,
+ )
async def run_async(
self,
*args: Any,
execution_engine: cp.ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
**kwargs: Any,
) -> None:
self.refresh()
@@ -160,7 +167,10 @@ async def run_async(
"Stream has not been updated or is empty."
)
await self._cached_stream.run_async(
- *args, execution_engine=execution_engine, **kwargs
+ *args,
+ execution_engine=execution_engine,
+ execution_engine_opts=execution_engine_opts,
+ **kwargs,
)
def as_table(
@@ -171,6 +181,7 @@ def as_table(
include_content_hash: bool | str = False,
sort_by_tags: bool = True,
execution_engine: cp.ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
) -> "pa.Table":
self.refresh()
assert self._cached_stream is not None, (
@@ -183,17 +194,22 @@ def as_table(
include_content_hash=include_content_hash,
sort_by_tags=sort_by_tags,
execution_engine=execution_engine,
+ execution_engine_opts=execution_engine_opts,
)
def iter_packets(
self,
execution_engine: cp.ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
) -> Iterator[tuple[cp.Tag, cp.Packet]]:
self.refresh()
assert self._cached_stream is not None, (
"Stream has not been updated or is empty."
)
- return self._cached_stream.iter_packets(execution_engine=execution_engine)
+ return self._cached_stream.iter_packets(
+ execution_engine=execution_engine,
+ execution_engine_opts=execution_engine_opts,
+ )
def __repr__(self) -> str:
return f"{self.__class__.__name__}(kernel={self.source}, upstreams={self.upstreams})"
diff --git a/src/orcapod/core/streams/lazy_pod_stream.py b/src/orcapod/core/streams/lazy_pod_stream.py
index 9eefc83..23f146a 100644
--- a/src/orcapod/core/streams/lazy_pod_stream.py
+++ b/src/orcapod/core/streams/lazy_pod_stream.py
@@ -49,7 +49,9 @@ def __init__(self, pod: cp.Pod, prepared_stream: cp.Stream, **kwargs):
self._cached_content_hash_column: pa.Array | None = None
def iter_packets(
- self, execution_engine: cp.ExecutionEngine | None = None
+ self,
+ execution_engine: cp.ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
) -> Iterator[tuple[cp.Tag, cp.Packet]]:
if self._prepared_stream_iterator is not None:
for i, (tag, packet) in enumerate(self._prepared_stream_iterator):
@@ -61,8 +63,13 @@ def iter_packets(
else:
# Process packet
processed = self.pod.call(
- tag, packet, execution_engine=execution_engine
+ tag,
+ packet,
+ execution_engine=execution_engine or self.execution_engine,
+ execution_engine_opts=execution_engine_opts
+ or self._execution_engine_opts,
)
+ # TODO: verify the proper use of execution engine opts
if processed is not None:
# Update shared cache for future iterators (optimization)
self._cached_output_packets[i] = processed
@@ -83,6 +90,7 @@ async def run_async(
self,
*args: Any,
execution_engine: cp.ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
**kwargs: Any,
) -> None:
if self._prepared_stream_iterator is not None:
@@ -91,7 +99,11 @@ async def run_async(
if i not in self._cached_output_packets:
# Process packet
pending_call_lut[i] = self.pod.async_call(
- tag, packet, execution_engine=execution_engine
+ tag,
+ packet,
+ execution_engine=execution_engine or self.execution_engine,
+ execution_engine_opts=execution_engine_opts
+ or self._execution_engine_opts,
)
indices = list(pending_call_lut.keys())
@@ -108,10 +120,14 @@ def run(
self,
*args: Any,
execution_engine: cp.ExecutionEngine | None = None,
- **kwargs: Any
+ execution_engine_opts: dict[str, Any] | None = None,
+ **kwargs: Any,
) -> None:
# Fallback to synchronous run
- self.flow(execution_engine=execution_engine)
+ self.flow(
+ execution_engine=execution_engine or self.execution_engine,
+ execution_engine_opts=execution_engine_opts or self._execution_engine_opts,
+ )
def keys(
self, include_system_tags: bool = False
@@ -143,12 +159,17 @@ def as_table(
include_content_hash: bool | str = False,
sort_by_tags: bool = True,
execution_engine: cp.ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
) -> "pa.Table":
if self._cached_output_table is None:
all_tags = []
all_packets = []
tag_schema, packet_schema = None, None
- for tag, packet in self.iter_packets(execution_engine=execution_engine):
+ for tag, packet in self.iter_packets(
+ execution_engine=execution_engine or self.execution_engine,
+ execution_engine_opts=execution_engine_opts
+ or self._execution_engine_opts,
+ ):
if tag_schema is None:
tag_schema = tag.arrow_schema(include_system_tags=True)
if packet_schema is None:
@@ -202,7 +223,10 @@ def as_table(
if self._cached_content_hash_column is None:
content_hashes = []
# TODO: verify that order will be preserved
- for tag, packet in self.iter_packets():
+ for tag, packet in self.iter_packets(
+ execution_engine=execution_engine or self.execution_engine,
+ execution_engine_opts=execution_engine_opts or self._execution_engine_opts,
+ ):
content_hashes.append(packet.content_hash().to_string())
self._cached_content_hash_column = pa.array(
content_hashes, type=pa.large_string()
diff --git a/src/orcapod/core/streams/pod_node_stream.py b/src/orcapod/core/streams/pod_node_stream.py
index b6ef449..d0e624c 100644
--- a/src/orcapod/core/streams/pod_node_stream.py
+++ b/src/orcapod/core/streams/pod_node_stream.py
@@ -56,7 +56,9 @@ def mode(self) -> str:
return self.pod_node.mode
async def run_async(
- self, execution_engine: cp.ExecutionEngine | None = None
+ self,
+ execution_engine: cp.ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
) -> None:
"""
Runs the stream, processing the input stream and preparing the output stream.
@@ -120,7 +122,9 @@ async def run_async(
tag,
packet,
skip_cache_lookup=True,
- execution_engine=execution_engine,
+ execution_engine=execution_engine or self.execution_engine,
+ execution_engine_opts=execution_engine_opts
+ or self._execution_engine_opts,
)
pending_calls.append(pending)
import asyncio
@@ -136,6 +140,7 @@ def run(
self,
*args: Any,
execution_engine: cp.ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
**kwargs: Any,
) -> None:
cached_results = []
@@ -150,7 +155,8 @@ def run(
include_system_tags=True,
include_source=True,
include_content_hash=constants.INPUT_PACKET_HASH,
- execution_engine=execution_engine,
+ execution_engine=execution_engine or self.execution_engine,
+ execution_engine_opts=execution_engine_opts or self._execution_engine_opts,
)
existing_entries = self.pod_node.get_all_cached_outputs(
include_system_columns=True
@@ -230,7 +236,9 @@ def run(
packet,
record_id=packet_record_id,
skip_cache_lookup=True,
- execution_engine=execution_engine,
+ execution_engine=execution_engine or self.execution_engine,
+ execution_engine_opts=execution_engine_opts
+ or self._execution_engine_opts,
)
packet_record_to_output_lut[packet_record_id] = output_packet
self.pod_node.add_pipeline_record(
@@ -254,7 +262,9 @@ def clear_cache(self) -> None:
self._cached_content_hash_column = None
def iter_packets(
- self, execution_engine: cp.ExecutionEngine | None = None
+ self,
+ execution_engine: cp.ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
) -> Iterator[tuple[cp.Tag, cp.Packet]]:
"""
Processes the input stream and prepares the output stream.
@@ -422,12 +432,17 @@ def as_table(
include_content_hash: bool | str = False,
sort_by_tags: bool = True,
execution_engine: cp.ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
) -> "pa.Table":
if self._cached_output_table is None:
all_tags = []
all_packets = []
tag_schema, packet_schema = None, None
- for tag, packet in self.iter_packets(execution_engine=execution_engine):
+ for tag, packet in self.iter_packets(
+ execution_engine=execution_engine or self.execution_engine,
+ execution_engine_opts=execution_engine_opts
+ or self._execution_engine_opts,
+ ):
if tag_schema is None:
tag_schema = tag.arrow_schema(include_system_tags=True)
if packet_schema is None:
@@ -499,7 +514,11 @@ def as_table(
if include_content_hash:
if self._cached_content_hash_column is None:
content_hashes = []
- for tag, packet in self.iter_packets(execution_engine=execution_engine):
+ for tag, packet in self.iter_packets(
+ execution_engine=execution_engine or self.execution_engine,
+ execution_engine_opts=execution_engine_opts
+ or self._execution_engine_opts,
+ ):
content_hashes.append(packet.content_hash().to_string())
self._cached_content_hash_column = pa.array(
content_hashes, type=pa.large_string()
diff --git a/src/orcapod/core/streams/table_stream.py b/src/orcapod/core/streams/table_stream.py
index a71ea5f..9df6289 100644
--- a/src/orcapod/core/streams/table_stream.py
+++ b/src/orcapod/core/streams/table_stream.py
@@ -200,6 +200,7 @@ def as_table(
include_content_hash: bool | str = False,
sort_by_tags: bool = True,
execution_engine: cp.ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
) -> "pa.Table":
"""
Returns the underlying table representation of the stream.
@@ -250,7 +251,9 @@ def clear_cache(self) -> None:
self._cached_elements = None
def iter_packets(
- self, execution_engine: cp.ExecutionEngine | None = None
+ self,
+ execution_engine: cp.ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
) -> Iterator[tuple[cp.Tag, ArrowPacket]]:
"""
Iterates over the packets in the stream.
@@ -298,6 +301,7 @@ def run(
self,
*args: Any,
execution_engine: cp.ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
**kwargs: Any,
) -> None:
"""
@@ -311,6 +315,7 @@ async def run_async(
self,
*args: Any,
execution_engine: cp.ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
**kwargs: Any,
) -> None:
"""
diff --git a/src/orcapod/core/streams/wrapped_stream.py b/src/orcapod/core/streams/wrapped_stream.py
index 3f14203..6ba8530 100644
--- a/src/orcapod/core/streams/wrapped_stream.py
+++ b/src/orcapod/core/streams/wrapped_stream.py
@@ -58,6 +58,7 @@ def as_table(
include_content_hash: bool | str = False,
sort_by_tags: bool = True,
execution_engine: cp.ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
) -> "pa.Table":
"""
Returns the underlying table representation of the stream.
@@ -70,17 +71,23 @@ def as_table(
include_content_hash=include_content_hash,
sort_by_tags=sort_by_tags,
execution_engine=execution_engine,
+ execution_engine_opts=execution_engine_opts,
)
+ # TODO handle default execution engine
def iter_packets(
self,
execution_engine: cp.ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
) -> Iterator[tuple[cp.Tag, cp.Packet]]:
"""
Iterates over the packets in the stream.
Each packet is represented as a tuple of (Tag, Packet).
"""
- return self._stream.iter_packets(execution_engine=execution_engine)
+ return self._stream.iter_packets(
+ execution_engine=execution_engine,
+ execution_engine_opts=execution_engine_opts,
+ )
def identity_structure(self) -> Any:
return self._stream.identity_structure()
diff --git a/src/orcapod/execution_engines/ray_execution_engine.py b/src/orcapod/execution_engines/ray_execution_engine.py
index d3443df..d4e6727 100644
--- a/src/orcapod/execution_engines/ray_execution_engine.py
+++ b/src/orcapod/execution_engines/ray_execution_engine.py
@@ -29,42 +29,80 @@ class RayEngine:
def __init__(self, ray_address: str | None = None, **ray_init_kwargs):
"""Initialize Ray with native async support."""
- if not ray.is_initialized():
+ if not self.is_initialized():
ray.init(address=ray_address, **ray_init_kwargs)
+ # track whether ray engine was initialized in this engine
self._ray_initialized_here = True
+ logger.info("Native Ray async engine initialized")
else:
self._ray_initialized_here = False
+ logger.info("Working with an existing Ray async engine")
- logger.info("Native Ray async engine initialized")
logger.info(f"Cluster resources: {ray.cluster_resources()}")
+ def is_initialized(self) -> bool:
+ """Check if Ray is initialized."""
+ return ray.is_initialized()
+
@property
def name(self) -> str:
return "ray"
- def submit_sync(self, func: Callable[..., T], *args, **kwargs) -> T:
+ def submit_sync(
+ self,
+ func: Callable[..., T],
+ /,
+ *,
+ fn_args: tuple[Any, ...] = (),
+ fn_kwargs: dict[str, Any] | None = None,
+ **engine_opts: Any,
+ ) -> T:
"""
Submit a function synchronously using Ray.
- This is a blocking call that waits for the result.
+ Arguments destined for the function must be provided via
+ ``fn_args``/``fn_kwargs``. Engine-specific options (e.g., resources)
+ should be passed through ``engine_opts`` and are applied via
+ ``.options(**engine_opts)``.
"""
+ if fn_kwargs is None:
+ fn_kwargs = {}
+
# Create remote function and submit
remote_func = ray.remote(func)
- object_ref = remote_func.remote(*args, **kwargs)
+ if engine_opts:
+ remote_func = remote_func.options(**engine_opts) # type: ignore[arg-type]
+ object_ref = remote_func.remote(*fn_args, **fn_kwargs)
# Wait for the result - this is blocking
result = ray.get(object_ref)
return result
- async def submit_async(self, func: Callable[..., T], *args, **kwargs) -> T:
+ async def submit_async(
+ self,
+ func: Callable[..., T],
+ /,
+ *,
+ fn_args: tuple[Any, ...] = (),
+ fn_kwargs: dict[str, Any] | None = None,
+ **engine_opts: Any,
+ ) -> T:
"""
Submit a function using Ray's native async support.
- Uses ObjectRef.future() which Ray converts to asyncio.Future natively.
+ Arguments destined for the function must be provided via
+ ``fn_args``/``fn_kwargs``. Engine-specific options (e.g., resources)
+ should be passed through ``engine_opts`` and are applied via
+ ``.options(**engine_opts)``.
"""
+ if fn_kwargs is None:
+ fn_kwargs = {}
+
# Create remote function and submit
remote_func = ray.remote(func)
- object_ref = remote_func.remote(*args, **kwargs)
+ if engine_opts:
+ remote_func = remote_func.options(**engine_opts) # type: ignore[arg-type]
+ object_ref = remote_func.remote(*fn_args, **fn_kwargs)
# Use Ray's native async support - this is the key insight!
# ObjectRef.future() returns a concurrent.futures.Future that works with asyncio
diff --git a/src/orcapod/pipeline/graph.py b/src/orcapod/pipeline/graph.py
index ddb7422..b3534ca 100644
--- a/src/orcapod/pipeline/graph.py
+++ b/src/orcapod/pipeline/graph.py
@@ -179,6 +179,7 @@ def set_mode(self, mode: str) -> None:
def run(
self,
execution_engine: cp.ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
run_async: bool | None = None,
) -> None:
"""Execute the pipeline by running all nodes in the graph.
@@ -203,9 +204,16 @@ def run(
for node in nx.topological_sort(self.graph):
if run_async:
- synchronous_run(node.run_async, execution_engine=execution_engine)
+ synchronous_run(
+ node.run_async,
+ execution_engine=execution_engine,
+ execution_engine_opts=execution_engine_opts,
+ )
else:
- node.run(execution_engine=execution_engine)
+ node.run(
+ execution_engine=execution_engine,
+ execution_engine_opts=execution_engine_opts,
+ )
self.flush()
diff --git a/src/orcapod/pipeline/nodes.py b/src/orcapod/pipeline/nodes.py
index 08cd2ed..db9d0d4 100644
--- a/src/orcapod/pipeline/nodes.py
+++ b/src/orcapod/pipeline/nodes.py
@@ -1,7 +1,6 @@
from abc import abstractmethod
-from orcapod.core.datagrams import ArrowTag
from orcapod.core.kernels import KernelStream, WrappedKernel
-from orcapod.core.sources.base import SourceBase, InvocationBase
+from orcapod.core.sources.base import InvocationBase
from orcapod.core.pods import CachedPod
from orcapod.protocols import core_protocols as cp, database_protocols as dbp
from orcapod.types import PythonSchema
@@ -302,6 +301,7 @@ def call(
packet: cp.Packet,
record_id: str | None = None,
execution_engine: cp.ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
skip_cache_lookup: bool = False,
skip_cache_insert: bool = False,
) -> tuple[cp.Tag, cp.Packet | None]:
@@ -316,6 +316,7 @@ def call(
skip_cache_lookup=skip_cache_lookup,
skip_cache_insert=skip_cache_insert,
execution_engine=execution_engine,
+ execution_engine_opts=execution_engine_opts,
)
# if output_packet is not None:
@@ -339,6 +340,7 @@ async def async_call(
packet: cp.Packet,
record_id: str | None = None,
execution_engine: cp.ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
skip_cache_lookup: bool = False,
skip_cache_insert: bool = False,
) -> tuple[cp.Tag, cp.Packet | None]:
@@ -353,6 +355,7 @@ async def async_call(
skip_cache_lookup=skip_cache_lookup,
skip_cache_insert=skip_cache_insert,
execution_engine=execution_engine,
+ execution_engine_opts=execution_engine_opts,
)
if output_packet is not None:
diff --git a/src/orcapod/protocols/core_protocols/base.py b/src/orcapod/protocols/core_protocols/base.py
index c44d52c..7faad25 100644
--- a/src/orcapod/protocols/core_protocols/base.py
+++ b/src/orcapod/protocols/core_protocols/base.py
@@ -5,20 +5,126 @@
@runtime_checkable
class ExecutionEngine(Protocol):
+ """
+ Abstract execution backend responsible for running user functions.
+
+ ExecutionEngine defines the minimal contract that any execution backend
+ must satisfy to be used by Orcapod. Concrete implementations may execute
+ work in the current process (synchronously), on background threads or
+ processes, or on remote/distributed systems (e.g., Ray, Dask, Slurm).
+
+ Responsibilities
+ - Accept a Python callable plus arguments and execute it.
+ - Provide both a synchronous API (blocking) and an asynchronous API
+ (awaitable) with consistent error semantics.
+ - Surface the original exception from the user function without
+ wrapping where practical, while preserving traceback information.
+ - Be safe to construct/read concurrently from the pipeline orchestration.
+
+ Contract
+ - Inputs: a Python callable and its positional/keyword arguments.
+ - Outputs: the callable's return value (or a coroutine result when awaited).
+ - Errors: exceptions raised by the callable must be propagated to the
+ caller of submit_sync/submit_async.
+ - Cancellation: implementations may optionally support task cancellation
+ in submit_async via standard asyncio cancellation; submit_sync is
+ expected to block until completion.
+
+ Notes
+ - Serialization: Distributed engines may require the function and its
+ arguments to be serializable (pickle/cloudpickle). Local engines have
+ no such requirement beyond normal Python callability.
+ - Resource usage: Engines may schedule work with resource hints
+ (CPU/GPU/memory) outside this minimal protocol; higher-level APIs can
+ extend this interface if needed.
+ - Naming: ``name`` should be a short, human-friendly identifier such as
+ "local", "threadpool", "processpool", or "ray" and is used for logging
+ and diagnostics.
+ """
+
@property
- def name(self) -> str: ...
+ def name(self) -> str:
+ """Return a short, human-friendly identifier for the engine.
- def submit_sync(self, function: Callable, *args, **kwargs) -> Any:
+ Examples: "local", "threadpool", "processpool", "ray".
+ Used for logging, metrics, and debugging output.
"""
- Run the given function with the provided arguments.
- This method should be implemented by the execution engine.
+ ...
+
+ def submit_sync(
+ self,
+ func: Callable[..., Any],
+ /,
+ *,
+ fn_args: tuple[Any, ...] = (),
+ fn_kwargs: dict[str, Any] | None = None,
+ **engine_opts: Any,
+ ) -> Any:
+ """
+ Execute a callable and return its result (blocking).
+
+ This call is blocking. Engines may choose where/how the function
+ executes (same thread, worker thread/process, remote node), but the
+ call does not return until the work completes or fails.
+
+ Parameters
+ - func: Python callable to execute.
+ - fn_args: Tuple of positional arguments to pass to ``func``.
+ - fn_kwargs: Mapping of keyword arguments to pass to ``func``.
+ - **engine_opts: Engine-specific options (e.g., resources, priority),
+ never forwarded to ``func``.
+
+ Returns:
+ Any: The return value of ``func``.
+
+ Raises:
+ Exception: Any exception raised by ``func`` must be propagated to
+ the caller. Engines should preserve the original traceback whenever
+ practical.
+
+ Notes
+ - This API separates function inputs from engine configuration.
+ ``fn_args``/``fn_kwargs`` are always applied to ``func``;
+ ``engine_opts`` configures the engine and is never forwarded.
"""
...
- async def submit_async(self, function: Callable, *args, **kwargs) -> Any:
+ async def submit_async(
+ self,
+ func: Callable[..., Any],
+ /,
+ *,
+ fn_args: tuple[Any, ...] = (),
+ fn_kwargs: dict[str, Any] | None = None,
+ **engine_opts: Any,
+ ) -> Any:
"""
- Asynchronously run the given function with the provided arguments.
- This method should be implemented by the execution engine.
+ Asynchronously execute a callable and return the result when awaited.
+
+ The returned awaitable resolves to the callable's return value or
+ raises the callable's exception. Implementations should integrate with
+ asyncio semantics: if the awaiting task is cancelled, the engine may
+ attempt to cancel the underlying work when supported.
+
+ Parameters
+ - func: Python callable to execute.
+ - fn_args: Tuple of positional arguments to pass to ``func``.
+ - fn_kwargs: Mapping of keyword arguments to pass to ``func``.
+ - **engine_opts: Engine-specific options (e.g., resources, priority),
+ never forwarded to ``func``.
+
+ Returns:
+ Any: The return value of ``func`` when awaited.
+
+ Raises:
+ asyncio.CancelledError: If the awaiting task is cancelled and the
+ implementation propagates cancellation.
+ Exception: Any exception raised by ``func`` must be propagated to
+ the awaiting caller, with traceback preserved where possible.
+
+ Notes
+ - Mirrors the sync API: ``fn_args``/``fn_kwargs`` target ``func``;
+ ``engine_opts`` configures the engine and is never forwarded.
"""
...
diff --git a/src/orcapod/protocols/core_protocols/pods.py b/src/orcapod/protocols/core_protocols/pods.py
index b3c9513..616fd79 100644
--- a/src/orcapod/protocols/core_protocols/pods.py
+++ b/src/orcapod/protocols/core_protocols/pods.py
@@ -1,4 +1,4 @@
-from typing import TYPE_CHECKING, Protocol, runtime_checkable
+from typing import TYPE_CHECKING, Any, Protocol, runtime_checkable
from orcapod.protocols.core_protocols.base import ExecutionEngine
from orcapod.protocols.core_protocols.datagrams import Packet, Tag
@@ -94,6 +94,7 @@ async def async_call(
packet: Packet,
record_id: str | None = None,
execution_engine: ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
) -> tuple[Tag, Packet | None]: ...
def call(
@@ -102,6 +103,7 @@ def call(
packet: Packet,
record_id: str | None = None,
execution_engine: ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
) -> tuple[Tag, Packet | None]:
"""
Process a single packet with its associated tag.
@@ -143,6 +145,7 @@ async def async_call(
packet: Packet,
record_id: str | None = None,
execution_engine: ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
skip_cache_lookup: bool = False,
skip_cache_insert: bool = False,
) -> tuple[Tag, Packet | None]: ...
@@ -161,6 +164,7 @@ def call(
packet: Packet,
record_id: str | None = None,
execution_engine: ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
skip_cache_lookup: bool = False,
skip_cache_insert: bool = False,
) -> tuple[Tag, Packet | None]:
diff --git a/src/orcapod/protocols/core_protocols/streams.py b/src/orcapod/protocols/core_protocols/streams.py
index 36cd369..0cd3fb4 100644
--- a/src/orcapod/protocols/core_protocols/streams.py
+++ b/src/orcapod/protocols/core_protocols/streams.py
@@ -233,7 +233,9 @@ def __iter__(self) -> Iterator[tuple[Tag, Packet]]:
...
def iter_packets(
- self, execution_engine: ExecutionEngine | None = None
+ self,
+ execution_engine: ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
) -> Iterator[tuple[Tag, Packet]]:
"""
Alias for __iter__ for explicit packet iteration.
@@ -256,7 +258,11 @@ def iter_packets(
...
def run(
- self, *args: Any, execution_engine: ExecutionEngine | None = None, **kwargs: Any
+ self,
+ *args: Any,
+ execution_engine: ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
+ **kwargs: Any,
) -> None:
"""
Execute the stream using the provided execution engine.
@@ -272,7 +278,11 @@ def run(
...
async def run_async(
- self, *args: Any, execution_engine: ExecutionEngine | None = None, **kwargs: Any
+ self,
+ *args: Any,
+ execution_engine: ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
+ **kwargs: Any,
) -> None:
"""
Asynchronously execute the stream using the provided execution engine.
@@ -295,6 +305,7 @@ def as_df(
include_content_hash: bool | str = False,
sort_by_tags: bool = True,
execution_engine: ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
) -> "pl.DataFrame":
"""
Convert the entire stream to a Polars DataFrame.
@@ -309,6 +320,7 @@ def as_lazy_frame(
include_content_hash: bool | str = False,
sort_by_tags: bool = True,
execution_engine: ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
) -> "pl.LazyFrame":
"""
Load the entire stream to a Polars LazyFrame.
@@ -323,6 +335,7 @@ def as_polars_df(
include_content_hash: bool | str = False,
sort_by_tags: bool = True,
execution_engine: ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
) -> "pl.DataFrame": ...
def as_pandas_df(
@@ -334,6 +347,7 @@ def as_pandas_df(
sort_by_tags: bool = True,
index_by_tags: bool = True,
execution_engine: ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
) -> "pd.DataFrame": ...
def as_table(
@@ -344,6 +358,7 @@ def as_table(
include_content_hash: bool | str = False,
sort_by_tags: bool = True,
execution_engine: ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
) -> "pa.Table":
"""
Convert the entire stream to a PyArrow Table.
@@ -364,6 +379,7 @@ def as_table(
def flow(
self,
execution_engine: ExecutionEngine | None = None,
+ execution_engine_opts: dict[str, Any] | None = None,
) -> Collection[tuple[Tag, Packet]]:
"""
Return the entire stream as a collection of (tag, packet) pairs.