Skip to content

tpu: tpu-v3-256-euw4a-54; run: shawn-bigrun64-chaos256; description: Unconditional BigGAN 256x256 on many datasets; logdir: gs://darnbooru-euw4a/runs/bigrun64/ #7

@shawwn

Description

@shawwn

Run script + branch: https://github.com/shawwn/compare_gan/blob/2020-05-09/dynamicvars/run_bigrun61.sh

dataset.name = "danbooru_256"
options.datasets = "gs://darnbooru-euw4a/datasets/danbooru2019-s/danbooru2019-s-0*,gs://darnbooru-euw4a/datasets/danbooru2019-s/danbooru2019-s-0*,gs://darnbooru-euw4a/datasets/imagenet/train-0*,gs://darnbooru-euw4a/datasets/flickr3m/flickr3m-0*,gs://darnbooru-euw4a/datasets/ffhq1024/ffhq1024-0*,gs://darnbooru-euw4a/datasets/portraits/portraits-0*,gs://darnbooru-euw4a/datasets/ffhq1024/ffhq1024-0*,gs://darnbooru-euw4a/datasets/portraits/portraits-0*"
options.random_labels = True
options.num_classes = 1000
train_imagenet_transform.crop_method = "random"
options.z_dim = 140
resnet_biggan.Generator.ch = 128
resnet_biggan.Discriminator.ch = 128
resnet_biggan.Generator.blocks_with_attention = "128"
resnet_biggan.Discriminator.blocks_with_attention = "128"

options.architecture = "resnet_biggan_arch"
ModularGAN.conditional = False
options.batch_size = 2048
options.gan_class = @ModularGAN
options.lamba = 1
options.training_steps = 250000
weights.initializer = "orthogonal"
spectral_norm.singular_value = "auto"

# Generator
G.batch_norm_fn = @conditional_batch_norm
G.spectral_norm = True
ModularGAN.g_use_ema = True
resnet_biggan.Generator.hierarchical_z = True
resnet_biggan.Generator.embed_z = True
resnet_biggan.Generator.embed_y = True
standardize_batch.decay = 0.9
standardize_batch.epsilon = 1e-5
standardize_batch.use_moving_averages = False
standardize_batch.use_cross_replica_mean = None

# Discriminator
options.disc_iters = 2
D.spectral_norm = True
resnet_biggan.Discriminator.project_y = True

# Loss and optimizer
loss.fn = @hinge
penalty.fn = @no_penalty
ModularGAN.g_lr = 0.0000666
ModularGAN.d_lr = 0.0005
ModularGAN.g_lr_mul = 1.0
ModularGAN.d_lr_mul = 1.0
ModularGAN.g_optimizer_fn = @tf.train.AdamOptimizer
ModularGAN.d_optimizer_fn = @tf.train.AdamOptimizer
tf.train.AdamOptimizer.beta1 = 0.0
tf.train.AdamOptimizer.beta2 = 0.999

z.distribution_fn = @tf.random.normal
eval_z.distribution_fn = @tf.random.normal

run_config.experimental_host_call_every_n_steps = 50
TpuSummaries.save_image_steps = 50
#run_config.iterations_per_loop = 500
run_config.iterations_per_loop = 50
run_config.save_checkpoints_steps = 250

options.d_flood = -128.0
options.g_flood = -128.0
options.d_stop_g_above = 128.0
options.g_stop_d_above = 128.0
options.d_stop_d_below = -128.0
options.g_stop_g_below = -128.0

# Try out new options
ModularGAN.experimental_joint_gen_for_disc = True
ModularGAN.experimental_force_graph_unroll = True

options.d_stop_d_below = 0.20
options.g_stop_g_below = 0.05
#options.d_stop_g_above = 1.00
options.g_stop_d_above = 1.50

ModularGAN.g_use_ema = True
#options.disc_iters = 1
ModularGAN.experimental_joint_gen_for_disc = False
ModularGAN.experimental_force_graph_unroll = False
run_config.iterations_per_loop = 50
TpuSummaries.save_image_steps = 50
#options.transpose_input = True # for performance

options.disc_iters = 2
ModularGAN.experimental_joint_gen_for_disc = True
ModularGAN.experimental_force_graph_unroll = True
ModularGAN.g_lr_mul = 1.0
ModularGAN.d_lr_mul = 1.0

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions