diff --git a/lib/node_modules/@stdlib/stats/base/dists/negative-binomial/logpmf/README.md b/lib/node_modules/@stdlib/stats/base/dists/negative-binomial/logpmf/README.md
index 0143acf5f34a..0907e401ea2b 100644
--- a/lib/node_modules/@stdlib/stats/base/dists/negative-binomial/logpmf/README.md
+++ b/lib/node_modules/@stdlib/stats/base/dists/negative-binomial/logpmf/README.md
@@ -2,7 +2,7 @@
@license Apache-2.0
-Copyright (c) 2018 The Stdlib Authors.
+Copyright (c) 2026 The Stdlib Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
@@ -157,6 +157,105 @@ logEachMap( 'x: %d, r: %0.4f, p: %0.4f, ln(P(X=x;r,p)): %0.4f', x, r, p, logpmf
+
+
+* * *
+
+
+
+## C APIs
+
+
+
+
+
+
+
+
+
+
+
+### Usage
+
+```c
+#include "stdlib/stats/base/dists/negative-binomial/logpmf.h"
+```
+
+#### stdlib_base_dists_negative_binomial_logpmf( x, r, p )
+
+Evaluates the natural logarithm of the probability mass function (PMF) for a negative binomial distribution with number of successes until experiment is stopped `r` and success probability `p`.
+
+```c
+double out = stdlib_base_dists_negative_binomial_logpmf( 5.0, 20.0, 0.8 );
+// returns ~-1.853
+```
+
+The function accepts the following arguments:
+
+- **x**: `[in] double` input value.
+- **r**: `[in] double` number of successes until experiment is stopped.
+- **p**: `[in] double` success probability.
+
+```c
+double stdlib_base_dists_negative_binomial_logpmf( const double x, const double r, const double p );
+```
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+### Examples
+
+```c
+#include "stdlib/stats/base/dists/negative-binomial/logpmf.h"
+#include "stdlib/math/base/special/ceil.h"
+#include
+#include
+
+static double random_uniform( const double min, const double max ) {
+ double v = (double)rand() / ( (double)RAND_MAX + 1.0 );
+ return min + ( v*(max-min) );
+}
+
+int main( void ) {
+ double r;
+ double p;
+ double x;
+ double y;
+ int i;
+
+ for ( i = 0; i < 10; i++ ) {
+ x = stdlib_base_ceil( random_uniform( 0.0, 30.0 ) );
+ r = random_uniform( 0.0, 50.0 );
+ p = random_uniform( 0.0, 1.0 );
+ y = stdlib_base_dists_negative_binomial_logpmf( x, r, p );
+ printf( "x: %lf, r: %lf, p: %lf, ln(P(X=x;r,p)): %lf\n", x, r, p, y );
+ }
+}
+```
+
+
+
+
+
+
+
+
+